Pour $n \in \mathbb{N}^*$, on note $A_n=(a_{ij})_{1\leqslant i,j \leqslant n } \in \mathcal{M}_n(\mathbb{R})$ la matrice telle que, pour $i,j \in \;[\!\!\![\; 1,n\;]\!\!\!]\;$ :\[
a_{i,j}=\begin{cases}
1&\text{ si }i=j+1\text{ ou }j=i+1 \\
0&\text{ sinon }
\end{cases}
\]et on note $\chi_n$ le polynôme caractéristique de $A_n$ i.e. $\chi_n(X)=\text{det}(XI_n-A_n)$.
Soit $n \in \mathbb{N}^*$. Montrer que, pour tout $\lambda \in \mathbb{R}$, \[
\chi_{n+2}(\lambda)=\lambda \chi_{n+1}(\lambda)-\chi_n(\lambda)
\]
On pose, pour $\theta \in ]0,\pi[$, $\lambda=2\cos(\theta)$. Montrer que \[
\chi_n(\lambda)=\frac{\sin\left((n+1)\theta\right)}{\sin(\theta)}
\]
En déduire le spectre de $A_n$ puis que $A_n$ est diagonalisable.
Soit un entier $n \geqslant 2$ et $f$ un endomorphisme de $\mathbb{R}^n$ tel que $\text{rg}(f)=2$. Exprimer le polynôme caractéristique de $f$ en fonction de $\text{Tr}(f)$ et $\text{Tr}(f^2)$.