
Corrigé de la feuille d’exercices no16
Mathématiques spéciales

1. Exercices basiques

a. Rayon de convergence et séries entières

Exercice 1.Exercice 1.

1. Donner un exemple de série entière de rayon de convergence π.
2. Est-il possible de trouver des suites (an) et (bn) telles que an = o(bn) et pourtant

∑
n anz

n

et
∑

n bnz
n ont le même rayon de convergence ?

3. Quel est le lien entre le rayon de convergence des séries entières
∑

n≥0 anz
n et∑

n≥0(−1)nanz
n ?

Correction.

1. La série entière
∑

n≥1
zn

πn convient.
2. Si an = 1

n+1 et bn = 1, les deux séries ont même rayon de convergence (égal à 1), et pourtant
an = o(bn).

3. C’est le même ! on a |anρn| = |(−1)nanρ
n| pour tout ρ ≥ 0, et donc, par définition du rayon

de convergence, les deux séries ont même rayon de convergence.

Exercice 2.Exercice 2.

Déterminer le rayon de convergence des séries entières suivantes :

1.
∑

n
(1+i)nz3n

n·2n 2.
∑

n≥1 ln
(
1 + sin 1

n

)
xn 3.

∑
n≥1

(
exp(1/n)− 1

)
xn

4.
∑

n a
√
nzn, a > 0 5.

∑
n z

n! 6.
∑

n n
ln nzn

Correction.

On notera pour chaque exemple anx
n le terme général de la série.

1. Posons un = (1+i)nz3n

n.2n . Alors∣∣∣∣un+1

un

∣∣∣∣ = n|1 + i||z|3

2(n+ 1)
→

√
2|z|3

2
=

|z|3√
2
.

Ainsi, si |z|3 <
√
2, la série de terme général |un| est convergente d’après le critère de

d’Alembert, alors qu’elle est divergente si |z|3 >
√
2. On en déduit que le rayon de conver-

gence de la série entière est 6
√
2.

2. En effectuant un développement limité, on trouve que an ∼ 1
n d’où |anzn| ∼ |z|n

n . La suite
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(|anzn|) est donc bornée si et seulement si |z| ≤ 1. Le rayon de convergence de la série est
1.

3. On a an ∼+∞
1
n , donc |anzn| ∼ |z|n

n et la suite (|anzn|) est bornée si et seulement si |z| < 1.
Le rayon de convergence de la série est donc égal à 1.

4. On applique à nouveau la règle de d’Alembert à un = a
√
n|z|n. On obtient

un+1

un
= |z|a

√
n+1−

√
n.

Or,
√
n+ 1−

√
n =

√
n
(
(1 + 1/n)1/2 − 1) =

√
n

(
1 +

1

2n
− 1 + o

(
1

n

))
→ 0.

Ainsi, on obtient que
un+1

un
→ |z|a0 = |z|.

On en déduit que la série des modules converge absolument pour |z| < 1 et diverge pour
|z| > 1. Le rayon de convergence de la série entière est donc 1.

5. Pour |z| < 1, on remarque que |z|n! ≤ |z|n et donc la série est convergente. Pour |z| ≥ 1,
le terme général de la série ne tend pas vers 0 et la série est donc grossièrement divergente.
On en déduit que le rayon de convergence de la série entière est 1.

6. Pour un = nln n|z|n, on étudie la convergence en appliquant la règle de Cauchy :

n
√
un = nln n/n|z| = exp

(
(lnn× lnn)/n

)
|z| → |z|.

La série est donc convergente pour |z| < 1 et divergente pour |z| > 1. Son rayon de
convergence vaut 1.

Exercice 3.Exercice 3.

Soit
∑

n anx
n une série entière de rayon de convergence ρ > 0. Montrer que

∑
n

an

n! x
n a pour

rayon de convergence +∞.

Correction.

Soit 0 < r < ρ. Par le lemme d’Abel, on sait que la suite (anr
n)n est bornée. Autrement dit, il

existe M > 0 tel que, pour tout n ≥ 0, on a

|anrn| ≤ M.

Soit maintenant R > 0. Alors on a
|an|Rn

n!
= |an|rn × (R/r)n

n!
.

Par croissance comparée des suites puissances et factorielle, il existe C > 0 tel que |(R/r)n|/n! ≤
C. Il vient, pour tout n ≥ 0,

|an|Rn

n!
≤ MC.

La suite (anR
n) est bornée pour tout n, donc le rayon de convergence de la série entière

∑
n

an

n! x
n

vaut +∞.
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Exercice 4.Exercice 4.

Soit
∑

n anx
n une série entière de rayon de convergence ρ ∈ [0,+∞], telle que an > 0 pour tout

entier n et soit α > 0. Quel est le rayon de convergence de la série
∑

n a
α
nx

n ?

Correction.

Il suffit de remarquer que la suite (aαnr
n) est bornée si et seulement la suite (anr

n/α) (obtenue
en prenant la puissance 1/α de la première) est bornée. Ainsi, si r < ρα, alors r1/α < ρ et donc
les suites (anr

n/α) et (aαnr
n) sont bornées. De même, si r > ρα, de sorte que r1/α > ρ, alors les

suite (anr
n/α) et (aαnrn) ne sont pas bornées. Ceci prouve que le rayon de convergence de la série∑

n a
α
nx

n est égal à ρα.

Exercice 5.Exercice 5.

Soit S la somme de la série entière
∑

n anx
n de rayon de convergence R > 0. Démontrer que S

est paire si et seulement si, pour tout k ∈ N, a2k+1 = 0.

Correction.

Supposons d’abord que a2k+1 = 0 pour tout k ∈ N. Alors S est paire comme somme d’une série
de fonctions paires. Réciproquement, supposons que S est paire, et posons T (x) = S(−x). Alors,
on sait que, pour tout x ∈]−R,R[, on a

T (−x) =
∑
n≥0

(−1)nanx
n.

De plus, puisque S est paire, T et S coïncident sur ] − R,R[. C’est donc que, pour tout entier
n ∈ N, on a an = (−1)nan. Ceci impose que an = 0 dès que n est impair.

Exercice 6.Exercice 6.

Soit

f : x 7→
+∞∑
n=1

sin
(

1√
n

)
xn.

1. Déterminer le rayon de convergence R de la série entière définissant f .
2. Etudier la convergence en −R et en R.
3. (a) Soit M > 0. Montrer qu’il existe un entier N ≥ 1 et un réel δ > 0 tel que, pour tout

x ∈]1− δ, 1[, alors
N∑

n=1

sin
(

1√
n

)
xn ≥ M.

(b) En déduire la limite de f(x) quand x → 1−.
4. (a) On considère la série entière

g : x 7→
+∞∑
n=2

[
sin

(
1√
n

)
− sin

(
1√
n− 1

)]
xn.
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Démontrer que cette série converge normalement sur [0, 1].
(b) En déduire que limx→1−(1− x)f(x) = 0.

Correction.

1. Puisque sin
(

1√
n

)
∼+∞

1√
n

, on démontre par exemple par le critère de d’Alembert que le
rayon de convergence vaut 1.

2. Par croissance de la fonction sinus entre 0 et π/2, la suite
(

sin(1/
√
n)
)

est décroissante,
et positive. D’après le critère des séries alternées, la série converge en −1. En 1, la série∑

n sin(1/
√
n) est divergente, par comparaison à la série de Riemann divergente

∑
n 1/

√
n

(on compare bien des séries à termes positifs).
3. (a) La série

∑
n sin(1/

√
n), qui est à termes positifs, est divergente. Il existe donc un entier

N ≥ 1 tel que
N∑

n=1

sin
(

1√
n

)
≥ M + 1.

De plus, cet entier N étant fixé, la fonction h : x 7→
∑N

n=1 sin(1/
√
n)xn est continue

en 1. Ceci donne l’existence de δ > 0 tel que, pour tout x ∈]1− δ, 1],

h(x) ≥ h(1)− 1.

Ceci est exactement le résultat voulu.
(b) Puisqu’on a une série à termes positifs, la série majore toutes ses sommes partielles.

Ainsi, pour tout M > 0, on peut trouver δ > 0 tel que, pour tout x ∈]1− δ, 1[,

f(x) ≥ M.

Ceci signifie exactement que f tend vers +∞ en 1−.
4. (a) Il est clair que, pour tout x ∈ [0, 1], on a∣∣∣∣sin(

1√
n

)
− sin

(
1√
n− 1

)
xn

∣∣∣∣ ≤ ∣∣∣∣sin(
1√
n

)
− sin

(
1√
n− 1

)∣∣∣∣ .
D’après, par exemple, l’inégalité des accroissements finis,∣∣∣∣sin(

1√
n

)
− sin

(
1√
n− 1

)∣∣∣∣ ≤ ∣∣∣∣ 1√
n
− 1√

n− 1

∣∣∣∣ ≤ C

n3/2
.

La série (numérique) de terme général n−3/2 étant convergente, ceci prouve la conver-
gence normale de la série définissant g sur [0, 1].

(b) Un calcul aisé montre que

(1− x)f(x) = sin(1) + g(x).

Or, g étant continue en 1, on trouve

lim
x→1

(1− x)f(x) = sin(1) + g(1) = sin(1) +
+∞∑
n=2

[
sin

(
1√
n

)
− sin

(
1√
n− 1

)]
= 0.

4



Exercice 7.Exercice 7.

Soient (an) et (bn) deux suites de réels positifs. On note R et R′ les rayons de convergence
respectifs des series entières

∑
n anx

n et
∑

n bnx
n. Soient f : x 7→

∑
n anx

n et g : x 7→
∑

n bnx
n.

On suppose enfin qu’il existe l ∈ R tel que limn→+∞
an

bn
= l.

1. Montrer que R ≥ R′. On suppose désormais que R′ = 1 et que la série
∑

n bn est divergente.
2. Soit M > 0. Montrer qu’il existe un entier N ≥ 0 et un réel δ > 0 tel que, pour tout

x ∈]1− δ, 1[, alors
∑N

n=0 bnx
n ≥ M .

3. En déduire que g(x) → +∞ lorsque x → 1.
4. Soit ε > 0 et N ≥ 1 tel que (l − ε)bn ≤ an ≤ (l + ε)bn pour tout n ≥ N . Montrer que

f(x) = P (x) +

+∞∑
n=0

cnx
n

où P est un polynôme, et (l − ε)bn ≤ cn ≤ (l + ε)bn pour tout n ≥ 0.
5. En déduire que

lim
x→1−

f(x)

g(x)
= l.

Correction.

1. Il existe n0 ∈ N tel que, pour tout n ≥ n0, on a

|an| ≤ (l + 1)|bn|.

Soit maintenant r > 0. Alors, pour tout n ≥ n0, on a

|an|rn ≤ (l + 1)|bn|rn

et donc, si la suite (|bn|rn) est bornée, la suite (|an|rn) l’est aussi. On conclut en utilisant
la définition du rayon de convergence. Le rayon de convergence de

∑
n anx

n étant en effet
donné par

R = sup{r ≥ 0; (|an|rn) est bornée }.

2. Fixons N ≥ 1 tel que
∑N

n=0 bn ≥ 2M . Posons ensuite P (x) =
∑N

n=0 bnx
n. On a P (1) =

2M > M . Le résultat demandé est alors une conséquence immédiate de la continuité de P
en 1.

3. Soit M > 0 et soient N, δ donnés par la question précédente. Alors, puisque bn est positif
pour tout n, on a, pour chaque x ∈]0, 1[,

g(x) ≥
N∑

n=0

bnx
n.

En particulier, pour tout x ∈]1− δ, 1[, on a

g(x) ≥ M.

Ceci prouve bien que g tend vers +∞ en 1.
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4. On écrit simplement que

f(x) =

N∑
n=0

anx
n +

+∞∑
n=N+1

anx
n

=

N∑
n=0

(an − bn)x
n +

N∑
n=0

bnx
n +

+∞∑
n=N+1

anx
n

= P (x) +

+∞∑
n=0

cnx
n

où on a posé P (x) =
∑N

n=0(an − bn)x
n et cn = bn si n ≤ N , cn = an sinon.

5. On fixe ε > 0 et on décompose f comme précédemment. D’une part, on a (l− ε)bn ≤ cn ≤
(l + ε)bn et donc, multipliant par xn et sommant pour n = 0, . . . ,+∞, on déduit que

(l − ε)g(x) ≤
+∞∑
n=0

cnx
n ≤ (l + ε)g(x).

D’autre part, puisque P est un polynôme, donc est continu en 1, et que g(x) → +∞ quand
x → 1, on sait que

P (x)

g(x)
→ 0 quand x → 1.

On en déduit l’existence de δ > 0 tel que, pour tout x ∈]1− δ, 1[, on a

−ε ≤ P (x)

g(x)
≤ +ε.

Finalement, sommant toutes ces inégalités, on trouve que, pour tout x ∈]1− δ, 1[, on a

l − 2ε ≤ f(x)

g(x)
≤ l + 2ε.

Ceci prouve que f/g tend vers l en 1.

Exercice 8.Exercice 8.

Pour les séries entières suivantes, donner le rayon de convergence et exprimer leur somme en
termes de fonctions usuelles :

1.
∑

n≥0
n−1
n! xn 2.

∑
n≥0

n+2
n+1x

n 3.
∑

n≥0
(n+1)(n−2)

n! xn

4.
∑

n≥1
(−1)n+1

2nn! x2n

Correction.

1. Posons un = n−1
n! . On vérifie facilement que la suite (un+1/un) tend vers 0, et donc le rayon

de convergence de la série entière est égal à +∞. Pour déterminer sa somme, on écrit que
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pour tout x ∈ R,

∑
n≥0

n− 1

n!
xn =

+∞∑
n=1

xn

(n− 1)!
−

+∞∑
n=0

xn

n!
=

+∞∑
n=0

x · xn

n!
− ex = (x− 1)ex.

2. Posons un = n+2
n+1 . Puisque un → 1, la suite |unz

n| est bornée si |z| < 1 et tend vers +∞
si |z| > 1. On en déduit que le rayon de convergence de la série étudiée est égal à 1. Pour
sommer la série entière, il suffit d’écrire

n+ 2

n+ 1
= 1 +

1

n+ 1

ce qui donne ∑
n≥0

n+ 2

n+ 1
xn =

∑
n≥0

xn +
∑
n≥0

1

n+ 1
xn

=
1

1− x
+

1

x

∑
n≥0

xn+1

n+ 1

=
1

1− x
− ln(1− x)

x
.

3. Comme pour la première série, la règle de d’Alembert montre facilement que le rayon de
convergence de la série entière vaut +∞. Ensuite, l’”astuce”, dans ce type d’exercice où on
voit apparaitre une fraction du type P (n)/n!, avec P un polynôme, et d’écrire le polynôme
dans la base 1, n, n(n − 1), n(n − 1)(n − 2), · · · , dans le but de faire apparaitre la série de
la fonction exponentielle. Ici, on a

(n+ 1)(n− 2) = n2 − n− 2 = n(n− 1)− 2.

On a donc ∑
n≥0

(n+ 1)(n− 2)

n!
xn =

∑
n≥0

n(n− 1)

n!
xn − 2

∑
n≥0

1

n!
xn

=
∑
n≥2

1

(n− 2)!
xn − 2ex

= x2
∑
n≥0

1

n!
xn − 2ex = (x2 − 2)ex.

4. Par la règle de d’Alembert, on prouve facilement que le rayon de convergence vaut +∞.
Pour identifier la somme, que nous noterons S, il faut ”voir” que cette somme ressemble
beaucoup à la fonction exponentielle, mais il faut l’évaluer en −x2/2 pour voir apparaitre
le (−1)nx2n au numérateur et le 2n au dénominateur. Au final (il faut aussi remarquer que
la somme commence pour n = 1), on obtient

S(x) =
∑
n≥1

(−1)n+1

2nn!
x2n = 1− exp(−x2/2).
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Exercice 9.Exercice 9.

Pour n ≥ 1, on pose Sn =
∑n

k=1
1
k et on s’intéresse à la série entière

∑
n≥1 Snx

n. On note R
son rayon de convergence.

1. Démontrer que R = 1.
2. On pose, pour x ∈]− 1, 1[, F (x) =

∑
n≥1 Snx

n. Démontrer que pour tout x ∈]− 1, 1[, on
a (1− x)F (x) =

∑
n≥1

xn

n .
3. En déduire la valeur de F (x) sur ]− 1, 1[.

Correction.

1. Il est d’abord clair que, pour tout n ≥ 1, on a 1 ≤ Sn ≤ n. Donc, pour ρ > 0, on a

ρn ≤ Snρ
n ≤ nρn.

Ainsi, si ρ ∈]0, 1[, la suite (Snρ
n) est bornée (on peut même dire qu’elle tend vers 0), et si

ρ > 1, la suite (Snρ
n) tend vers +∞. On en déduit que le rayon de convergence de S vaut

1.
2. On développe et on fait un changement d’indices dans une des deux sommes :

(1− x)F (x) =

+∞∑
n=1

Snx
n −

+∞∑
n=1

Snx
n+1

= x+

+∞∑
n=2

(Sn − Sn−1)x
n

= x+

+∞∑
n=2

xn

n

=

+∞∑
n=1

xn

n

= − ln(1− x).

3. Ayant reconnu le développement en série entière de − ln(1− x), on en déduit que

F (x) = − ln(1− x)

1− x
.

Exercice 10.Exercice 10.

Pour les séries entières suivantes, donner le rayon de convergence et exprimer leur somme en
termes de fonctions usuelles :

1.
∑

n≥0
n−1
n! xn 2.

∑
n≥0

n+2
n+1x

n 3.
∑

n≥0
(n+1)(n−2)

n! xn

4.
∑

n≥1
(−1)n+1

2nn! x2n
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Correction.

1. Posons un = n−1
n! . On vérifie facilement que la suite (un+1/un) tend vers 0, et donc le rayon

de convergence de la série entière est égal à +∞. Pour déterminer sa somme, on écrit que
pour tout x ∈ R,

∑
n≥0

n− 1

n!
xn =

+∞∑
n=1

xn

(n− 1)!
−

+∞∑
n=0

xn

n!
=

+∞∑
n=0

x · xn

n!
− ex = (x− 1)ex.

2. Posons un = n+2
n+1 . Puisque un → 1, la suite |unz

n| est bornée si |z| < 1 et tend vers +∞
si |z| > 1. On en déduit que le rayon de convergence de la série étudiée est égal à 1. Pour
sommer la série entière, il suffit d’écrire

n+ 2

n+ 1
= 1 +

1

n+ 1

ce qui donne ∑
n≥0

n+ 2

n+ 1
xn =

∑
n≥0

xn +
∑
n≥0

1

n+ 1
xn

=
1

1− x
+

1

x

∑
n≥0

xn+1

n+ 1

=
1

1− x
− ln(1− x)

x
.

Même si cette dernière fonction semble ne pas être définie en 0, elle se prolonge bien sûr
par continuité en ce point.

3. Comme pour la première série, la règle de d’Alembert montre facilement que le rayon de
convergence de la série entière vaut +∞. Ensuite, l’”astuce”, dans ce type d’exercice où on
voit apparaitre une fraction du type P (n)/n!, avec P un polynôme, et d’écrire le polynôme
dans la base 1, n, n(n − 1), n(n − 1)(n − 2), · · · , dans le but de faire apparaitre la série de
la fonction exponentielle. Ici, on a

(n+ 1)(n− 2) = n2 − n− 2 = n(n− 1)− 2.

On a donc ∑
n≥0

(n+ 1)(n− 2)

n!
xn =

∑
n≥0

n(n− 1)

n!
xn − 2

∑
n≥0

1

n!
xn

=
∑
n≥2

1

(n− 2)!
xn − 2ex

= x2
∑
n≥0

1

n!
xn − 2ex = (x2 − 2)ex.

4. Par la règle de d’Alembert, on prouve facilement que le rayon de convergence vaut +∞.
Pour identifier la somme, que nous noterons S, il faut ”voir” que cette somme ressemble
beaucoup à la fonction exponentielle, mais il faut l’évaluer en −x2/2 pour voir apparaitre
le (−1)nx2n au numérateur et le 2n au dénominateur. Au final (il faut aussi remarquer que
la somme commence pour n = 1), on obtient

S(x) =
∑
n≥1

(−1)n+1

2nn!
x2n = 1− exp(−x2/2).
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Exercice 11.Exercice 11.

Pour les séries entières suivantes, donner le rayon de convergence et exprimer leur somme en
termes de fonctions usuelles :

1.
∑

n≥0
x2n

2n+1 2.
∑

n≥0
n3

n! x
n 3.

∑
n≥0(−1)n+1nx2n+1

4.
∑

n≥0
x2n

4n2−1 .

Correction.

1. Posons un = x2n

2n+1 . On a un+1/un → x2. Ainsi, si |x| < 1, la série est convergente et si
|x| > 1, la série est divergent. Autrement dit, on a prouvé que le rayon de convergence est
égal à 1. Posons, pour x ∈]− 1, 1[, S(x) la somme de la série entière. Alors S est dérivable
sur ]− 1, 1[ et

(xS)′(x) =
∑
n≥0

x2n =
1

1− x2
=

1/2

1− x
+

1/2

1 + x
.

Par intégration, on en déduit que pour tout x ∈]− 1, 1[, on a

xS(x) =
1

2
ln

(
1 + x

1− x

)
et donc, pour x 6= 0,

S(x) =
1

2x
ln

(
1 + x

1− x

)
.

De plus, S(0) = 1.
2. Posons un = n3

n! . On a
un+1

un
=

1

n+ 1
× (n+ 1)3

n3
→ 0.

Par le critère de d’Alembert, le rayon de convergence de la série étudiée est égal à +∞.
Pour la sommer, on va exprimer n3 en fonction de n(n − 1)(n − 2), n(n − 1) et n pour se
ramener à des séries dérivées. On a en effet :

n3 = n(n− 1)(n− 2) + 3n(n− 1) + n.

Utilisant que la dérivée de exp(x) est égale à exp(x), on trouve∑
n≥0

n(n− 1)(n− 2)

n!
xn = x3

∑
n≥0

n(n− 1)(n− 2)

n!
xn−3 = x3 exp(x).

De même, on a ∑
n≥0

n(n− 1)

n!
xn = x2 exp(x) et

∑
n≥0

n

n!
xn = x exp(x).

On conclut que ∑
n≥0

n3

n!
xn = (x3 + 3x2 + x) exp(x).

10



3. Il est clair, d’après la règle de d’Alembert, que le rayon de convergence est égal à 1. De
plus, si on pose f(x) = 1

1+x , on a pour tout x ∈]− 1, 1[,

f(x) =
∑
n≥0

(−1)nxn.

En dérivant, il vient
− x

(1 + x)2
= xf ′(x) =

∑
n≥0

(−1)nnxn,

soit finalement ∑
n≥0

(−1)n+1nx2n+1 = x×
(

x2

(1 + x2)2

)
=

x3

(1 + x2)2
.

4. Il est facile de vérifier, à l’aide de la règle de d’Alembert, que le rayon de convergence de la
série entière vaut 1. On décompose ensuite en éléments simples la fraction rationnelle. On
trouve

1

4n2 − 1
=

1/2

2n− 1
− 1/2

2n+ 1
.

Posons f(x) =
∑

n≥0
x2n

2n+1 et g(x) =
∑

n≥0
x2n

2n−1 . Alors, d’après la première question, on
sait que pour x 6= 0, on a

f(x) =
1

2x
ln

(
1 + x

1− x

)
.

On se ramène à ce cas pour g, en remarquant que

g(x) = −1 +
∑
n≥1

x2x2(n−1)

2(n− 1) + 1

= −1 + x2
∑
n≥0

x2n

2n+ 1

= −1 + x2f(x).

Finalement, on trouve que, notant S la somme de la série initiale, pour x 6= 0 dans l’intervalle
]− 1, 1[,

S(x) = −1

2
+

x2 − 1

4x
ln

(
1 + x

1− x

)
.

Il est aussi clair que S(0) = −1.

2. Exercices d’entraînement

a. Rayon de convergence et séries entières

Exercice 12.Exercice 12.

Déterminer le rayon de convergence de la série entière
∑

n≥1 anx
n dans les cas suivants :

1. la suite (an) tend vers ℓ 6= 0 ;

11



2. la suite (an) est périodique, et non identique nulle ;
3. an est le nombre de diviseurs de n ;
4. an est la n−ième décimale de

√
2.

Correction.

1. Puisque la suite (an) est convergente, elle est bornée et donc la suite (an1
n) est bornée.

Ceci implique que le rayon de convergence de la série entière est au moins égal à 1. De
plus, au voisinage de l’infini, on a anr

n ∼ ℓrn. Si r > 1, ceci tend vers +∞. Le rayon de
convergence de la série entière est donc exactement égal à 1.

2. Puisque la suite (an) est périodique, elle est bornée et un raisonnement identique à celui de
la question précédente donne que le rayon de convergence est au moins égal à 1. De plus,
puisque la suite (an) est périodique et non identiquement nulle, elle ne converge par vers 0.
Ainsi, la série

∑
n an1

n est divergente. Le rayon de convergence vaut donc 1.
3. Il suffit de remarquer que 1 ≤ an ≤ n, ce qui entraine

|x|n ≤ |anxn| ≤ n|x|n.

Ainsi, pour |x| < 1, la série
∑

n anx
n converge, et pour |x| > 1, elle diverge. Son rayon de

convergence est donc égal à 1.
4. La suite (an) est une suite qui prend ses valeurs dans {0, . . . , 9} donc elle est bornée. Puisque√

2 n’est pas un nombre décimal, (an) prend une infinité de fois une valeur dans {1, . . . , 9}.
En particulier, (an) ne tend pas vers 0. Raisonnant comme ci-dessus, on trouve que le rayon
de convergence vaut exactement 1.

Exercice 13.Exercice 13.

Soit R le rayon de convergence de
∑

n anz
n. Comparer R avec les rayons de convergence des

séries entières de terme général :

1. ane
√
nzn 2. anz2n 3. anzn

2

.

Correction.

1. Notons R1 le rayon de convergence de
∑

n ane
√
nzn. Puisque |an|e

√
n ≥ |an|, on a R1 ≤ R.

Soit maintenant r > 0 tel que (anr
n) soit bornée. Alors, pour tout ρ ∈ [0, r[, on a

ane
√
nρn = anr

ne
√
n ρ

n

rn
= anr

nen ln(ρ/r)+
√
n

et comme en ln(ρ/r)+
√
n tend vers 0 lorsque n tend vers +∞, la suite (ane

√
nρn) est bornée.

On en déduit que R ≤ R1 et donc finalement que R = R1.
2. Il est clair que (anr

2n) est bornée si et seulement si (an(r2)n) est bornée (c’est la même
suite écrire de deux façons différentes). Le rayon de convergence de

∑
n anz

2n est donc égal
à
√
R.

3. Supposons d’abord R > 0 et R < +∞. On va alors prouver que le rayon de convergence de

12



∑
n anz

n2 est égal à 1. En effet, soit r tel que (anr
n) est bornée. Alors, pour tout ρ < 1, on

a anρ
n2

= anr
n × ρn2

rn et cette quantité est bornée car ρn2

rn tend vers 0 (on a choisi ρ < 1).
Ainsi, le rayon de convergence de

∑
n anz

n2 est supérieur ou égal à 1. De façon similaire,
on prouve que, si r est tel que anr

n n’est pas bornée, alors pour tout ρ > 1, on a anρ
n2 qui

n’est pas borné. Ainsi, le rayon de convergence de
∑

n anz
n2 est égal à 1. Lorsque R = +∞,

alors le rayon de convergence de
∑

n anz
n2 sera élément de [1,+∞], mais toutes les valeurs

peuvent être prises : <ul class=”rien”>
4. Si an = 1/n!, alors le rayon vaut 1.
5. Si an = 1/n!2, alors le rayon vaut +∞.
6. Si an = 1/λn2 , avec λ > 1, le rayon de convergence vaut λ. </ul> De même, si R = 0,

alors le rayon de convergence de
∑

n anz
n2 peut être n’importe quel réel dans [0, 1].

Exercice 14.Exercice 14.

1. Montrer que la fonction t 7→ 1−e−t4

t2 est intégrable sur ]0,+∞[.

2. Soit f la somme de la série entière f(x) =
∑+∞

n=1
(−1)n+1x4n−1

n!(4n−1) . Montrer que f admet une
limite en +∞.

Correction.

1. On remarque d’abord que la fonction se prolonge par continuité en 0. En effet, au voisinage
de 0, on a

1− e−t4

t2
∼0

t4

t2
= t2

et la fonction se prolonge par 0 en 0. Au voisinage de +∞, la fonction est équivalente à 1
t2

qui est intégrable car 2>1. La fonction est donc intégrable sur ]0,+∞[.

2. La fonction t 7→ 1−e−t4

t2 est développable en série entière en 0, de rayon de convergence +∞,
et on a pour tout x ∈ R

1− e−t4

t2
=

+∞∑
n=1

(−1)n+1t4n−2

n!
.

Par intégration de cette série entière, on trouve

f(x) =

∫ x

0

+∞∑
n=1

(−1)n+1t4n−2

n!
dt =

∫ x

0

1− e−t4

t2
dt.

Ainsi, f admet une limite en +∞ égale à
∫ +∞
0

1−e−t4

t2 dt.

13



Exercice 15.Exercice 15.

Soit S(x) =
∑

n≥0 anx
n une série entière de rayon de convergence 1. On suppose de plus que

S(x) admet une limite lorsque x tend vers 1− et on note ℓ cette limite.
1. La série

∑
n an est-elle nécessairement convergente ?

2. On suppose désormais que an ≥ 0 pour tout n ∈ N. Démontrer que la série
∑

n an converge
et que ℓ =

∑
n≥0 an.

Correction.

1. Pour an = (−1)n, on a S(x) = 1
1+x qui tend vers 1/2 si x tend vers 1−, alors que la série∑

n an diverge.
2. Remarquons d’abord que S est croissante (puisque chaque x 7→ anx

n est croissante). Ainsi,
pour tout x ∈ [0, 1], on a S(x) ≤ ℓ. Mais alors, pour chaque N ∈ N, on a encore

N∑
n=0

anx
n ≤ S(x) ≤ ℓ.

Si on fait tendre x vers 1−, on obtient que

N∑
n=0

an ≤ ℓ.

Les sommes partielles de la série
∑

n an, qui est à termes positifs, sont majorées, et donc
la série est convergente. De plus, on a par le passage à la limite précédent

∑+∞
n=0 an ≤ ℓ.

Fixons ensuite ε > 0 et x ∈ [0, 1[ tel que S(x) ≥ ℓ− ε. Il vient,

+∞∑
n=0

an ≥
+∞∑
n=0

anx
n ≥ ℓ− ε.

Ceci prouve le résultat demandé.

Exercice 16.Exercice 16.

Soit f(z) =
∑

n anz
n une série entière de rayon de convergence R > 0 et soit r ∈]0, R[.

1. Montrer que, pour tout entier k, la série de fonctions θ 7→
∑

n anr
nei(n−k)θ converge

normalement sur [0, 2π].
2. En déduire que pour tout k ∈ N, on a

2πrkak =

∫ 2π

0

f(reiθ)e−ikθdθ.

3. Application : on suppose que R = +∞ et que f est bornée sur C. Montrer que f est
constante.
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Correction.

1. Puisque r < R, il résulte du lemme d’Abel que la série
∑

n |an|rn est convergente. Puisque
|anrnei(n−k)θ| = |an|rn pour tout θ ∈ [0, 2π], on en déduit la convergence normale de la
série demandée sur [0, 2π].

2. On a
f(reiθ)e−ikθ =

∑
n

anr
nei(n−k)θ.

Puisque la série converge normalement, donc uniformément sur [0, 2π], on peut inverser
l’intégration et la sommation et on trouve∫ 2π

0

f(reiθ)e−ikθdθ =
∑
n

anr
n

∫ 2π

0

ei(n−k)θdθ.

La dernière intégrale est égale à 0 si k 6= n, et à 2π sinon. On en conclut que∫ 2π

0

f(reiθ)e−ikθdθ = 2πakr
k.

3. Pour k ≥ 1, on a

ak =
1

2πrk

∫ 2π

0

f(reiθ)e−ikθdθ.

Soit M > 0 tel que |f(z)| ≤ M pour tout z ∈ C. Alors on a

|ak| ≤
1

2πrk

∫ 2π

0

Mdθ =
M

rk
.

Faisant tendre r vers +∞, on trouve ak = 0 pour k ≥ 1, ce qui entraîne que f est constante.

Exercice 17.Exercice 17.

Soit (an) une suite de réels tel que
∑

n anx
n soit de rayon de convergence 1. On note f la somme

de cette série entière. On suppose de plus que la série numérique
∑

n an converge et on note

Rn =
+∞∑

k=n+1

ak.

1. Démontrer que, pour tout x ∈ [0, 1[ et tout n ≥ 1, on a

f(x)−
+∞∑
k=0

ak =

n∑
k=0

ak(x
k − 1) + (x− 1)

+∞∑
k=n+1

Rkx
k +Rn(x

n+1 − 1).

2. En déduire que

lim
x→1−

f(x) =

+∞∑
k=0

ak.
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Correction.

1. On commence par couper la somme en n et par remarquer que

f(x)−
+∞∑
k=0

ak =

n∑
k=0

ak(x
k − 1) +

+∞∑
k=n+1

akx
k −Rn.

La clé ici est d’écrire dans la deuxième somme ak = Rk−1 − Rk (et d’effectuer ce qu’on
appelle une transformation d’Abel). Pour m ≥ n+ 1, il vient

m∑
k=n+1

akx
k =

m∑
k=n+1

(Rk−1 −Rk)x
k =

m∑
k=n+1

Rk(x
k+1 − xk) +Rnx

n+1 −Rmxm+1.

Puisque (Rp) tend vers 0, on peut faire tendre m vers ∞ et on trouve

∞∑
k=n+1

akx
k = (x− 1)

+∞∑
k=n+1

Rkx
k +Rnx

n+1,

ce qui donne bien

f(x)−
+∞∑
k=0

ak =

n∑
k=0

ak(x
k − 1) + (x− 1)

+∞∑
k=n+1

Rkx
k +Rn(x

n+1 − 1).

2. On va d’abord fixer n pour que la deuxième somme soit petite, indépendamment de x dans
[0, 1[, puis on va faire tendre x vers 1. Soit donc ε > 0. Il existe n ∈ N tel que, pour k ≥ n,
on a |Rk| ≤ ε. On en déduit, pour tout x ∈ [0, 1[,∣∣∣∣∣(x− 1)

+∞∑
k=n+1

Rkx
k

∣∣∣∣∣ ≤ ε|x− 1| ×
+∞∑

k=N+1

xk ≤ ε.

On a de plus, toujours pour cette valeur de n,∣∣Rn(x
n+1 − 1)

∣∣ ≤ 2ε.

Cette valeur de n étant fixée, la fonction x 7→
∑n

k=0 ak(x
k − 1) est continue en 0, de limite

nulle. Ainsi, on peut trouver δ > 0 tel que, pour tout x ∈]1− δ, 1[, on a∣∣∣∣∣
n∑

k=0

ak(x
k − 1)

∣∣∣∣∣ ≤ ε.

Finalement, en mettant tous les résultats ensembles, on trouve qu’il existe δ > 0 tel que,
pour tout x ∈]1− δ, 1[, on a ∣∣∣∣∣f(x)−

+∞∑
k=0

akx
k

∣∣∣∣∣ ≤ 4ε.

Ceci est exactement le résultat voulu.
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Exercice 18.Exercice 18.

Pour les séries entières suivantes, donner le rayon de convergence et exprimer leur somme en
termes de fonctions usuelles :

1.
∑

n≥0
x2n

2n+1 2.
∑

n≥0
n3

n! x
n 3.

∑
n≥0(−1)n+1nx2n+1

4.
∑

n≥0
x2n

4n2−1 .

Correction.

1. Posons un = x2n

2n+1 . On a un+1/un → x2. Ainsi, si |x| < 1, la série est convergente et si
|x| > 1, la série est divergent. Autrement dit, on a prouvé que le rayon de convergence est
égal à 1. Posons, pour x ∈]− 1, 1[, S(x) la somme de la série entière. Alors S est dérivable
sur ]− 1, 1[ et

(xS)′(x) =
∑
n≥0

x2n =
1

1− x2
=

1/2

1− x
+

1/2

1 + x
.

Par intégration, on en déduit que pour tout x ∈]− 1, 1[, on a

xS(x) =
1

2
ln

(
1 + x

1− x

)
et donc, pour x 6= 0,

S(x) =
1

2x
ln

(
1 + x

1− x

)
.

De plus, S(0) = 1.
2. Posons un = n3

n! . On a
un+1

un
=

1

n+ 1
× (n+ 1)3

n3
→ 0.

Par le critère de d’Alembert, le rayon de convergence de la série étudiée est égal à +∞.
Pour la sommer, on va exprimer n3 en fonction de n(n − 1)(n − 2), n(n − 1) et n pour se
ramener à des séries dérivées. On a en effet :

n3 = n(n− 1)(n− 2) + 3n(n− 1) + n.

Utilisant que la dérivée de exp(x) est égale à exp(x), on trouve∑
n≥0

n(n− 1)(n− 2)

n!
xn = x3

∑
n≥0

n(n− 1)(n− 2)

n!
xn−3 = x3 exp(x).

De même, on a ∑
n≥0

n(n− 1)

n!
xn = x2 exp(x) et

∑
n≥0

n

n!
xn = x exp(x).

On conclut que ∑
n≥0

n3

n!
xn = (x3 + 3x2 + x) exp(x).
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3. Il est clair, d’après la règle de d’Alembert, que le rayon de convergence est égal à 1. De
plus, si on pose f(x) = 1

1+x , on a pour tout x ∈]− 1, 1[,

f(x) =
∑
n≥0

(−1)nxn.

En dérivant, il vient
− x

(1 + x)2
= xf ′(x) =

∑
n≥0

(−1)nnxn,

soit finalement ∑
n≥0

(−1)n+1nx2n+1 = x×
(

x2

(1 + x2)2

)
=

x3

(1 + x2)2
.

4. Il est facile de vérifier, à l’aide de la règle de d’Alembert, que le rayon de convergence de la
série entière vaut 1. On décompose ensuite en éléments simples la fraction rationnelle. On
trouve

1

4n2 − 1
=

1/2

2n− 1
− 1/2

2n+ 1
.

Posons f(x) =
∑

n≥0
x2n

2n+1 et g(x) =
∑

n≥0
x2n

2n−1 . Alors, d’après la première question, on
sait que pour x 6= 0, on a

f(x) =
1

2x
ln

(
1 + x

1− x

)
.

On se ramène à ce cas pour g, en remarquant que

g(x) = −1 +
∑
n≥1

x2x2(n−1)

2(n− 1) + 1

= −1 + x2
∑
n≥0

x2n

2n+ 1

= −1 + x2f(x).

Finalement, on trouve que, notant S la somme de la série initiale, pour x 6= 0 dans l’intervalle
]− 1, 1[,

S(x) = −1

2
+

x2 − 1

4x
ln

(
1 + x

1− x

)
.

Il est aussi clair que S(0) = −1.

3. Exercices d’approfondissement

a. Rayon de convergence et séries entières

Exercice 19.Exercice 19.

Soit
∑

n anz
n une série entière de rayon de convergence ρ. Soit Sn = a0 + · · · + an et soit R le

rayon de convergence de la série
∑

n Snz
n.
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1. Montrer que R ≤ ρ.
2. Montrer que inf(1, ρ) ≤ R.

Correction.

1. Remarquons que an = Sn − Sn−1 et donc que
∑

n anz
n =

∑
n Snz

n −
∑

n Sn−1z
n. Ainsi,∑

n anz
n est la différence de deux séries entières de rayon de convergence R, son rayon de

convergence ρ vérifie ρ ≥ R.
2. La série

∑
n Snz

n est le produit de Cauchy des deux séries entières
∑

n anz
n et

∑
n z

n. Ces
deux séries ont pour rayon de convergence respectif ρ et 1. On en déduit que le rayon de
convergence R de la série

∑
n Snz

n vérifie R ≥ inf(1, ρ).

Exercice 20.Exercice 20.

Soit (an) une suite de réels qui converge vers l.
1. Quel est le rayon de convergence de la série entière

∑
n≥0

an

n! x
n ?

2. On note f la somme de la série entière précédente. Déterminer limx→+∞ e−xf(x).

Correction.

1. Puisque la suite (an) est convergente, elle est bornée, disons par M > 0. Mais, par appli-
cation du critère de d’Alembert, la série

∑
n Mxn/n! est convergente pour tout réel x. Le

rayon de convergence de la série est donc égal à +∞.
2. Soit ε > 0 et N ≥ 1 tel que, pour n ≥ N , on a |an − l| ≤ ε. On écrit alors

+∞∑
n=0

an
n!

xn =

+∞∑
n=0

(an − l)

n!
xn +

+∞∑
n=0

l

n!
xn

=
+∞∑
n=0

(an − l)

n!
xn + lex.

On écrit ensuite
+∞∑
n=0

(an − l)

n!
xn =

N−1∑
n=0

(an − l)

n!
xn +

+∞∑
N

(an − l)

n!
xn := f1(x) + f2(x).

Puisque f1 est un polynôme, on a limx→+∞ e−xf1(x) = 0. Il existe donc x0 ∈ R tel que,
pour x ≥ x0,

e−x|f1(x)| ≤ ε.
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De plus, on a, pour x ≥ 0 :

e−x|f2(x)| ≤
+∞∑
N

|an − l|
n!

xn

≤
+∞∑
N

ε

n!
xn

≤
+∞∑
0

ε

n!
xn

≤ εe−xex = ε.

Utilisant l’inégalité triangulaire on trouve, pour tout x ≥ x0,

|e−xf(x)− l| ≤ 2ε.

Ainsi, e−xf(x) tend vers l lorsque x tend vers +∞.

Exercice 21.Exercice 21.

Soit S(x) =
∑

n≥0 anx
n une série entière de rayon de convergence 1. On suppose de plus que

S(x) admet une limite lorsque x tend vers 1− et on note ℓ cette limite. On suppose enfin que
an = o(1/n). Pour N ∈ N et x ∈ [0, 1], on note

An(x) = S(x)− ℓ, BN (x) =

N∑
n=0

(1− xn)an, CN (x) =

+∞∑
n=N+1

anx
n.

1. Vérifier que
∑N

n=0 an − ℓ = AN (x) +BN (x)− CN (x).
2. Soit ε > 0. Démontrer qu’il existe un entier N0 tel que, pour tout N ≥ N0,

|CN (x)| ≤ ε

N(1− x)
.

3. Démontrer que la série
∑

n an converge et que sa somme vaut ℓ.

Correction.

1. Il s’agit d’une simple vérification algébrique.
2. Soit N0 tel que, pour tout n ≥ N0, |an| ≤ ε/n. Pour N ≥ N0, il vient

|CN (x)| ≤
+∞∑

n=N+1

ε

n
xn ≤ ε

N

∑
n≥N+1

xn ≤ ε

N(1− x)
.

3. Le résultat de la question précédente nous incite à choisir x = 1− 1
N , de sorte à avoir une

grande valeur de x qui garantisse néanmoins que |CN (x)| ≤ ε. Majorons ensuite les autres
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termes. Pour AN (x), c’est facile. Il existe un entier N1 ∈ N tel que, pour tout N ≥ N1,

|AN (x)| =
∣∣∣∣S (

1− 1

N

)
− ℓ

∣∣∣∣ ≤ ε.

D’autre part, d’après l’inégalité des accroissements finis appliquée à la fonction t 7→ tn, on
a

|1− xn| ≤ n(1− x) ≤ n

N
.

Il vient

|BN (x)| ≤ 1

N

N∑
n=0

nan.

D’après le théorème de Cesaro, puisque (nan) tend vers 0, on sait que |BN (1− 1/N)| tend
vers 0, et donc il existe N2 ∈ N tel que, pour tout N ≥ N2,

|BN (x)| ≤ ε.

Finalement, pour tout N ≥ max(N0, N1, N2), on trouve∣∣∣∣∣
N∑

n=0

an − ℓ

∣∣∣∣∣ ≤ 3ε.

Ceci prouve la convergence de la série
∑

n an et que
∑+∞

n=0 an = ℓ.

Exercice 22.Exercice 22.

Soit f une fonction développable en série entière, non identiquement nulle, dont le rayon de
convergence vaut +∞. Démontrer que l’ensemble A des zéros de f (sur C) est un fermé constitué
de points isolés ?

Correction.

On règle d’abord le cas où f est identiquement nulle. Dans le cas contraire, prouvons d’abord que
A est fermé : si (zn) est une suite de zéros de f , et si zn → z, alors par continuité de f en z on a
aussi f(z) = 0, et donc z ∈ A. En outre, A est constitué uniquement de points isolés, c’est-à-dire
que si z0 ∈ A, il existe un voisinage V de z0 tel que V ∩ A = ∅. En effet, puisque le rayon de
convergence du développement en série entière de f vaut +∞, f est aussi développable en série
entière au voisinage de z0, avec un développement ayant un rayon de convergence égal à +∞. Ce
développement s’écrit :

f(z) = an(z − z0)
n + an+1(z − z0)

n+1 + . . . ,

où on peut supposer an 6= 0 (f est non identiquement nulle). On a alors :

f(z) = (z − z0)
ng(z),

où g est une fonction continue vérifiant g(z0) = an 6= 0. Par continuité, g, donc f , ne s’annule
pas dans un voisinage de z0, sauf en z0.
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