ClassExo
Exercices de la catégorie Réduction des matrices et des endomorphismes
0
 
Navigation : MathématiquesAlgèbreAlgèbre linéaire ⇐ Réduction des matrices et des endomorphismes
Réduction des matrices et des endomorphismes : liste des exercices
Exercice #269
Exercice de base
Détails de l'exercice #269
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} -3&1&3 \\ 1&-3&3 \\ -5&5&1 \end{pmatrix}$Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $A$.
Exercice #270
Exercice de base
Détails de l'exercice #270
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} -6&4&4 \\ -4&2&4 \\ -4&4&2 \end{pmatrix}$Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $A$.
Exercice #271
Exercice de base
Détails de l'exercice #271
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} -3&2&3 \\ 2&-2&2 \\ -7&6&3 \end{pmatrix}$Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $A$.
Exercice #272
Exercice de base
Détails de l'exercice #272
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 1&1&-1 \\ 2&0&-3 \\ -1&1&1 \end{pmatrix}$Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $A$ vue comme appartenant à $M_3(\mathbb{R})$ puis à $M_3(\mathbb{C})$.
Exercice #273
Exercice de base
Détails de l'exercice #273
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} -1+2i&1&1-2i \\ 2i&0&-1-2i \\ -1&1&1 \end{pmatrix}$Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $A$.
Exercice #265
Exercice de base
Détails de l'exercice #265
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
On considère $E=\{u \in \mathbb{R}^{\mathbb{N}} \; | \; \lim u = 0\}$. On note $\varphi$ l'application définie, pour $u=(u_n)_{n \in \mathbb{N}} \in E$, par $\varphi(u)=(v_n)_{n \in \mathbb{N}}$ où, pour $n \in \mathbb{N}$ :\[ v_n=u_{n+1}-u_n.\]
  1. Montrer que $\varphi$ est un endomorphisme de $E$.
  2. Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $\varphi$.
Exercice #266
Difficulté de niveau 1
Détails de l'exercice #266
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soirt $E=C([0,1],\mathbb{R})$. On définie, pour $f \in E$, la fonction $\varphi(f):[0,1] \rightarrow \mathbb{R}$ par :\[ \varphi(f)(x) = \begin{cases} \displaystyle \frac{1}{x}\int_0^x f(t)\text{d}t & \text{ si }x \in ]0,1] \\ \\ f(0)&\text{ sinon.} \end{cases}\]
  1. Montrer que $\varphi$ est un endomorphisme de $E$.
  2. Déterminer les valeurs propres de $\varphi$.
Exercice #267
Difficulté de niveau 1
Détails de l'exercice #267
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Pour $n \in \mathbb{N}^*$, on note $A_n=(a_{ij})_{1\leqslant i,j \leqslant n } \in \mathcal{M}_n(\mathbb{R})$ la matrice telle que, pour $i,j \in \;[\!\!\![\; 1,n\;]\!\!\!]\;$ :\[ a_{i,j}=\begin{cases} 1&\text{ si }i=j+1\text{ ou }j=i+1 \\ 0&\text{ sinon } \end{cases}\]et on note $\chi_n$ le polynôme caractéristique de $A_n$ i.e. $\chi_n(X)=\text{det}(XI_n-A_n)$.
  1. Soit $n \in \mathbb{N}^*$. Montrer que, pour tout $\lambda \in \mathbb{R}$, \[ \chi_{n+2}(\lambda)=\lambda \chi_{n+1}(\lambda)-\chi_n(\lambda) \]
  2. On pose, pour $\theta \in ]0,\pi[$, $\lambda=2\cos(\theta)$. Montrer que \[ \chi_n(\lambda)=\frac{\sin\left((n+1)\theta\right)}{\sin(\theta)} \]
  3. En déduire le spectre de $A_n$ puis que $A_n$ est diagonalisable.
Exercice #268
Difficulté de niveau 1
Détails de l'exercice #268
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit un entier $n \geqslant 2$ et $f$ un endomorphisme de $\mathbb{R}^n$ tel que $\text{rg}(f)=2$. Exprimer le polynôme caractéristique de $f$ en fonction de $\text{Tr}(f)$ et $\text{Tr}(f^2)$.
Exercice #295
Exercice de base
Détails de l'exercice #295
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} -3&1&3 \\ 1&-3&3 \\ -5&5&1 \end{pmatrix}$. Diagonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $D \in \mathcal{M}_{3}(\mathbb{R})$ diagonale telle que $A=PDP^{-1}$.
Exercice #296
Exercice de base
Détails de l'exercice #296
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 1&-1&3 \\ -2&2&3 \\ 2&1&0 \end{pmatrix}$. Diagonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $D \in \mathcal{M}_{3}(\mathbb{R})$ diagonale telle que $A=PDP^{-1}$.
Exercice #297
Exercice de base
Détails de l'exercice #297
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 4&-1&-3 \\ 1&2&-3 \\ -1&1&6 \end{pmatrix}$. Diagonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $D \in \mathcal{M}_{3}(\mathbb{R})$ diagonale telle que $A=PDP^{-1}$.
Exercice #298
Exercice de base
Détails de l'exercice #298
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 0&-1&1 \\ 6&-5&2 \\ -3&1&-4 \end{pmatrix}$. Trigonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $T \in \mathcal{M}_{3}(\mathbb{R})$ triangulaire supérieure telle que $A=PTP^{-1}$.
Exercice #299
Exercice de base
Détails de l'exercice #299
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 3&-4&-5 \\ 6&-8&-6 \\ -7&8&5 \end{pmatrix}$. Trigonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $T \in \mathcal{M}_{3}(\mathbb{R})$ triangulaire supérieure telle que $A=PTP^{-1}$.
Exercice #300
Exercice de base
Détails de l'exercice #300
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 0&\frac{1}{2}&\frac{1}{2} \\ 1&0&1 \\ 1&-1&0 \end{pmatrix}$. Trigonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $T \in \mathcal{M}_{3}(\mathbb{R})$ triangulaire supérieure telle que $A=PTP^{-1}$.
Exercice #301
Exercice de base
Détails de l'exercice #301
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 4&1&0 \\ 0&2&-1 \\ 1&1&3 \end{pmatrix}$. Trigonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $T \in \mathcal{M}_{3}(\mathbb{R})$ triangulaire supérieure telle que $A=PTP^{-1}$.
Exercice #302
Exercice de base
Détails de l'exercice #302
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $a \in \mathbb{R}$ et $A=\begin{pmatrix} 1+a&1+a&1 \\ -a&-a&-1 \\ a&a-1&0 \end{pmatrix}$.
  1. Pour quelles valeurs de $a$ la matrice $A$ est-elle trigonalisable ? diagonalisable ?
  2. Effectuer la trigonalisation/diagonalisation selon les valeurs de $a$ déterminée à la question précédente.
Exercice #303
Difficulté de niveau 1
Détails de l'exercice #303
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $n \in \mathbb{N}$ avec $n \geqslant 2$ et $x,y \in \mathbb{C}^*$ tels que $y\neq \pm x$. On considère la matrice : \[ A=\begin{pmatrix}x & y& x& \dots &y &x &y \\y & x&y & \dots & x& y&x \\x & y&x & \dots &y &x &y \\\vdots&\vdots&\vdots& \ddots &\vdots&\vdots&\vdots \\y & x& y& \dots &x &y &x \\x & y&x & \dots &y &x &y \\y & x&y & \dots &x &y &x \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C}). \]Montrer que $A$ est diagonalisable.
Exercice #304
Difficulté de niveau 1
Détails de l'exercice #304
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $n \in \mathbb{N}^*$, $E$ une espace vectoriel de dimension $n$ sur $\mathbb{K}=\mathbb{R}$ ou $\mathbb{C}$ et $u \in \mathcal{L}(E)$ de rang $1$. Montrer que $u$ est diagonalisable si, et seulement si, $\text{Tr}(u)\neq 0$.
Exercice #328
Exercice de base
Détails de l'exercice #328
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Déterminer l'exponentielle de la matrice $A=\begin{pmatrix} -3&1&3 \\ 1&-3&3 \\ -5&5&1 \end{pmatrix}$.
Exercice #329
Exercice de base
Détails de l'exercice #329
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Déterminer l'exponentielle de la matrice $A=\begin{pmatrix} 4&-1&-3 \\ 1&2&-3 \\ -1&1&6 \end{pmatrix}$.
Exercice #330
Exercice de base
Détails de l'exercice #330
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Déterminer l'exponentielle de la matrice $A=\begin{pmatrix} 0&-1&1 \\ 6&-5&2 \\ -3&1&-4 \end{pmatrix}$.
Exercice #309
Exercice de base
Détails de l'exercice #309
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $n \in \mathbb{N}^*$. Déterminer toutes les matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que :\[ \begin{cases} \text{Tr}(A)=0 \\ A^3-6A^2+9A=0_n \end{cases}\]
Exercice #311
Exercice de base
Détails de l'exercice #311
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A \in \mathcal{M}(\mathbb{K})$ telle que $A^2$ est diagonalisable.
  1. Si $\mathbb{K}=\mathbb{C}$ et $A$ inversible; montrer que $A$ est diagonalisable.
  2. Si $\mathbb{K}=\mathbb{C}$ et $A$ non inversible, $A$ est-elle diagonalisable ?
  3. Si $\mathbb{K}=\mathbb{R}$ et $A$ inversible, $A$ est-elle diagonalisable ?
Exercice #312
Exercice de base
Détails de l'exercice #312
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $E$ un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ un endomorphisme de rang $1$. Montrer que $u$ est diagonalisable si, et seulement si, $\text{Im}(u) \not \subset \text{Ker}(u)$.
Exercice #310
Difficulté de niveau 1
Détails de l'exercice #310
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $n \in \mathbb{N}^*$ et $\mathbb{K}=\mathbb{R}$ ou $\mathbb{C}$. Soit $A,N \in \mathcal{M}_n(\mathbb{K})$ telles que $N$ est nilpotente et $A,N$ commutent. Montrer que :\[ \text{det}(A+N)=\text{det}(A)\]On pourra commencer par étudier le cas $A \in \text{GL}_n(\mathbb{K})$.
Classexo 2024 || Contacts || Conseils d'utilisation