ClassExo
Liste des exercices associés au mot-clé : sous-espace vectoriel
0
 
Rechercher un mot-clé
Recherche :
Liste des exercices associés au mot-clé : sous-espace vectoriel
Filtres de matières et niveaux
Mathématiques
Tous les niveaux
6ème 5ème 4ème 3ème 2nde 1ère MS TMC TME TMS BTS TPIL1 MPSI L1 BTS TPIL2 MP L2 L3 sans niveau enregistré
Physique
Chimie
Sciences de l'Ingénieur
Informatique
Exercice #4 Forme linéaire et fonctions affines
Difficulté de niveau 1
Détails de l'exercice #4
Exercice enregistré par M. Arnt
Matière : Mathématiques
Niveaux :
En Mathématiques : MPSI, L1.
Catégories :
En Mathématiques :
AlgèbreAlgèbre linéaireEspaces vectorielsApplications linéairesNoyau, image
Source : M. Arnt
Énoncé
Soit $E=C([0,1],\mathbb{R})$. On pose $\varphi:E\rightarrow \mathbb{R}$ telle que, pour tout $f\in E$ :\[\varphi(f)=\int_0^1f(t) dt;\]et on note $F=\{f \in E \; | \; f \text{ est affine }\}$ (on rappelle qu'une fonction $f$ de $\mathbb{R}$ dans $\mathbb{R}$ est affine s'il existe $a,b \in \mathbb{R}$ tels que $f:t\mapsto at+b$).
  1. Montrer que $\varphi$ est une application linéaire surjective.
  2. Montrer que $F$ est un sous-espace vectoriel de $E$.
  3. Montrer qu'il existe $c \in [0,1]$ tel que $F\cap \text{Ker}(\varphi)=\{f \in F \; | \; f(c)=0\}$.
Indications
  1. Pour la linéarité, utiliser la linéarité de l'intégrale.
    Pour la surjectivité, que sait-on d'une forme linéaire non nulle ?
  2. Utiliser la définition/caractérisation des sous-espaces vectoriels;
    ou bien montrer que $F$ est le sous-espace engendré par plusieurs fonctions de $E$ bien choisies.
  3. Dessiner des graphes de fonctions affines d'intégrale nulle sur $[0,1]$.
Correction
  1. Soit $f,g \in E$ et $\lambda \in \mathbb{R}$. On a, par linéarité de l'intégrale : \[ \begin{array}{rcl} \varphi(\lambda f+g) &=& \displaystyle\int_0^1 (\lambda f+g)(t) dt

    \\ &=& \displaystyle \int_0^1 (\lambda f(t)+g(t)) dt

    \\ &=& \displaystyle \lambda\int_0^1f(t) dt + \int_0^1g(t) dt

    \\ \varphi(\lambda f+g) &=& \lambda\varphi(f)+\varphi(g). \end{array} \] Donc $\varphi$ est linéaire.
    Il s'agit donc d'une forme linéaire sur $E$; or $\varphi(f_0)=1\neq 0$ pour $f_0:x \mapsto 1$, par suite, $\varphi$ est surjective car toute forme linéaire non nulle est surjective.
    • 1ère façon : caractérisation d'un sous-espace vectoriel.
      Le vecteur nul de $E$ est la fonction nulle $\mathbf{0}$ sur $[0,1]$. Or $\mathbf{0}:t \mapsto 0=0\times t +0$ donc $\mathbf{0}$ est affine i.e. $\mathbf{0} \in F$.
      Soit $f,g \in F$ et $\lambda \in R$. Alors $f$ et $g$ étant affines, il existe $a,b,a',b' \in \mathbb{R}$ tels que $f:t\mapsto at+b$ et $g:t\mapsto a't+b'$ On a, pour tout $t \in [0,1]$ : \[ \begin{array}{rcl} (\lambda f+g)(t) &=& \lambda f(t) +g(t)

      \\ &=& \lambda (at+b)+ (a't+b')

      \\ (\lambda f+g)(t)&=& (\lambda a+a')t+(\lambda b +b') \end{array} \] Par suite, comme $(\lambda a+a') \in \mathbb{R}$ et $(\lambda b+b') \in \mathbb{R}$, $\lambda f+g$ est affine et donc $\lambda f+g \in E$.
      Il en résulte que $F$ est un sous-espace vectoriel de $E$.
    • 2ème façon : sous-espace engendré. On sait que $f$ est une fonction affine si, et seulement si, il existe $a,b$ tel que $f:t \mapsto at+b$. Ainsi, $f$ est affine si, et seulement si, $f=af_1+bf_0$ où $f_0:t \mapsto 1$ et $f_1:t \mapsto t$.
      Par suite, $F=\text{Vect}(f_0,f_1)$ (où on note par le même nom les restrictions de $f_0$ et $f_1$ à $[0,1]$). Un sous-espace engendré par une famille de vecteurs de $E$ étant un sous-espace vectoriel de $E$, on en déduit que $F$ est un sous-espace vectoriel de $E$.
  2. En dessinant quelques graphes, on conjecture que $c=\frac{1}{2}$. Montrons le :

    On procède par double inclusion :
    Soit $f \in F\cap \text{Ker}(\varphi)$. Alors $f \in F$ et $f \in \text{Ker}(\varphi)$ donc il existe $a,b \in \mathbb{R}$ tels que $f: t \mapsto at+b$ et $\int_0^1f(t) dt=\varphi(f)=0$. Par suite, on a : \[ 0=\int_0^1f(t) dt= \int_0^1(at+b) dt = \frac{1}{2}a+b \] d'où $b=-\frac{1}{2}a$ et donc, pour tout $t \in [0,1]$, $f(t)=a(x-\frac{1}{2})$.
    Ainsi, $f(\frac{1}{2})=a(\frac{1}{2}-\frac{1}{2})=0$.
    Donc $F\cap \text{Ker}(\varphi)\subset \{f \in F \; | \; f(\frac{1}{2})=0\}$.


    Réciproquement, si $f \in \{f \in F \; | \; f(\frac{1}{2})=0\}$. Alors $f$ est affine et donc il existe $a,b \in \mathbb{R}$ tels que $f: t \mapsto at+b$. Comme $a\frac{1}{2}+b=0=f(\frac{1}{2})$, on a $b=-\frac{1}{2}a$ et donc : \[ \int_0^1f(t) dt = \int_0^1a(x-\frac{1}{2}) dt=a(\frac{1}{2}-\frac{1}{2})=0 \] Donc $f \in F \cap \text{Ker}(\varphi)$; d'où $\{f \in F \; | \; f(\frac{1}{2})=0\} \subset \text{Ker}(\varphi)$.


    Il en résulte que $F\cap \text{Ker}(\varphi)= \{f \in F \; | \; f(\frac{1}{2})=0\}$.
Classexo 2024 || Contacts || Conseils d'utilisation