Soit $n \in \mathbb{N}^*$, $\lambda \in \mathbb{R}_+^*$ et $X$ une variable aléatoire discrète qui suit une de Poisson de paramètre $\lambda$. On pose $\displaystyle X_n = \prod_{i=0}^{n-1}(X-i)$. Montrer que $X_n$ est d'espérance finie et calculer son espérance.
Soit $n \in \mathbb{N}^*$, $p \in ]0,1[$ et $X$ une variable aléatoire discrète qui suit une loi géométrique de paramètre $p$. On pose $\displaystyle X_n = \prod_{i=0}^{n-1}\frac{1}{X+i}$.