ClassExo
Exercices de la catégorie Réduction des matrices et des endomorphismes
0
 
Navigation : MathématiquesAlgèbreAlgèbre linéaire ⇐ Réduction des matrices et des endomorphismes
Réduction des matrices et des endomorphismes : liste des exercices
Exercice #553 Oral CCinP 2023
Difficulté de niveau 1
Détails de l'exercice #553
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Mots clés associés :
2023 CCinP Oral Théorème du rang
Source : BEOS #7655 Oral CCinP 2023
Énoncé
On pose $A=\begin{pmatrix} 0_n & I_n & 0_n \\ 0_n & 0_n & I_n \\ 0_n & 0_n & 0_n \end{pmatrix}$
  1. Calculer le polynôme caractéristique, le polynôme minimal et le rang de $A$.
  2. Soit $u$ un endomorphisme d'un espace vectoriel de dimension finie, montrer que $\text{dim}(\text{Ker}(u^2))\leqslant 2\text{dim}(\text{Ker}(u))$.
  3. Soit $B \in \mathcal{M}_{3n}(\mathbb{R})$ telle que $B^3=0_{3n}$ et $\text{rg}(B) = 2n$.
    1. Montrer que $\text{Im}(B^2) \subset \text{Ker}(B)$.
    2. En déduire le rang de $B^2$.
    3. Soit $(X_1,\hdots , X_m)$ une base d'un supplémentaire de $\text{Ker}(B^2)$. Montrer que $(B^2X_1, \hdots , B^2X_m, BX_1, \hdots, BX_m, X_1, \hdots, X_m)$ est une famille libre.
    4. Montrer que $A$ et $B$ sont semblables.
Indications
  1. Polynôme caractéristique : soit par un calcul direct, soit après avoir fait le polynôme minimal; polynôme minimal : calculer $A^2$ et $A^3$; rang : déterminer le nombre maximum de colonnes qui forme une famille libre (une base de l'image donc).
  2. Considérer l'application linéaire $v:\text{Im}(u) \rightarrow E$ telle que $v:x \mapsto u(x)$.
    1. Simple vérification.
    2. Utiliser la question précédente et la question 2.
    3. Montrer d'abord que $(B^2X_1, \hdots , B^2X_m)$ est une famille libre avec la définition en utilisant ensuite que l'intersection de $\text{Ker}(B^2)$ et du supplémentaire considéré est réduite à $0_{3n,1}$. Puis rappliquer la définition de famille libre à la famille entière et multiplier par $B$ puis par $B^2$.
    4. Considérer l'endomorphisme $u:X \mapsto BX$ de $M_{3n,1}(\mathbb{K})$ ou encore écrire la matrice $P$ ayant pour colonnes les éléments de la base de $M_{3n,1}(\mathbb{K})$ de la question précédente.
Correction
  1. On a, pour $\lambda \in \mathbb{R}$ : \[ \chi_A(\lambda)=\begin{vmatrix} \lambda I_n & -I_n & 0_n \\ 0_n & \lambda I_n & -I_n \\ 0_n & 0_n & \lambda I_n \end{vmatrix} \] Ce déterminant étant celui d'une matrice triangulaire par blocs, il est égal au produit des déterminants des blocs diagonaux, d'où : \[ \chi_A(\lambda) = \text{det}(\lambda I_n)^3 = \lambda^{3n} \] et donc $\chi_A=X^{3n}$.
    On a $A^2=\begin{pmatrix} 0_n & 0_n & I_n \\ 0_n & 0_n & 0_n \\ 0_n & 0_n & 0_n \end{pmatrix}$ et $A^3=0_{3n}$ donc $X^3$ est annulateur de $A$ mais pas $X^2$, d'où $\pi_A=X^3$.
    Le rang de $A$ est égal à $2n$ car ses $2n$ dernières colonnes forment une famille libre de $\mathcal{M}_{3n,1}(\mathbb{K})$ et les $n$ premières sont nulles donc liées aux $2n$ dernières.
    Remarque : on aurait également pu déduire le polynôme caractéristique à partir du polynôme minimal : en effet, comme $\pi_A=X^3$, $A$ est nilpotente et le cours affirme que dans ce cas, $\chi_A=X^{3n}$ car $A \in \mathcal{M}_{3n}(\mathbb{K})$.
  2. On note $v$ la restriction de $u$ à $\text{Im}(u)$. Alors $\text{Ker}(v) \subset \text{Ker}(u)$ et $\text{Im}(v) = \text{Im}(u^2)$ car, pour tout $x \in E$, $v(u(x))=u^2(x)$. Ainsi, d'après le théorème du rang, on a : \[ \begin{array}{rcl} \text{rg}(u)&=&\text{dim}\left(\text{Im}(u)\right) \\ &=&\text{rg}(v)+\text{dim}\left(\text{Ker}(v)\right) \\ &=&\text{rg}(u^2)+\text{dim}\left(\text{Ker}(v)\right) \\ &\leqslant &\text{rg}(u^2)+\text{dim}\left(\text{Ker}(u)\right) \\ \end{array} \] d'où : \[ \text{rg}(u)-\text{rg}(u^2)\leqslant\text{dim}\left(\text{Ker}(u)\right) \quad (*) \] Or, en appliquant le théorème du rang à $u$ puis à $u^2$, on a : \[ \begin{array}{l} \text{dim}\left(E\right)=\text{rg}(u)+\text{dim}\left(\text{Ker}(u)\right) \\ \text{dim}\left(E\right)=\text{rg}(u^2)+\text{dim}\left(\text{Ker}(u^2)\right) \end{array} \] donc : \[ \text{rg}(u)-\text{rg}(u^2) = \text{dim}\left(\text{Ker}(u^2)\right)-\text{dim}\left(\text{Ker}(u)\right). \] En reportant cette dernière égalité dans $(*)$ et en ajoutant $\text{dim}\left(\text{Ker}(u)\right)$ on obtient le résultat.
    1. Soit $Y \in \text{Im}(B^2)$. Alors il existe $X \in \mathcal{M}_{3n,1}(\mathbb{K})$ tel que $Y=B^2X$. Ainsi $BY=B(B^2X)=B^3X=0_3X=0_{3n,1}$. D'où $Y \in \text{Ker}(B)$. D'où l'inclusion.
    2. Comme $\text{rg}(B)=2n$, d'après le théorème du rang, $\text{dim}\left(\text{Ker}(B)\right)=3n-2n=n$. Ainsi, d'après la question précédente, $\text{rg}(B^2)\leqslant n$.
      De plus, pour $u$ l'endomorphisme de $\mathbb{K}^n$ canoniquement associé à $B$. D'après la question 2., on a : \[ \text{dim}\left(\text{Ker}(u^2)\right)\leqslant 2\text{dim}\left(\text{Ker}(u)\right) \] d'où : \[ \text{dim}\left(\text{Ker}(B^2)\right)\leqslant 2\text{dim}\left(\text{Ker}(B)\right) \] et donc \[ 3n-\text{rg}(B^2)\leqslant 6n - 2\text{rg}(B) = 6n-4n=2n. \] Par suite, on obtient $\text{rg}(B^2) \geqslant 3n-2n = n$.
      Ainsi, $\text{rg}(B^2)=n$.
    3. D'après le résultat de la question précédente et le théorème du rang, on a $\text{dim}\left(\text{Ker}(B^2)\right)=3n-n=2n$, donc tout supplémentaire de $\text{Ker}(B^2)$ est de dimension $3n-2n=n$. Par suite, $m=n$.
      On note $S= \text{Vect}(X_1,\hdots,X_n)$ le supplémentaire de $\text{Ker}(B^2)$ considéré.
      Montrons que la famille $(B^2X_1,\hdots,B^2X_n)$ est libre. Soit $\lambda_1,\hdots, \lambda_n \in \mathbb{K}$. On suppose que $\sum_{i=1}^n \lambda_i B^2X_i = 0_{3n,1}$. On note $X=\sum_{i=1}^n \lambda_i X_i \in S$. Alors on a $B^2X=\sum_{i=1}^n \lambda_i B^2X_i = 0_{3n,1}$, donc $X \in S \cap \text{Ker}(B^2)= \{0_{3n,1}\}$ d'où $\sum_{i=1}^n \lambda_i X_i=0_{3n,1}$.
      Or, la famille $(X_1,\hdots,X_n)$ est libre comme base de $S$, donc $\lambda_1=0,\hdots, \lambda_n=0$. Par suite, $(B^2X_1,\hdots,B^2X_n)$ est libre.
      Montrons que la famille $(B^2X_1,\hdots,B^2X_n,BX_1,\hdots,BX_n,X_1,\hdots,X_n)$ est libre. Soit $\lambda_1,\hdots,\lambda_{n},\mu_1,\hdots,\mu_{n},\nu_1,\hdots,\nu_{n} \in \mathbb{K}$. On suppose que $Y=\sum_{i=1}^n \lambda_i B^2X_i+\sum_{i=1}^n \mu_i BX_i+\sum_{i=1}^n \nu_i X_i = 0_{3n,1}$.
      • On a : $B^2Y = \sum_{i=1}^n \lambda_i \underbrace{B^4X_i}_{=0_{3n,1}}+\sum_{i=1}^n \mu_i \underbrace{B^3X_i}_{=0_{3n,1}}+\sum_{i=1}^n \nu_i B^2X_i = B^20_{3n,1}=0_{3n,1}$, donc $\sum_{i=1}^n \nu_i B^2X_i =0_{3n,1}$. Or, d'après ce qui précède, la famille $(B^2X_1,\hdots,B^2X_n)$ est libre, d'où $\nu_1=0,...,\nu_n=0$.
      • $BY = \sum_{i=1}^n \lambda_i \underbrace{B^3X_i}_{=0_{3n,1}}+\sum_{i=1}^n \mu_i B^2X_i = B0_{3n,1}=0_{3n,1}$, donc $\sum_{i=1}^n \mu_i B^2X_i =0_{3n,1}$, d'où, comme précédemment, $\mu_1=0,...,\mu_n=0$.
      • $Y=\sum_{i=1}^n \lambda_i B^2X_i=0_{3n,1}$, d'où, comme précédemment, $\lambda_1=0,...,\lambda_n=0$.
      Il en résulte que $(B^2X_1,\hdots,B^2X_n,BX_1,\hdots,BX_n,X_1,\hdots,X_n)$ est libre.
    4. Comme $\mathcal{B}=(B^2X_1,\hdots,B^2X_n,BX_1,\hdots,BX_n,X_1,\hdots,X_n)$ est une famille libre de cardinal $3n$ dans $\mathcal{M}_{3n,1}(\mathbb{K})$ qui est de dimension $3n$, $\mathcal{B}$ est une base de $\mathcal{M}_{3n,1}(\mathbb{K})$.
      On considère la base canonique $\mathcal{C}=(E_1,\hdots,E_{3n})$ de $\mathcal{M}_{3n,1}(\mathbb{K})$.
      Voici deux façons (quasiment similaires) d'établir le résultat :
      • 1ère façon : en montrant que $A$ et $B$ représentent le même endomorphisme dans deux bases différentes.
        Soit $u:X \mapsto BX$. Alors $u$ est un endomorphisme de $\mathcal{M}_{3n,1}(\mathbb{K})$ et $\text{Mat}_{\mathcal{C}}(u)=B$. Déterminons la matrice $\text{Mat}_{\mathcal{B}}(u)$ de $u$ dans la base $\mathcal{B}$. On a, pour tout $i \in \;[\!\!\![\; 1,n \;]\!\!\!]\;$ : \[ \begin{array}{l} u(B^2X_i)=B(B^2X_i)=B^2X_i=0_{3n,1}, \\ u(BX_i)=B(BX_i)=B^2X_i \text{ et} \\ u(X_i)=B(X_i)=BX_i. \end{array} \] Par suite, on a : \[ \text{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 0_n & I_n & 0_n \\ 0_n & 0_n & I_n \\ 0_n & 0_n & 0_n \end{pmatrix} = A \] Comme deux matrices qui représentent un même endomorphisme sont semblables, il en résulte que $A$ et $B$ sont semblables.
      • 2ème façon : en exhibant une matrice inversible de similitude entre $A$ et $B$.
        La matrice $P=(P_1|\hdots|P_{3n}) \in \mathcal{M}_{3n}(\mathbb{K})$ dont les colonnes $P_i$ de $P$ sont les éléments (dans l'ordre) de la base $\mathcal{B}$ est inversible car de rang $3n$ et on a : \[ \begin{array}{rcl} P^{-1}BP&=&P^{-1}B(B^2X_1|\hdots|B^2X_n|BX_1|\hdots|BX_n|X_1|\hdots|X_n) \\ &=&P^{-1}(B^3X_1|\hdots|B^3X_n|B^2X_1|\hdots|B^2X_n|BX_1|\hdots|BX_n) \\ &=&P^{-1}(0_{3n,1}|\hdots|0_{3n,1}|B^2X_1|\hdots|B^2X_n|BX_1|\hdots|BX_n) \\ &=&(0_{3n,1}|\hdots|0_{3n,1}|P^{-1}B^2X_1|\hdots|P^{-1}B^2X_n|P^{-1}BX_1|\hdots|P^{-1}BX_n) \\ \end{array} \] Or, comme $P^{-1}(B^2X_1|\hdots|B^2X_n|BX_1|\hdots|BX_n|X_1|\hdots|X_n)=P^{-1}P=I_{3n}=\left(E_1|\hdots|E_{3n}\right)$, on a : \[ (P^{-1}B^2X_1|\hdots|P^{-1}B^2X_n|P^{-1}BX_1|\hdots|P^{-1}BX_n|P^{-1}X_1|\hdots|P^{-1}X_n)=\left(E_1|\hdots|E_{n}|E_{n+1}|\hdots|E_{2n}|E_{2n+1}|\hdots|E_{3n}\right), \] d'où : \[ \begin{array}{rcl} P^{-1}BP&=&(0_{3n,1}|\hdots|0_{3n,1}|P^{-1}B^2X_1|\hdots|P^{-1}B^2X_n|P^{-1}BX_1|\hdots|P^{-1}BX_n) \\ &=&(0_{3n,1}|\hdots|0_{3n,1}|E_{1}|\hdots|E_n|E_{n+1}|\hdots|E_{2n}) \\ &=&\begin{pmatrix} 0_n & I_n & 0_n \\ 0_n & 0_n & I_n \\ 0_n & 0_n & 0_n \end{pmatrix} \\ P^{-1}BP&=&A. \end{array} \] Par suite, $A$ et $B$ sont semblables.
Exercice #269
Exercice de base
Détails de l'exercice #269
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} -3&1&3 \\ 1&-3&3 \\ -5&5&1 \end{pmatrix}$. Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $A$.
Exercice #270
Exercice de base
Détails de l'exercice #270
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} -6&4&4 \\ -4&2&4 \\ -4&4&2 \end{pmatrix}$. Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $A$.
Exercice #271
Exercice de base
Détails de l'exercice #271
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} -3&2&3 \\ 2&-2&2 \\ -7&6&3 \end{pmatrix}$. Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $A$.
Exercice #272
Exercice de base
Détails de l'exercice #272
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 1&1&-1 \\ 2&0&-3 \\ -1&1&1 \end{pmatrix}$. Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $A$ vue comme appartenant à $M_3(\mathbb{R})$ puis à $M_3(\mathbb{C})$.
Exercice #273
Exercice de base
Détails de l'exercice #273
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} -1+2i&1&1-2i \\ 2i&0&-1-2i \\ -1&1&1 \end{pmatrix}$. Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $A$.
Exercice #265
Exercice de base
Détails de l'exercice #265
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
On considère $E=\{u \in \mathbb{R}^{\mathbb{N}} \; | \; \lim u = 0\}$. On note $\varphi$ l'application définie, pour $u=(u_n)_{n \in \mathbb{N}} \in E$, par $\varphi(u)=(v_n)_{n \in \mathbb{N}}$ où, pour $n \in \mathbb{N}$ :\[ v_n=u_{n+1}-u_n. \]
  1. Montrer que $\varphi$ est un endomorphisme de $E$.
  2. Déterminer les éléments propres (valeurs propres, sous-espaces propres) de $\varphi$.

Exercice #266
Difficulté de niveau 1
Détails de l'exercice #266
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soirt $E=C([0,1],\mathbb{R})$. On définie, pour $f \in E$, la fonction $\varphi(f):[0,1] \rightarrow \mathbb{R}$ par :\[ \varphi(f)(x) = \begin{cases} \displaystyle \frac{1}{x}\int_0^x f(t)\text{d}t & \text{ si }x \in ]0,1] \\ \\ f(0)&\text{ sinon.} \end{cases} \]
  1. Montrer que $\varphi$ est un endomorphisme de $E$.
  2. Déterminer les valeurs propres de $\varphi$.

Exercice #267
Difficulté de niveau 1
Détails de l'exercice #267
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Pour $n \in \mathbb{N}^*$, on note $A_n=(a_{ij})_{1\leqslant i,j \leqslant n } \in \mathcal{M}_n(\mathbb{R})$ la matrice telle que, pour $i,j \in \;[\!\!\![\; 1,n\;]\!\!\!]\;$ :\[ a_{i,j}=\begin{cases} 1&\text{ si }i=j+1\text{ ou }j=i+1 \\ 0&\text{ sinon } \end{cases} \]et on note $\chi_n$ le polynôme caractéristique de $A_n$ i.e. $\chi_n(X)=\text{det}(XI_n-A_n)$.
  1. Soit $n \in \mathbb{N}^*$. Montrer que, pour tout $\lambda \in \mathbb{R}$, \[ \chi_{n+2}(\lambda)=\lambda \chi_{n+1}(\lambda)-\chi_n(\lambda) \]
  2. On pose, pour $\theta \in ]0,\pi[$, $\lambda=2\cos(\theta)$. Montrer que \[ \chi_n(\lambda)=\frac{\sin\left((n+1)\theta\right)}{\sin(\theta)} \]
  3. En déduire le spectre de $A_n$ puis que $A_n$ est diagonalisable.

Exercice #268
Difficulté de niveau 1
Détails de l'exercice #268
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit un entier $n \geqslant 2$ et $f$ un endomorphisme de $\mathbb{R}^n$ tel que $\text{rg}(f)=2$. Exprimer le polynôme caractéristique de $f$ en fonction de $\text{Tr}(f)$ et $\text{Tr}(f^2)$.
Exercice #295
Exercice de base
Détails de l'exercice #295
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} -3&1&3 \\ 1&-3&3 \\ -5&5&1 \end{pmatrix}$. Diagonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $D \in \mathcal{M}_{3}(\mathbb{R})$ diagonale telle que $A=PDP^{-1}$.
Exercice #296
Exercice de base
Détails de l'exercice #296
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 1&-1&3 \\ -2&2&3 \\ 2&1&0 \end{pmatrix}$. Diagonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $D \in \mathcal{M}_{3}(\mathbb{R})$ diagonale telle que $A=PDP^{-1}$.
Exercice #297
Exercice de base
Détails de l'exercice #297
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 4&-1&-3 \\ 1&2&-3 \\ -1&1&6 \end{pmatrix}$. Diagonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $D \in \mathcal{M}_{3}(\mathbb{R})$ diagonale telle que $A=PDP^{-1}$.
Exercice #298
Exercice de base
Détails de l'exercice #298
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 0&-1&1 \\ 6&-5&2 \\ -3&1&-4 \end{pmatrix}$. Trigonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $T \in \mathcal{M}_{3}(\mathbb{R})$ triangulaire supérieure telle que $A=PTP^{-1}$.
Exercice #299
Exercice de base
Détails de l'exercice #299
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 3&-4&-5 \\ 6&-8&-6 \\ -7&8&5 \end{pmatrix}$. Trigonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $T \in \mathcal{M}_{3}(\mathbb{R})$ triangulaire supérieure telle que $A=PTP^{-1}$.
Exercice #300
Exercice de base
Détails de l'exercice #300
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 0&\frac{1}{2}&\frac{1}{2} \\ 1&0&1 \\ 1&-1&0 \end{pmatrix}$. Trigonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $T \in \mathcal{M}_{3}(\mathbb{R})$ triangulaire supérieure telle que $A=PTP^{-1}$.
Exercice #301
Exercice de base
Détails de l'exercice #301
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A=\begin{pmatrix} 4&1&0 \\ 0&2&-1 \\ 1&1&3 \end{pmatrix}$. Trigonaliser la matrice $A$ dans $\mathbb{R}$ i.e. expliciter un matrice $P \in \text{GL}_3(\mathbb{R})$ et une matrice $T \in \mathcal{M}_{3}(\mathbb{R})$ triangulaire supérieure telle que $A=PTP^{-1}$.
Exercice #302
Exercice de base
Détails de l'exercice #302
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $a \in \mathbb{R}$ et $A=\begin{pmatrix} 1+a&1+a&1 \\ -a&-a&-1 \\ a&a-1&0 \end{pmatrix}$.
  1. Pour quelles valeurs de $a$ la matrice $A$ est-elle trigonalisable ? diagonalisable ?
  2. Effectuer la trigonalisation/diagonalisation selon les valeurs de $a$ déterminée à la question précédente.

Exercice #303
Difficulté de niveau 1
Détails de l'exercice #303
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $n \in \mathbb{N}$ avec $n \geqslant 2$ et $x,y \in \mathbb{C}^*$ tels que $y\neq \pm x$. On considère la matrice : \[ A=\begin{pmatrix} x & y& x& \dots &y &x &y \\ y & x&y & \dots & x& y&x \\ x & y&x & \dots &y &x &y \\ \vdots&\vdots&\vdots& \ddots &\vdots&\vdots&\vdots \\ y & x& y& \dots &x &y &x \\ x & y&x & \dots &y &x &y \\ y & x&y & \dots &x &y &x \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C}). \]Montrer que $A$ est diagonalisable.
Exercice #304
Difficulté de niveau 1
Détails de l'exercice #304
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $n \in \mathbb{N}^*$, $E$ une espace vectoriel de dimension $n$ sur $\mathbb{K}=\mathbb{R}$ ou $\mathbb{C}$ et $u \in \mathcal{L}(E)$ de rang $1$. Montrer que $u$ est diagonalisable si, et seulement si, $\text{Tr}(u)\neq 0$.
Exercice #328
Exercice de base
Détails de l'exercice #328
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Déterminer l'exponentielle de la matrice $A=\begin{pmatrix} -3&1&3 \\ 1&-3&3 \\ -5&5&1 \end{pmatrix}$.
Exercice #329
Exercice de base
Détails de l'exercice #329
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Déterminer l'exponentielle de la matrice $A=\begin{pmatrix} 4&-1&-3 \\ 1&2&-3 \\ -1&1&6 \end{pmatrix}$.
Exercice #330
Exercice de base
Détails de l'exercice #330
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Déterminer l'exponentielle de la matrice $A=\begin{pmatrix} 0&-1&1 \\ 6&-5&2 \\ -3&1&-4 \end{pmatrix}$.
Exercice #309
Exercice de base
Détails de l'exercice #309
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $n \in \mathbb{N}^*$. Déterminer toutes les matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que :\[ \begin{cases} \text{Tr}(A)=0 \\ A^3-6A^2+9A=0_n \end{cases} \]
Exercice #311
Exercice de base
Détails de l'exercice #311
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $A \in \mathcal{M}(\mathbb{K})$ telle que $A^2$ est diagonalisable.
  1. Si $\mathbb{K}=\mathbb{C}$ et $A$ inversible; montrer que $A$ est diagonalisable.
  2. Si $\mathbb{K}=\mathbb{C}$ et $A$ non inversible, $A$ est-elle diagonalisable ?
  3. Si $\mathbb{K}=\mathbb{R}$ et $A$ inversible, $A$ est-elle diagonalisable ?

Exercice #312
Exercice de base
Détails de l'exercice #312
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $E$ un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ un endomorphisme de rang $1$. Montrer que $u$ est diagonalisable si, et seulement si, $\text{Im}(u) \not \subset \text{Ker}(u)$.
Exercice #310
Difficulté de niveau 1
Détails de l'exercice #310
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $n \in \mathbb{N}^*$ et $\mathbb{K}=\mathbb{R}$ ou $\mathbb{C}$. Soit $A,N \in \mathcal{M}_n(\mathbb{K})$ telles que $N$ est nilpotente et $A,N$ commutent. Montrer que :\[ \text{det}(A+N)=\text{det}(A) \]On pourra commencer par étudier le cas $A \in \text{GL}_n(\mathbb{K})$.
Classexo 2024 || Contacts || Conseils d'utilisation