Résoudre l'équation $x^2+x+11 \; \equiv \; 0 \text{ mod }143$.
Correction
On a $143=11\times 13$ et $11$ est premier avec $13$ donc d'après le théorème chinois, $(*) \;x^2+x+11 \; \equiv \; 0 \text{ mod }143$ si, et seulement si, $$(1)\; x^2+x+11 \; \equiv \; 0 \text{ mod }11 \quad \text{et} \quad (2)\; x^2+x+11 \; \equiv \; 0 \text{ mod }13$$ Donc si $x_1$ est une solution de $(1)$ et $x_2$ une solution de $(2)$, alors $x=x_1u+x_2v$ est solution de $(*)$ où $u,v \in \mathbb{Z}$ sont tels que $11u+13v=1$, et toutes les solutions sont de cette forme.
On a $$ (x+1)x=x^2+x \; \equiv \; x^2+x+11 \; \equiv \; 0 \text{ mod }11 $$ et $$ (x-1)(x+2)=x^2+x-2 \; \equiv \; x^2+x+11 \; \equiv \; 0 \text{ mod }13 $$ Donc les solutions de $(1)$ sont $x \; \equiv \; 0 \text{ mod }11$ et $x \; \equiv \; -1 \text{ mod }11$ et les solutions de $(2)$ sont $x \; \equiv \; 1 \text{ mod }13$ et $x \; \equiv \; -2 \text{ mod }13$.
Déterminons les coefficients $u$ et $v$ : on a $6\times 11-5\times 13=1$, d'où $u=6$ et $v=5$.
Ainsi, on a donc les solutions suivantes : $$ x \; \equiv \; 66 \text{ mod }143 $$ $$ x \; \equiv \; 11 \text{ mod }143 $$ $$ x \; \equiv \; -12 \text{ mod }143 $$ $$ x \; \equiv \; 76 \text{ mod }143 $$