Soit $E$ un espace vectoriel normé, $n\geqslant 2$ un entier et $A_1,...,A_n$ des parties connexes par arcs de $E$ telles que, pour tout $i \in \;[\!\!\![\; 1,n-1 \;]\!\!\!]\;$, $A_i \cap A_{i+1} \neq \emptyset$. Montrer que $\displaystyle A=\bigcup_{i=1}^n A_i$ est connexe par arcs.
Soit $n \in \mathbb{N}^*$ et $\mathcal{N}=\{M \in \mathcal{M}_n(\mathbb{R}) \; | \; \exists\,p \in \mathbb{N}, \; M^p= 0_n\}$ l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{R})$. Montrer que $\mathcal{N}$ est une partie connexe par arcs de $\mathcal{M}_n(\mathbb{R})$.
Exercice #258 $\text{GL}_n(\mathbb{C})$ est connexe par arcs
Soit $k \in \mathbb{N}^*$ et $z_1,...,z_k \in \mathbb{C}$. Montrer que $\mathbb{C}\smallsetminus\{z_1,...,z_k\}$ est connexe par arcs.
En s'appuyant sur l'application $t\mapsto\text{det}((1-t)M+tN)$ avec $M,N \in \text{GL}_n(\mathbb{C})$, en déduire que $\text{GL}_n(\mathbb{C})$ est connexe par arcs.