ClassExo
Liste des exercices associés au mot-clé : Oral
0
 
Rechercher un mot-clé
Recherche :
Liste des exercices associés au mot-clé : Oral
Filtres de matières et niveaux
Mathématiques
Tous les niveaux
TME TMS Bac+1 Bac+2 Bac+3 et plus sans niveau enregistré
Physique
Chimie
Sciences de l'Ingénieur
Informatique
Exercice #524 Oral CCinP 2023
Difficulté de niveau 1
Détails de l'exercice #524
Exercice enregistré par M. Arnt
Matière : Mathématiques
Niveaux :
En Mathématiques : Bac+2.
Catégories :
En Mathématiques :
AnalyseIntégrationIntégrales à paramètre
Mots clés associés :
2023 CCinP Oral
Source : BEOS #7475 Oral CCinP 2023
Énoncé
Pour $x \in \mathbb{R}_+$, on pose :\[ F(x) =\int_{0}^{1}\frac{e^{-x^2(1+t^{2})}}{1+t^2}\,\text{d}t \quad\text{et}\quad G(x) = \int_{0}^{x} \mathrm e^{-t^2}\,\text{d}t. \]
  1. Montrer que $F$ est de classe $\mathcal{C}^1$ sur $\mathbb{R}_+$ et exprimer $F'(x)$ pour tout $x \in \mathbb{R}_+$.
  2. Montrer que, pour tout $x \in \mathbb{R}_+$, $G(x)^2 = \frac{\pi}{4}-F(x)$.
  3. En déduire la valeur de $\displaystyle\int_{0}^{+\infty}e^{-t^2}\,\text{d}t$.
Indications
  1. Utiliser le théorème de dérivation d'une intégrale à paramètre.
  2. Prouver que la fonction $G^2+F$ est dérivable de dérivée nulle sur $\mathbb{R}_+$.
  3. Remarquer que l'intégrale recherchée est convergente et égale à $\lim_{x \rightarrow +\infty}G(x)$, puis passer à la limite dans le résultat de la question 2. en utilisant le théorème de la limite d'une intégrale à paramètre.
Correction
  1. Pour $(x,t) \in \mathbb{R}_+\times [0,1]$, on pose $\displaystyle f(x,t)=\frac{e^{-x^2(1+t^{2})}}{1+t^2}$. On vérifie les hypothèses du théorème de dérivation d'une intégrale à paramètre :
    • Soit $t \in [0,1]$. La fonction $x \mapsto f(x,t)$ est de classe $\mathcal{C}^1$ sur $\mathbb{R}_+$ car, pour $a,b$ des réels, $x \mapsto be^{ax^2}$ est de classe $\mathcal{C}^{\infty}$ sur $\mathbb{R}$ (composée de fonctions de classe $\mathcal{C}^{\infty}$ sur $\mathbb{R}$). De plus, pour tout $x \in \mathbb{R}_+$, on a : \[ \frac{\partial f}{\partial x}(x,t) = -2xe^{-x^2(1+t^{2})}. \]
    • Soit $x \in \mathbb{R}_+$. La fonction $t \mapsto f(x,t)$ est intégrable sur $[0,1]$ car continue sur le segment $[0,1]$.
    • Soit $x \in \mathbb{R}_+$. La fonction $t \mapsto \frac{\partial f}{\partial x}f(x,t)$ est continue par morceaux sur $[0,1]$ car, pour $a,b$ des réels, $t \mapsto be^{a(1+t^2)}$ est continue sur $\mathbb{R}$ (composée de fonctions continues sur $\mathbb{R}$).
    • Soit $a > 0$. Domination sur $[0,a]$. Soit $t \in [0,1]$. Pour tout $x \in [0,a]$, on a : \[ \left|\frac{\partial f}{\partial x}(x,t)\right| = 2xe^{-x^2(1+t^{2})}\leqslant 2a = g(t). \] De plus, la fonction $g: t\mapsto 2a$ est intégrable sur $[0,1]$ car continue sur ce segment.
    Toutes les hypothèses sont vérifiées. Ainsi, d'après le théorème de dérivation d'une intégrale à paramètre, $F$ est de classe $\mathcal{C}^1$ sur $[0,a]$ pour tout $a> 0$ et donc sur $\mathbb{R}_+$; et on a, pour tout $x \in \mathbb{R}_+$ : \[ \begin{array}{rcl} F'(x)&=&\displaystyle \frac{\text{d}}{\text{d}x}\int_{0}^{1}f(x,t)\,\text{d}t \\ &=&\displaystyle \int_{0}^{1}\frac{\partial f}{\partial x}(x,t)\,\text{d}t \\ &=&\displaystyle \int_{0}^{1}-2xe^{-x^2(1+t^{2})}\,\text{d}t \\ F'(x)&=&\displaystyle -2x\int_{0}^{1}e^{-x^2(1+t^{2})}\,\text{d}t. \end{array} \]
  2. L'identité que l'on doit montrer nous suggère calculer la dérivée de $G^2+F$ et de vérifier que celle-ci est constante.
    La fonction $G$ est dérivable sur $\mathbb{R}_+$ comme primitive sur $\mathbb{R}$ de la fonction $x \mapsto e^{-x^2}$ continue sur $\mathbb{R}$ et $F$ l'est aussi d'après la question précédente. Par suite, $H=G^2+F$ est dérivable sur $\mathbb{R}_+$, de dérivée $H'=2G'G+F'$. On a : \[ H'(0)=2G'(0)G(0)+F'(0)= 2\times 1\times 0 -0 = 0. \]
    Soit $x \in \mathbb{R}_*^+$. Effectuons le changement de variable licite $u=\frac{t}{x}$ dans l'intégrale $G(x)$ : \[ G(x)=\int_{0}^{x}e^{-t^2}\,\text{d}t = \int_{0}^{1} e^{-(xu)^2}\,x\text{d}u=x\int_{0}^{1} e^{-x^2u^2}\,\text{d}u. \] Par suite, on a : \[ \begin{array}{rcl} H'(x)&=&\displaystyle 2G'(x)G(x)+F'(x) \\ &=&\displaystyle 2xe^{-x^2}\int_{0}^{1} e^{-x^2u^2}\,\text{d}u+F'(x) \\ &=&\displaystyle 2x\int_{0}^{1} e^{-x^2(1+u^2)}\,\text{d}u-2x\int_{0}^{1}e^{-x^2(1+t^{2})}\,\text{d}t \\ H'(x)&=&0. \end{array} \] Ainsi, $H'$ est nulle sur l'intervalle $\mathbb{R}_+$, donc $H$ est constante sur $\mathbb{R}_+$. Or, on a : \[ H(0)=(G(0))^2+F(0)=0+\int_{0}^{1}\frac{1}{1+t^2}\,\text{d}t = \left[\text{arctan}(t)\right]_0^1 = \frac{\pi}{4}. \] Il en résulte que $H=G^2+F$ est constante en $\frac{\pi}{4}$ sur $\mathbb{R}_+$ d'où le résultat.
  3. On remarque que l'intégrale $\int_{0}^{+\infty} e^{-t^2}\,\text{d}t$ est convergente. En effet, $t \mapsto e^{-t^2}$ est continue positive sur $[0,+\infty[$, $e^{-t^2}=\underset{t \rightarrow +\infty}{o}(\frac{1}{1+t^2})$ par croissances comparées et l'intégrale $\int_0^{+\infty}\frac{1}{1+t^2}\,\text{d}t$ converge car la fonction $\text{arctan}$ admet des limites finies en $0$ et $+\infty$; d'où la convergence de l'intégrale par comparaison.
    De plus, par définition, on a : $\int_{0}^{+\infty} e^{-t^2}\,\text{d}t = \lim_{x \rightarrow +\infty} G(x)$.
    Ceci nous suggère alors de passer à la limite en $+\infty$ dans le résultat trouvé à la question précédente. Pour cela, il faut vérifier que $F$ admet une limite en $+\infty$ et la déterminer.
    Vérifions les hypothèses du théorème de limite d'une intégrale à paramètre (on reprend les notations de la question 1.) :
    • Soit $x \in \mathbb{R}_+$. La fonction $t \mapsto f(x,t)$ est continue par morceaux sur $[0,1]$ car continue sur $\mathbb{R}$.
    • Soit $t \in [0,1]$. Comme $1+t^2> 0$, on a : \[ \lim_{x \rightarrow +\infty}f(x,t)=\lim_{x \rightarrow +\infty}e^{-x^2(1+t^2)} = 0. \]
    • Domination sur $\mathbb{R}_+$. Soit $t \in [0,1]$. Pour tout $x \in \mathbb{R}_+$, on a : \[ \left|f(x,t)\right| = e^{-x^2(1+t^{2})}\leqslant 1 = g(t). \] De plus, la fonction $g: t\mapsto 1$ est intégrable sur $[0,1]$ car continue sur ce segment.
    Toutes les hypothèses sont vérifiées. Ainsi, d'après le théorème de limite d'une intégrale à paramètre, $F$ admet une limite en $+\infty$ et on a : \[ \begin{array}{rcl} \displaystyle \lim_{x \rightarrow +\infty}F(x)&=&\displaystyle \lim_{x \rightarrow +\infty}\int_{0}^{1}f(x,t)\,\text{d}t \\ &=&\displaystyle \int_{0}^{1}\lim_{x \rightarrow +\infty}f(x,t)\,\text{d}t \\ &=&\displaystyle \int_{0}^{1}0\,\text{d}t \\ \displaystyle \lim_{x \rightarrow +\infty}F(x)&=&0. \end{array} \] Ainsi, d'après ce qui précède et la question 2., on a : \[ \begin{array}{rcl} \displaystyle \left(\int_{0}^{+\infty} e^{-t^2}\,\text{d}t\right)^2&=& \lim_{x \rightarrow +\infty}G(x)^2 \\ &=&\displaystyle \lim_{x \rightarrow +\infty}\left(\frac{\pi}{4}-F(x)\right) \\ &=&\displaystyle \frac{\pi}{4} -\lim_{x \rightarrow +\infty}F(x) \\ \displaystyle \left(\int_{0}^{+\infty} e^{-t^2}\,\text{d}t\right)^2&=&\displaystyle \frac{\pi}{4}. \end{array} \] Il en résulte : \[ \int_{0}^{+\infty} e^{-t^2}\,\text{d}t = \sqrt{\frac{\pi}{4}} = \frac{\sqrt{\pi}}{2}. \]
Exercice #546 Oral CCinP 2023
Difficulté de niveau 1
Détails de l'exercice #546
Exercice enregistré par M. Arnt
Matière : Mathématiques
Niveaux :
En Mathématiques : Bac+2.
Catégories :
En Mathématiques :
AnalyseCalcul différentielDifférentiabilité et différentielle
Mots clés associés :
2023 CCinP Oral
Source : BEOS #7515 Oral CCinP 2023
Énoncé
Soit $n \in \mathbb{N}^*$. On pose $E = \mathcal{M}_n(\mathbb{R}) $, muni d'une norme sous-multiplicative $\|\cdot\| $, i.e. $\forall (A,B) \in \mathcal{M}_n(\mathbb{R})^2$, $\| AB\| \leqslant \| A \|. \| B \|$.
  1. Soit $H \in E$ tel que $\| H \| < 1 $. Montrer que $I_n - H$ est inversible, d'inverse $\displaystyle \sum_{n=0}^{\infty} H^n$.
  2. Montrer que $GL_n(\mathbb{R})$ est ouvert dans $E$.
  3. Soit $\begin{array}{ccccc} f & : & \ GL_n(\mathbb{R})& \rightarrow & \ GL_n(\mathbb{R}) \\ & & M & \mapsto & M^{-1} \end{array}$.
    1. Montrer que $f$ est différentiable en $I_n$ et que $df(I_n) = -\text{Id}_E$.
    2. Montrer que $f$ est différentiable en tout point de $E$.
Indications
  1. Calculer $(I_n - H) \sum_{n=0}^{\infty} H^n$.
  2. Utiliser l'écriture de $GL_n(\mathbb{R})$ avec le déterminant.
    1. Utiliser la question 1.
    2. Remarquer que $(M+ H)^{-1} = (M(I_n + M^{-1}H))^{-1})$.
Exercice #547 Oral CCinP 2023
Difficulté de niveau 1
Détails de l'exercice #547
Exercice enregistré par M. Arnt
Matière : Mathématiques
Niveaux :
En Mathématiques : Bac+2.
Mots clés associés :
2023 CCinP Oral
Source : BEOS #7216 Oral CCinP 2023
Énoncé
Pour $n \in \mathbb{N}^*$, on note\[ I_n=\int_{0}^{+\infty}\frac{1}{(1+ t^4)^n}\,\text{d}t \]
  1. Montrer que $I_n$ est bien défini pour tout $n \in \mathbb{N}^*$, puis que la suite $(I_n)_{n \in \mathbb{N}^*}$ converge vers une limite à déterminer.
  2. Pour $n \in \mathbb{N}^*$, trouver une relation entre $I_n$ et $I_{n+1}$. En déduire une seconde façon de déterminer la limite de la suite $(I_n)_{n \in \mathbb{N}^*}$.
Indications
  1. Appliquer le théorème de convergence dominée.
  2. Écrire $1=1+t^4-t^4$ puis effectuer une IPP. Une fois la relation établie, faire un produit télescopique pour trouver une expression de $I_n$ puis passer au logarithme.
Correction
Pour $n \in \mathbb{N}$, on pose $f_n: t \mapsto \frac{1}{(1+ t^4)^n}$.
  1. Soit $n \in \mathbb{N}^*$. Montrons que l'intégrale généralisée $I_n$ est convergente.
    La fonction $f$ est continue sur $[0,+\infty[$ comme quotient de fonctions continues sur $[0,+\infty[$ dont le dénominateur ne s'annule pas et est positive sur cet intervalle.
    En $+\infty$, on a : \[ f_n(t)=\frac{1}{(1+ t^4)^n} \underset{t \rightarrow +\infty}{\sim} \frac{1}{t^{4n}}. \] Or, $\int_1^{+\infty} \frac{1}{t^{4n}}\text{d}t$ converge d'après le critère de Riemann en $+\infty$ car $4n \geqslant 4 > 1$, donc, par comparaison, $\int_1^{+\infty} f_n(t)\text{d}t$ converge.
    De plus, $f$ étant continue sur le segment $[0,1]$, $\int_0^{1} f_n(t)\text{d}t$ converge aussi.
    Par suite, $\int_0^{+\infty} f_n(t)\text{d}t$ converge et donc $I_n$ est bien défini.

    Utilisons le théorème de convergence dominée appliqué à la suite de fonctions $(f_n)_{n \in \mathbb{N}^*}$ pour montrer que la suite $(I_n)_{n \in \mathbb{N}^*}$ converge et pour déterminer sa limite. Vérifions les hypothèses du théorème :
    • pour tout $n \in \mathbb{N}^*$, $f_n$ est continue par morceaux sur $[0,+\infty[$ car continue sur $[0,+\infty[$.
    • Convergence Simple vers une fonction continue par morceaux. Soit $t \in [0,+\infty[$. On a : \[ f_n(t)\xrightarrow[n\rightarrow +\infty]{} \begin{cases} 1&\text{ si }t=0 \\ 0&\text{ si }t> 0. \end{cases} \] Par suite, $(f_n)_{n \in \mathbb{N}}$ converge simplement sur $[0,+\infty[$ vers la fonction $f:t \mapsto \begin{cases} 1&\text{ si }t=0 \\ 0&\text{ si }t> 0. \end{cases}$ qui est continue par morceaux sur $[0,+\infty[$.
    • Domination. Soit $t \in [0,+\infty[$. Pour tout $n \in \mathbb{N}^*$, comme $1+t^4 \geqslant 1$, on a : \[ |f_n(t)|=\frac{1}{(1+t^4)^n}\leqslant \frac{1}{1+t^4}=g(t) \] De plus, la fonction $g:t \mapsto \frac{1}{1+t^4}$ est intégrable sur $[0,+\infty[$ d'après ce qui précède (cas $n=1$ pour la bonne définition de $I_n$).
    Les hypothèses sont vérifiées : ainsi, d'après le théorème de convergence dominée, on a \[ \lim_{n \rightarrow +\infty}I_n = \int_0^{+\infty}\lim_{n \rightarrow +\infty} f_n(t) \text{d}t = \int_0^{+\infty}f(t) \text{d}t = 0. \]
  2. Soit $n \in \mathbb{N}^*$. En utilisant la décomposition $1=1+t^4-t^4$ : \[ \begin{array}{rcl} I_{n+1}&=&\displaystyle \int_0^{+\infty}\frac{1}{(1+t^4)^{n+1}} \text{d}t \\ &=&\displaystyle \int_0^{+\infty}\frac{1+t^4-t^4}{(1+t^4)^{n+1}} \text{d}t \\ &=&\displaystyle \int_0^{+\infty}\frac{1}{(1+t^4)^{n}} \text{d}t + \int_0^{+\infty}\frac{-t^4}{(1+t^4)^{n+1}} \text{d}t\\ &=&\displaystyle I_n + \frac{1}{4n}\int_0^{+\infty}t\frac{-4nt^3}{(1+t^4)^{n+1}} \text{d}t \end{array} \] On effectue une intégration par parties dans cette dernière intégrale avec : \[ \begin{array}{rclcrcl} u(t)&=&t&\quad \quad&u'(t)&=&1 \\ v'(t)&=&\displaystyle \frac{-4nt^3}{(1+t^4)^{n+1}}&\quad \quad&v(t)&=&\displaystyle \frac{1}{(1+t^4)^{n}} \end{array} \] On a alors : \[ u(t)v(t) = \frac{t}{(1+t^4)^{n}} \begin{cases} \xrightarrow[t\rightarrow 0]{}0 \\ \xrightarrow[t\rightarrow +\infty]{}0 \end{cases} \] Par suite, l'IPP est licite et on a : \[ \int_0^{+\infty}t\frac{-4nt^3}{(1+t^4)^{n+1}} \text{d}t= [u(t)v(t)]_0^{+\infty}- \int_0^{+\infty}\frac{1}{(1+t^4)^{n}} \text{d}t =-I_n. \] On obtient donc la relation : \[ I_{n+1} = I_n+\frac{1}{4n}(-I_n)=\left(1-\frac{1}{4n}\right)I_n. \] Pour tout $n \in \mathbb{N}^*$, comme $f_n$ est positive continue et non nulle sur $[0,+\infty[$, on a $I_n > 0$, d'où : \[ \frac{I_{n+1}}{I_n} = 1-\frac{1}{4n}. \] Par produit télescopique, on a alors : \[ \frac{I_n}{I_1}= \prod_{k=1}^{n-1} \frac{I_{k+1}}{I_k} =\prod_{k=1}^{n-1}\left(1-\frac{1}{4k}\right). \] Ainsi, on a : \[ \ln(I_n)=\ln(I_1)-\sum_{k=1}^{n-1}\left(-\ln\left(1-\frac{1}{4k}\right)\right). \] Or, $-\ln\left(1-\frac{1}{4k}\right)\underset{k \rightarrow +\infty}{\sim} \frac{1}{4k}$ et $\sum_{k \geqslant 1}\frac{1}{4k}$ diverge (série harmonique multipliée par une constante) d'où la série à termes positifs $\sum_{k \geqslant 1}\left(-\ln\left(1-\frac{1}{4k}\right)\right)$ diverge et donc la suite de ses sommes partielles tend vers $+\infty$ i.e. $\displaystyle \sum_{k=1}^{n-1}\left(-\ln\left(1-\frac{1}{4k}\right)\right) \xrightarrow[t\rightarrow +\infty]{} +\infty$.
    Il en résulte que $(\ln(I_n))_{n \in \mathbb{N}^*}$ tend vers $-\infty$ et donc, par passage à la fonction exponentielle qui est continue sur $\mathbb{R}$, on obtient, comme $\lim_{x \rightarrow -\infty}e^x=0$ : \[ I_n \xrightarrow[t\rightarrow +\infty]{} 0. \]
Exercice #553 Oral CCinP 2023
Difficulté de niveau 1
Détails de l'exercice #553
Exercice enregistré par M. Arnt
Matière : Mathématiques
Niveaux :
En Mathématiques : Bac+2.
Mots clés associés :
2023 CCinP Oral Théorème du rang
Source : BEOS #7655 Oral CCinP 2023
Énoncé
On pose $A=\begin{pmatrix} 0_n & I_n & 0_n \\ 0_n & 0_n & I_n \\ 0_n & 0_n & 0_n \end{pmatrix}$
  1. Calculer le polynôme caractéristique, le polynôme minimal et le rang de $A$.
  2. Soit $u$ un endomorphisme d'un espace vectoriel de dimension finie, montrer que $\text{dim}(\text{Ker}(u^2))\leqslant 2\text{dim}(\text{Ker}(u))$.
  3. Soit $B \in \mathcal{M}_{3n}(\mathbb{R})$ telle que $B^3=0_{3n}$ et $\text{rg}(B) = 2n$.
    1. Montrer que $\text{Im}(B^2) \subset \text{Ker}(B)$.
    2. En déduire le rang de $B^2$.
    3. Soit $(X_1,\hdots , X_m)$ une base d'un supplémentaire de $\text{Ker}(B^2)$. Montrer que $(B^2X_1, \hdots , B^2X_m, BX_1, \hdots, BX_m, X_1, \hdots, X_m)$ est une famille libre.
    4. Montrer que $A$ et $B$ sont semblables.
Indications
  1. Polynôme caractéristique : soit par un calcul direct, soit après avoir fait le polynôme minimal; polynôme minimal : calculer $A^2$ et $A^3$; rang : déterminer le nombre maximum de colonnes qui forme une famille libre (une base de l'image donc).
  2. Considérer l'application linéaire $v:\text{Im}(u) \rightarrow E$ telle que $v:x \mapsto u(x)$.
    1. Simple vérification.
    2. Utiliser la question précédente et la question 2.
    3. Montrer d'abord que $(B^2X_1, \hdots , B^2X_m)$ est une famille libre avec la définition en utilisant ensuite que l'intersection de $\text{Ker}(B^2)$ et du supplémentaire considéré est réduite à $0_{3n,1}$. Puis rappliquer la définition de famille libre à la famille entière et multiplier par $B$ puis par $B^2$.
    4. Considérer l'endomorphisme $u:X \mapsto BX$ de $M_{3n,1}(\mathbb{K})$ ou encore écrire la matrice $P$ ayant pour colonnes les éléments de la base de $M_{3n,1}(\mathbb{K})$ de la question précédente.
Correction
  1. On a, pour $\lambda \in \mathbb{R}$ : \[ \chi_A(\lambda)=\begin{vmatrix} \lambda I_n & -I_n & 0_n \\ 0_n & \lambda I_n & -I_n \\ 0_n & 0_n & \lambda I_n \end{vmatrix} \] Ce déterminant étant celui d'une matrice triangulaire par blocs, il est égal au produit des déterminants des blocs diagonaux, d'où : \[ \chi_A(\lambda) = \text{det}(\lambda I_n)^3 = \lambda^{3n} \] et donc $\chi_A=X^{3n}$.
    On a $A^2=\begin{pmatrix} 0_n & 0_n & I_n \\ 0_n & 0_n & 0_n \\ 0_n & 0_n & 0_n \end{pmatrix}$ et $A^3=0_{3n}$ donc $X^3$ est annulateur de $A$ mais pas $X^2$, d'où $\pi_A=X^3$.
    Le rang de $A$ est égal à $2n$ car ses $2n$ dernières colonnes forment une famille libre de $\mathcal{M}_{3n,1}(\mathbb{K})$ et les $n$ premières sont nulles donc liées aux $2n$ dernières.
    Remarque : on aurait également pu déduire le polynôme caractéristique à partir du polynôme minimal : en effet, comme $\pi_A=X^3$, $A$ est nilpotente et le cours affirme que dans ce cas, $\chi_A=X^{3n}$ car $A \in \mathcal{M}_{3n}(\mathbb{K})$.
  2. On note $v$ la restriction de $u$ à $\text{Im}(u)$. Alors $\text{Ker}(v) \subset \text{Ker}(u)$ et $\text{Im}(v) = \text{Im}(u^2)$ car, pour tout $x \in E$, $v(u(x))=u^2(x)$. Ainsi, d'après le théorème du rang, on a : \[ \begin{array}{rcl} \text{rg}(u)&=&\text{dim}\left(\text{Im}(u)\right) \\ &=&\text{rg}(v)+\text{dim}\left(\text{Ker}(v)\right) \\ &=&\text{rg}(u^2)+\text{dim}\left(\text{Ker}(v)\right) \\ &\leqslant &\text{rg}(u^2)+\text{dim}\left(\text{Ker}(u)\right) \\ \end{array} \] d'où : \[ \text{rg}(u)-\text{rg}(u^2)\leqslant\text{dim}\left(\text{Ker}(u)\right) \quad (*) \] Or, en appliquant le théorème du rang à $u$ puis à $u^2$, on a : \[ \begin{array}{l} \text{dim}\left(E\right)=\text{rg}(u)+\text{dim}\left(\text{Ker}(u)\right) \\ \text{dim}\left(E\right)=\text{rg}(u^2)+\text{dim}\left(\text{Ker}(u^2)\right) \end{array} \] donc : \[ \text{rg}(u)-\text{rg}(u^2) = \text{dim}\left(\text{Ker}(u^2)\right)-\text{dim}\left(\text{Ker}(u)\right). \] En reportant cette dernière égalité dans $(*)$ et en ajoutant $\text{dim}\left(\text{Ker}(u)\right)$ on obtient le résultat.
    1. Soit $Y \in \text{Im}(B^2)$. Alors il existe $X \in \mathcal{M}_{3n,1}(\mathbb{K})$ tel que $Y=B^2X$. Ainsi $BY=B(B^2X)=B^3X=0_3X=0_{3n,1}$. D'où $Y \in \text{Ker}(B)$. D'où l'inclusion.
    2. Comme $\text{rg}(B)=2n$, d'après le théorème du rang, $\text{dim}\left(\text{Ker}(B)\right)=3n-2n=n$. Ainsi, d'après la question précédente, $\text{rg}(B^2)\leqslant n$.
      De plus, pour $u$ l'endomorphisme de $\mathbb{K}^n$ canoniquement associé à $B$. D'après la question 2., on a : \[ \text{dim}\left(\text{Ker}(u^2)\right)\leqslant 2\text{dim}\left(\text{Ker}(u)\right) \] d'où : \[ \text{dim}\left(\text{Ker}(B^2)\right)\leqslant 2\text{dim}\left(\text{Ker}(B)\right) \] et donc \[ 3n-\text{rg}(B^2)\leqslant 6n - 2\text{rg}(B) = 6n-4n=2n. \] Par suite, on obtient $\text{rg}(B^2) \geqslant 3n-2n = n$.
      Ainsi, $\text{rg}(B^2)=n$.
    3. D'après le résultat de la question précédente et le théorème du rang, on a $\text{dim}\left(\text{Ker}(B^2)\right)=3n-n=2n$, donc tout supplémentaire de $\text{Ker}(B^2)$ est de dimension $3n-2n=n$. Par suite, $m=n$.
      On note $S= \text{Vect}(X_1,\hdots,X_n)$ le supplémentaire de $\text{Ker}(B^2)$ considéré.
      Montrons que la famille $(B^2X_1,\hdots,B^2X_n)$ est libre. Soit $\lambda_1,\hdots, \lambda_n \in \mathbb{K}$. On suppose que $\sum_{i=1}^n \lambda_i B^2X_i = 0_{3n,1}$. On note $X=\sum_{i=1}^n \lambda_i X_i \in S$. Alors on a $B^2X=\sum_{i=1}^n \lambda_i B^2X_i = 0_{3n,1}$, donc $X \in S \cap \text{Ker}(B^2)= \{0_{3n,1}\}$ d'où $\sum_{i=1}^n \lambda_i X_i=0_{3n,1}$.
      Or, la famille $(X_1,\hdots,X_n)$ est libre comme base de $S$, donc $\lambda_1=0,\hdots, \lambda_n=0$. Par suite, $(B^2X_1,\hdots,B^2X_n)$ est libre.
      Montrons que la famille $(B^2X_1,\hdots,B^2X_n,BX_1,\hdots,BX_n,X_1,\hdots,X_n)$ est libre. Soit $\lambda_1,\hdots,\lambda_{n},\mu_1,\hdots,\mu_{n},\nu_1,\hdots,\nu_{n} \in \mathbb{K}$. On suppose que $Y=\sum_{i=1}^n \lambda_i B^2X_i+\sum_{i=1}^n \mu_i BX_i+\sum_{i=1}^n \nu_i X_i = 0_{3n,1}$.
      • On a : $B^2Y = \sum_{i=1}^n \lambda_i \underbrace{B^4X_i}_{=0_{3n,1}}+\sum_{i=1}^n \mu_i \underbrace{B^3X_i}_{=0_{3n,1}}+\sum_{i=1}^n \nu_i B^2X_i = B^20_{3n,1}=0_{3n,1}$, donc $\sum_{i=1}^n \nu_i B^2X_i =0_{3n,1}$. Or, d'après ce qui précède, la famille $(B^2X_1,\hdots,B^2X_n)$ est libre, d'où $\nu_1=0,...,\nu_n=0$.
      • $BY = \sum_{i=1}^n \lambda_i \underbrace{B^3X_i}_{=0_{3n,1}}+\sum_{i=1}^n \mu_i B^2X_i = B0_{3n,1}=0_{3n,1}$, donc $\sum_{i=1}^n \mu_i B^2X_i =0_{3n,1}$, d'où, comme précédemment, $\mu_1=0,...,\mu_n=0$.
      • $Y=\sum_{i=1}^n \lambda_i B^2X_i=0_{3n,1}$, d'où, comme précédemment, $\lambda_1=0,...,\lambda_n=0$.
      Il en résulte que $(B^2X_1,\hdots,B^2X_n,BX_1,\hdots,BX_n,X_1,\hdots,X_n)$ est libre.
    4. Comme $\mathcal{B}=(B^2X_1,\hdots,B^2X_n,BX_1,\hdots,BX_n,X_1,\hdots,X_n)$ est une famille libre de cardinal $3n$ dans $\mathcal{M}_{3n,1}(\mathbb{K})$ qui est de dimension $3n$, $\mathcal{B}$ est une base de $\mathcal{M}_{3n,1}(\mathbb{K})$.
      On considère la base canonique $\mathcal{C}=(E_1,\hdots,E_{3n})$ de $\mathcal{M}_{3n,1}(\mathbb{K})$.
      Voici deux façons (quasiment similaires) d'établir le résultat :
      • 1ère façon : en montrant que $A$ et $B$ représentent le même endomorphisme dans deux bases différentes.
        Soit $u:X \mapsto BX$. Alors $u$ est un endomorphisme de $\mathcal{M}_{3n,1}(\mathbb{K})$ et $\text{Mat}_{\mathcal{C}}(u)=B$. Déterminons la matrice $\text{Mat}_{\mathcal{B}}(u)$ de $u$ dans la base $\mathcal{B}$. On a, pour tout $i \in \;[\!\!\![\; 1,n \;]\!\!\!]\;$ : \[ \begin{array}{l} u(B^2X_i)=B(B^2X_i)=B^2X_i=0_{3n,1}, \\ u(BX_i)=B(BX_i)=B^2X_i \text{ et} \\ u(X_i)=B(X_i)=BX_i. \end{array} \] Par suite, on a : \[ \text{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 0_n & I_n & 0_n \\ 0_n & 0_n & I_n \\ 0_n & 0_n & 0_n \end{pmatrix} = A \] Comme deux matrices qui représentent un même endomorphisme sont semblables, il en résulte que $A$ et $B$ sont semblables.
      • 2ème façon : en exhibant une matrice inversible de similitude entre $A$ et $B$.
        La matrice $P=(P_1|\hdots|P_{3n}) \in \mathcal{M}_{3n}(\mathbb{K})$ dont les colonnes $P_i$ de $P$ sont les éléments (dans l'ordre) de la base $\mathcal{B}$ est inversible car de rang $3n$ et on a : \[ \begin{array}{rcl} P^{-1}BP&=&P^{-1}B(B^2X_1|\hdots|B^2X_n|BX_1|\hdots|BX_n|X_1|\hdots|X_n) \\ &=&P^{-1}(B^3X_1|\hdots|B^3X_n|B^2X_1|\hdots|B^2X_n|BX_1|\hdots|BX_n) \\ &=&P^{-1}(0_{3n,1}|\hdots|0_{3n,1}|B^2X_1|\hdots|B^2X_n|BX_1|\hdots|BX_n) \\ &=&(0_{3n,1}|\hdots|0_{3n,1}|P^{-1}B^2X_1|\hdots|P^{-1}B^2X_n|P^{-1}BX_1|\hdots|P^{-1}BX_n) \\ \end{array} \] Or, comme $P^{-1}(B^2X_1|\hdots|B^2X_n|BX_1|\hdots|BX_n|X_1|\hdots|X_n)=P^{-1}P=I_{3n}=\left(E_1|\hdots|E_{3n}\right)$, on a : \[ (P^{-1}B^2X_1|\hdots|P^{-1}B^2X_n|P^{-1}BX_1|\hdots|P^{-1}BX_n|P^{-1}X_1|\hdots|P^{-1}X_n)=\left(E_1|\hdots|E_{n}|E_{n+1}|\hdots|E_{2n}|E_{2n+1}|\hdots|E_{3n}\right), \] d'où : \[ \begin{array}{rcl} P^{-1}BP&=&(0_{3n,1}|\hdots|0_{3n,1}|P^{-1}B^2X_1|\hdots|P^{-1}B^2X_n|P^{-1}BX_1|\hdots|P^{-1}BX_n) \\ &=&(0_{3n,1}|\hdots|0_{3n,1}|E_{1}|\hdots|E_n|E_{n+1}|\hdots|E_{2n}) \\ &=&\begin{pmatrix} 0_n & I_n & 0_n \\ 0_n & 0_n & I_n \\ 0_n & 0_n & 0_n \end{pmatrix} \\ P^{-1}BP&=&A. \end{array} \] Par suite, $A$ et $B$ sont semblables.
Classexo 2024 || Contacts || Conseils d'utilisation