Mathématiques spéciales

Corrigé de la feuille d’exercices n°16

1. Exercices basiques

a. Rayon de convergence et séries entiéres

Exercice 1.

1. Donner un exemple de série entiere de rayon de convergence 7.

2. Est-il possible de trouver des suites (a,) et (b,) telles que a,, = o(by,) et pourtant ) a,z"
et > byz™ ont le méme rayon de convergence ?

3. Quel est le lien entre le rayon de convergence des séries entiéres ano anz” et
ano(—l)"anz”?

1. La série entiere ) -, Z convient.

2. Sia, = n%rl et b, = 1, les deux séries ont méme rayon de convergence (égal a 1), et pourtant
an = 0(by).
3. Cest le méme! on a |a,p"| = |(—1)"a,p™| pour tout p > 0, et donc, par définition du rayon

de convergence, les deux séries ont méme rayon de convergence.

Exercice 2.

Déterminer le rayon de convergence des séries entiéres suivantes :

1Ly, (17.)2?3”’ 2., oyIn(14sint)am 3.3 o) (exp(l/n) —1)a"
4., aV"2" a>0 5.3 2" 6. >, nnmen

On notera pour chaque exemple a,x" le terme général de la série.

1 An _3n
1. Posons u,, = % Alors

il VAP P

 2(n+1) 2 V.

Un+1
Un

Ainsi, si |z]> < V/2, la série de terme général |u,| est convergente d’aprés le critére de
d’Alembert, alors qu’elle est divergente si |z|> > /2. On en déduit que le rayon de conver-
gence de la série entiere est 2.

1

n

. La suite

2. En effectuant un développement limité, on trouve que a,, ~ % d’ott |anz"| ~



(lanz™|) est donc bornée si et seulement si |z| < 1. Le rayon de convergence de la série est
1.
2|

3. Onaay ~4o0 1, donc |an2"| ~ Tn et la suite (|a,2"|) est bornée si et seulement si |z| < 1.

Le rayon de convergence de la série est donc égal a 1.
4. On applique & nouveau la régle de d’Alembert & u,, = aV™|z|”. On obtient

Un+1 — ‘Z|0J\/n+17\/ﬁ-

Un

Or,

W\f—\/ﬁ((l+l/n)1/21)—\/ﬁ<l+;ﬂ1+0<;>)%0.

Ainsi, on obtient que
Un+1
—ntl |z\a0 = |z|.
Up,
On en déduit que la série des modules converge absolument pour |z| < 1 et diverge pour
|z| > 1. Le rayon de convergence de la série entiere est donc 1.

| s
5. Pour |z| < 1, on remarque que |z|™ < |z|" et donc la série est convergente. Pour |z| > 1,
le terme général de la série ne tend pas vers 0 et la série est donc grossierement divergente.
On en déduit que le rayon de convergence de la série entiere est 1.

6. Pour u, = n™"|z|", on étudie la convergence en appliquant la régle de Cauchy :
V= 02"z = exp ((Inn x Inn)/n)|z| — ||.

La série est donc convergente pour |z| < 1 et divergente pour |z| > 1. Son rayon de
convergence vaut 1.

Exercice 3.

an N
T a pour

Soit ), a,x™ une série entiere de rayon de convergence p > 0. Montrer que
rayon de convergence —+o0.

Soit 0 < r < p. Par le lemme d’Abel, on sait que la suite (a,r™),, est bornée. Autrement dit, il
existe M > 0 tel que, pour tout n > 0, on a

lanr™| < M.
Soit maintenant R > 0. Alors on a

|an|R™
n!

(B/r)"

= |an|r"™ X
n!

Par croissance comparée des suites puissances et factorielle, il existe C' > 0 tel que |(R/r)™|/n! <

C. 1l vient, pour tout n > 0,
an|R™
i < MC.
n!
La suite (a,, R™) est bornée pour tout n, donc le rayon de convergence de la série entiere ) = %= 2™

vaut +o0.



Exercice 4.

Soit ), anx™ une série entiere de rayon de convergence p € [0, 400}, telle que a,, > 0 pour tout
entier n et soit o > 0. Quel est le rayon de convergence de la série > anz™?

1l suffit de remarquer que la suite (a®r™) est bornée si et seulement la suite (a,r™®) (obtenue
en prenant la puissance 1/« de la premiére) est bornée. Ainsi, si r < p®, alors r/® < p et donc
les suites (a,7/®) et (a2r™) sont bornées. De méme, si r > p®, de sorte que 7/® > p, alors les
suite (a,7"/®) et (a2r™) ne sont pas bornées. Ceci prouve que le rayon de convergence de la série
Do, anx™ est égal a p®.

Exercice 5.

Soit S la somme de la série entiere ), anz™ de rayon de convergence R > 0. Démontrer que S
est paire si et seulement si, pour tout k£ € N, asg41 = 0.

Supposons d’abord que ask4+1 = 0 pour tout & € N. Alors S est paire comme somme d’une série
de fonctions paires. Réciproquement, supposons que S est paire, et posons T'(x) = S(—x). Alors,
on sait que, pour tout x €] — R, R[, on a

T(-z) =) (-1)"anz".

n>0

De plus, puisque S est paire, T' et S coincident sur | — R, R[. C’est donc que, pour tout entier
n €N, on a a,, = (—1)"a,. Ceci impose que a,, = 0 dés que n est impair.

Exercice 6.
Soit
+00 1
frxm Zsin () ™.
n=1 \/ﬁ
1. Déterminer le rayon de convergence R de la série entiere définissant f.

2. Etudier la convergence en —R et en R.
3. (a) Soit M > 0. Montrer qu’il existe un entier N > 1 et un réel § > 0 tel que, pour tout

x €]1 — 0, 1], alors
a 1
i — | z™ > M.
;sm<ﬁ>x >

(b) En déduire la limite de f(x) quand x — 1~.
4. (a) On considére la série entiere

o o))



Démontrer que cette série converge normalement sur [0, 1].

(b) En déduire que lim,_,;- (1 — 2)f(z) = 0.

1. Puisque sin (ﬁ) ~ oo ﬁ, on démontre par exemple par le critére de d’Alembert que le
rayon de convergence vaut 1.

2. Par croissance de la fonction sinus entre 0 et /2, la suite (sin(1/y/n)) est décroissante,
et positive. D’apres le critere des séries alternées, la série converge en —1. En 1, la série
>, sin(1/y/n) est divergente, par comparaison & la série de Riemann divergente ) 1/y/n
(on compare bien des séries a termes positifs).

3. (a) Lasérie ) sin(1/y/n), qui est a termes positifs, est divergente. Il existe donc un entier

N > 1 tel que
N 1
Zsin () > M +1.
n=1 \/ﬁ

De plus, cet entier N étant fixé, la fonction h : x — 227:1 sin(1/y/n)x™ est continue

en 1. Ceci donne Dexistence de § > 0 tel que, pour tout = €]1 — 4, 1],
h(z) > h(1) — 1.

Ceci est exactement le résultat voulu.

(b) Puisqu’on a une série a termes positifs, la série majore toutes ses sommes partielles.
Ainsi, pour tout M > 0, on peut trouver § > 0 tel que, pour tout x €]1 — 4, 1],

f(@) = M.

Ceci signifie exactement que f tend vers +oo en 17.

4. (a) Il est clair que, pour tout = € [0, 1], on a

() - )=o) ()

D’apres, par exemple, 'inégalité des accroissements finis,

<

N R

3/2

La série (numérique) de terme général n—°/ étant convergente, ceci prouve la conver-
gence normale de la série définissant g sur [0, 1].

(b) Un calcul aisé montre que

(1 —2)f(z) = sin(1) + g(z).

Or, g étant continue en 1, on trouve

lim (1 — ) f(z) = sin(1) + g(1) = sin(1) + :fz {sin (%) _ofin (\/%)] 0.



Exercice 7.

Soie
resp

nt (a,) et (b,) deux suites de réels positifs. On note R et R’ les rayons de convergence
ectifs des series entieres > ana™ et ) bpx™. Soient f:x =Y anzetg:ix— Y bya”.

On suppose enfin qu’il existe [ € R tel que lim,, Z—: =1.

1
2

B~ W

. Montrer que R > R’. On suppose désormais que R’ = 1 et que la série ) b, est divergente.

. Soit M > 0. Montrer qu’il existe un entier N > 0 et un réel 6 > 0 tel que, pour tout
x €]1 — 6, 1], alors anzo bpz™ > M.

. En déduire que g(x) — 400 lorsque  — 1.

. Soit e > 0et N > 1 tel que (I —e)b, < an < (14 )b, pour tout n > N. Montrer que

+oo
f(z) = P(x) + Z cnz”
n=0

ou P est un polynome, et (I — )b, < ¢, < (I + ¢)b, pour tout n > 0.
. En déduire que
lim Lx) =1
z—1- g(z)

Il existe ng € N tel que, pour tout n > ng, on a
lan| < (14 1)|by|.
Soit maintenant r > 0. Alors, pour tout n > ng, on a
|an|r™ < (L+1)[bs|r"

et donc, si la suite (|b,|r™) est bornée, la suite (Jay|r™) Pest aussi. On conclut en utilisant
la définition du rayon de convergence. Le rayon de convergence de ) anz™ étant en effet

donné par
R = sup{r > 0; (Jan|r"™) est bornée }.

Fixons N > 1 tel que Zgzo b, > 2M. Posons ensuite P(z) = Zﬁ;o bpz™. On a P(1) =
2M > M. Le résultat demandé est alors une conséquence immédiate de la continuité de P
en 1.

. Soit M > 0 et soient N, donnés par la question précédente. Alors, puisque b,, est positif

pour tout n, on a, pour chaque x €]0, 1],

En particulier, pour tout z €]1 — 4, 1], on a
g(z) > M.

Ceci prouve bien que g tend vers +oo en 1.



4. On écrit simplement que

flz) = Zanx + Z an®

n=N+1
N
= Z( )x" —|—be + Z anT
n=0 n=N+1

= P(x)+ Z CpE”
n=0

ol on a posé P(z) = Zgzo(an — by )a™ et ¢, = by, sin < N, ¢, = a, sinon.

5. On fixe € > 0 et on décompose f comme précédemment. D’une part, on a (I —€)b, < ¢, <
(I + )by, et donc, multipliant par 2™ et sommant pour n =0, ..., +o0o, on déduit que

+oo
(1—e)g(x) <Y cna™ < (I+2)g(x).

D’autre part, puisque P est un polynome, donc est continu en 1, et que g(z) — 400 quand

r — 1, on sait que

P
ﬂ—>Oquaundav—>1.

g9(z)

On en déduit V'existence de § > 0 tel que, pour tout x €]1 — 4, 1[, on a

g(z) =t

Finalement, sommant toutes ces inégalités, on trouve que, pour tout x €]1 — §, 1], on a

l—2e < ——= <[+ 2e.

Ceci prouve que f/g tend vers 1 en 1.

Exercice 8.

Pour les séries entieres suivantes, donner le rayon de convergence et exprimer leur somme en
termes de fonctions usuelles :

n—1_n n+2 (n+1)(n—2) "
1. ano nl L 2. Zn>0 n+1$ 3. ano !
4 Z (_1)n+1x2n
. n>1 27p!

1. Posons u,, = (tn+1/uyn) tend vers 0, et donc le rayon
de convergence de la série entiere est égal & +o0o. Pour déterminer sa somme, on écrit que




pour tout x € R,

= 1l +oo " +oo " +Oo$'l'n
n __ _ _ _ T _ T
> ol v _Z(nfl)! an_z ol e = (z —1)e”.
n>0 n=1 n=0 n=0

. Posons u,, = Z—ﬁ Puisque w,, — 1, la suite |u,2"| est bornée si |z| < 1 et tend vers +o0
si |z| > 1. On en déduit que le rayon de convergence de la série étudiée est égal & 1. Pour
sommer la série entiere, il suffit d’écrire

n+2 1

=1
n+1 +n—|—1

ce qui donne

ZZ+1x = 2 "+

n>0 n>0 n>0
1 1 !
= 15 ' @ > n+1
n>0
B 1 In(1 — x)
T o1—=x x '

. Comme pour la premiere série, la régle de d’Alembert montre facilement que le rayon de
convergence de la série entiere vaut +o0o. Ensuite, 1’”astuce”, dans ce type d’exercice ot on
voit apparaitre une fraction du type P(n)/n!, avec P un polyndme, et d’écrire le polynéme
dans la base 1,n,n(n —1),n(n — 1)(n — 2),---, dans le but de faire apparaitre la série de
la fonction exponentielle. Ici, on a

(n+Dn—-2)=n*-n—-2=n(n-1)—-2.

On a donc
Z nl = o & =2 Z m¥
n>0 n>0 n>0
1
= " — 2e*
nzz:z (n—2)!
1
= z? Z =z —2e” = (2 — 2)e”.
n!
n>0

. Par la regle de d’Alembert, on prouve facilement que le rayon de convergence vaut +oo.
Pour identifier la somme, que nous noterons S, il faut "voir” que cette somme ressemble
beaucoup & la fonction exponentielle, mais il faut évaluer en —x2/2 pour voir apparaitre
le (—1)"2?" au numérateur et le 2" au dénominateur. Au final (il faut aussi remarquer que
la somme commence pour n = 1), on obtient

S(z) = Z ﬂx% =1—exp(—2?/2).

2nn)
n>1 n



Exercice 9.

Pour n > 1, on pose S, = > ;_, ¢ et on s’intéresse & la série entiére > n>1 502" On note R
son rayon de convergence.
1. Démontrer que R = 1.
2. On pose, pour z €] — 1,1[, F(z) = Y, ~; Spa™. Démontrer que pour tout €] —1,1[, on
a(l—x2)F(x)= anl %
3. En déduire la valeur de F'(z) sur | — 1, 1].

1. Il est d’abord clair que, pour tout n > 1, on a 1 < 5,, < n. Donc, pour p > 0, on a
P < Spp" <np".

Ainsi, si p €]0,1], la suite (S,,p™) est bornée (on peut méme dire qu'elle tend vers 0), et si
p > 1, la suite (S, p™) tend vers +00. On en déduit que le rayon de convergence de S vaut
1.

2. On développe et on fait un changement d’indices dans une des deux sommes :

+oo —+oo
(1-2)F(z) = Z Spa” — Z Spz™t!
n=1 n=1

+oo
= 4 Z (Sp — Sp—1) 2"
n=2

3. Ayant reconnu le développement en série entiere de —In(1 — ), on en déduit que

~In(1 —2)

Fla) = =g

Exercice 10.

Pour les séries entieres suivantes, donner le rayon de convergence et exprimer leur somme en
termes de fonctions usuelles :

n—1,n n+2 .n (n+1)(n—2) n
L ZnZO n! .13+1 2. ZnZO n+1x 3. ZnZO n! x
(="

2n
4. anl P



1. Posons u,, =

= 2=L1 On vérifie facilement que la suite (u,41/uy) tend vers 0, et donc le rayon

de convergence de la série entiére est égal a +o0o. Pour déterminer sa somme, on écrit que
pour tout z € R,

+ + +
n—1 X z" = z" z-z" " z
DL S T D
n>0 s n=1 (’I’L o ) n=0 n: n=0 n:
. Posons u,, = "2, Puisque u,, — 1, la suite |u,2"| est bornée si |z| < 1 et tend vers +oo

n+1°
si |z| > 1. On en déduit que le rayon de convergence de la série étudiée est égal & 1. Pour

sommer la série entiere, il suffit d’écrire
n+2 1

=1
n+1 +n+1

ce qui donne

ZZ+1x = )@ +Zn—|—1x

n>0 n>0 n>0
1 1 ks
= 105 ' @ > n+1
n>0
B 1 In(1 — )
To1—=x x '

Méme si cette derniere fonction semble ne pas étre définie en 0, elle se prolonge bien stir
par continuité en ce point.

. Comme pour la premiere série, la regle de d’Alembert montre facilement que le rayon de
convergence de la série entiere vaut +o0o. Ensuite, I’”astuce”, dans ce type d’exercice ou on
voit apparaitre une fraction du type P(n)/n!, avec P un polyndme, et d’écrire le polynéme
dans la base 1,n,n(n —1),n(n — 1)(n — 2),---, dans le but de faire apparaitre la série de
la fonction exponentielle. Ici, on a

(n+D(n—-2)=n -n—-2=n(n-1)-2.

On a donc
D D P DD
n>0 n>0 n>0
1
= Z " — 2e”
_ |
— (n—2)
= 72° ix" — 2" = (2% — 2)e”
B n! B ’
n>0

. Par la regle de d’Alembert, on prouve facilement que le rayon de convergence vaut +oo.
Pour identifier la somme, que nous noterons S, il faut ”voir” que cette somme ressemble
beaucoup & la fonction exponentielle, mais il faut I’évaluer en —x2/2 pour voir apparaitre
le (—1)"z?" au numérateur et le 2" au dénominateur. Au final (il faut aussi remarquer que
la somme commence pour n = 1), on obtient

_1\n+1
S(z) = Z 7( 21”)n'+ 2 =1 — exp(—2%/2).



Exercice 11.

Pour les séries entieres suivantes, donner le rayon de convergence et exprimer leur somme en
termes de fonctions usuelles :

2n

3
ano ST 2. ano e’ 3. ano(_l)"H”xQnH

n

x
4. ano 4n2—1"

2n . . . z . .
1. Posons u, = sr—y. On a upi1/u, — . Ainsi, si [z < 1, la série est convergente et si

|z| > 1, la série est divergent. Autrement dit, on a prouvé que le rayon de convergence est
égal a 1. Posons, pour z €] — 1,1[, S(z) la somme de la série entiere. Alors S est dérivable
sur | —1,1] et

(@8) (@)= 3 ™ = —— = /2 1/2

== .
i 1—2 l—z 14«2

Par intégration, on en déduit que pour tout x €] — 1, 1], on a

25(x) = ;m(l”)

1—=2

et donc, pour x # 0,

De plus, S(0) = 1.
2. Posons u,, = %3, On a
Un+1 o 1 (TL —+ 1)3

— X — 0.
Uy, n+1 n3

Par le critére de d’Alembert, le rayon de convergence de la série étudiée est égal a +oo.
Pour la sommer, on va exprimer n® en fonction de n(n — 1)(n — 2), n(n — 1) et n pour se
ramener a des séries dérivées. On a en effet :

n3 =n(n—1)(n—2)+3n(n —1) +n.
Utilisant que la dérivée de exp(z) est égale & exp(x), on trouve

SO0 s R D2 sy

= x” exp(x
n!
n>0 n>0

De méme, on a

On conclut que

10



3. Il est clair, d’apres la regle de d’Alembert, que le rayon de convergence est égal a 1. De

plus, si on pose f(x) = H%’ on a pour tout z €] — 1, 1],

En dérivant, il vient

soit finalement

2 3

Z(_l)n+1nz2n+1 -z % ((1 +x2)2> — (1 +m2)2.

n>0

4. 11 est facile de vérifier, a I’aide de la regle de d’Alembert, que le rayon de convergence de la
série entiere vaut 1. On décompose ensuite en éléments simples la fraction rationnelle. On
trouve

1 1/2 1/2
4n2—-1 2n—-1 2n+1

Posons f(x) = >, <, % et g(z) = > ,50 35— Alors, d’apres la premiére question, on

sait que pour = # 0, on a
1 1+2
—1 .
f@) = 2z n(l—x)

On se rameéne a ce cas pour g, en remarquant que

(n—1)
g(@) = 1+Z n—l +1
) 2n
= -1
e Z2n+1
n>0
= —1+42%f(z).

Finalement, on trouve que, notant S la somme de la série initiale, pour « # 0 dans I'intervalle

}_171[7
1 z2-1 1+
S(a:)——§—|- ype hl(l—x)'

Il est aussi clair que S(0) = —1.

2. Exercices d’entrainement

a. Rayon de convergence et séries entiéres

Exercice 12.

Déterminer le rayon de convergence de la série entiere ) -, a,x™ dans les cas suivants :
1. la suite (ay,) tend vers £ # 0;

11



2. la suite (a,) est périodique, et non identique nulle;
3. a, est le nombre de diviseurs de n;

4. a, est la n—iéme décimale de v/2.

1. Puisque la suite (a,,) est convergente, elle est bornée et donc la suite (a,1™) est bornée.
Ceci implique que le rayon de convergence de la série entiere est au moins égal a 1. De
plus, au voisinage de l'infini, on a a,r™ ~ ¢r™. Si r > 1, ceci tend vers +oo. Le rayon de
convergence de la série entiere est donc exactement égal a 1.

2. Puisque la suite (a,,) est périodique, elle est bornée et un raisonnement identique a celui de
la question précédente donne que le rayon de convergence est au moins égal a 1. De plus,
puisque la suite (a,) est périodique et non identiquement nulle, elle ne converge par vers 0.
Ainsi, la série ) a,1" est divergente. Le rayon de convergence vaut donc 1.

3. Il suffit de remarquer que 1 < a,, < n, ce qui entraine
|z|* < |apz™| < njz|™.

Ainsi, pour |z| < 1, la série ) a,a™ converge, et pour |z| > 1, elle diverge. Son rayon de
convergence est donc égal a 1.

4. La suite (a,) est une suite qui prend ses valeurs dans {0, . . ., 9} donc elle est bornée. Puisque
V2 n’est pas un nombre décimal, (a,) prend une infinité de fois une valeur dans {1,...,9}.
En particulier, (a,,) ne tend pas vers 0. Raisonnant comme ci-dessus, on trouve que le rayon
de convergence vaut exactement 1.

Exercice 13.

Soit R le rayon de convergence de ) a,2". Comparer R avec les rayons de convergence des
séries entieres de terme général :

2
1. ane‘/ﬁz” 2. a, 22" 3. a,z2" .

1. Notons Ry le rayon de convergence de 3 a,eV™2". Puisque |a,|eV™ > |a,|, on a Ry < R.
Soit maintenant r > 0 tel que (a,r™) soit bornée. Alors, pour tout p € [0,7[, on a

n
ane\/ﬁpn _ anrne\/ﬁ% _ anrnenln(p/r)—l-\/ﬁ
r

et comme e™"(?/M+V7™ tend vers 0 lorsque n tend vers 400, la suite (a,eV™p™) est bornée.
On en déduit que R < R; et donc finalement que R = R;.

2. Il est clair que (a,7?") est bornée si et seulement si (a,(r?)™) est bornée (c’est la méme
suite écrire de deux fagons différentes). Le rayon de convergence de ) anz®™ est donc égal

a vR.

3. Supposons d’abord R > 0 et R < +00. On va alors prouver que le rayon de convergence de

12



don anz" est égal a 1. En effet, soit r tel que (a,r™) est bornée. Alors, pour tout p < 1, on

n

£+ tend vers 0 (on a choisi p < 1).

2
2 e . 7’ 7’
a app” = apr" X pr — et cette quantité est bornée car

. . 2 7. ’ N . . .
Ainsi, le rayon de convergence de ) a,2z™ est supérieur ou égal a 1. De fagon similaire,

on prouve que, si r est tel que a, 7™ n’est pas bornée, alors pour tout p > 1, on a anp"2 qui
n’est pas borné. Ainsi, le rayon de convergence de > anz"2 est égal a 1. Lorsque R = 400,
alors le rayon de convergence de ) anz”2 sera élément de [1, +o0], mais toutes les valeurs
peuvent étre prises : <ul class="rien”>

4. Si a,, = 1/nl, alors le rayon vaut 1.
5. Sia, = 1/n!2, alors le rayon vaut —+oo.

6. Sia, = 1/)\"2, avec A > 1, le rayon de convergence vaut A. </ul> De méme, si R = 0,
alors le rayon de convergence de ) an2™ peut étre n’importe quel réel dans [0,1].
Exercice 14.

4
1—e?
2

1. Montrer que la fonction ¢ — est intégrable sur |0, +oo].

. - N oo (—1)ntigint
2. Soit f la somme de la série entiere f(x) = > 7 BTy Montrer que f admet une

limite en +o0.

1. On remarque d’abord que la fonction se prolonge par continuité en 0. En effet, au voisinage
de 0, on a
1-e® ¢

__ 42
—m o oEt

et la fonction se prolonge par 0 en 0. Au voisinage de +o0, la fonction est équivalente a t%

qui est intégrable car 2>1. La fonction est donc intégrable sur |0, +ool.

. p— 714 ’ 7’ . BN
2. La fonction ¢ — 2 &— est développable en série enticre en 0, de rayon de convergence +o0,

et on a pour tout x € R

1— e—t4 +oo (_1)n+1t4n—2

2 - |
t — n!

Par intégration de cette série entiére, on trouve

x +00 n An—2 @] —*
_ (—1)"+it _/ 1—e
f(x)—/o ;77“ dt = — dt.

_¢4
Ainsi, f admet une limite en +oo égale & [;7°° 1=5 ~dt.

13



Exercice 15.

Soit S(x) = >, >0 anx™ une série entiere de rayon de convergence 1. On suppose de plus que
S(z) admet une limite lorsque x tend vers 1~ et on note £ cette limite.
1. La série ), ay est-elle nécessairement convergente ?

2. On suppose désormais que a,, > 0 pour tout n € N. Démontrer que la série ) _  a,, converge
et que £ =73~ an.

1. Pour a,, = (—1)", on a S(x) =
>, an diverge.

2. Remarquons d’abord que S est croissante (puisque chaque x — a,, 2™ est croissante). Ainsi,
pour tout z € [0,1], on a S(z) < ¢. Mais alors, pour chaque N € N, on a encore

H%z qui tend vers 1/2 si = tend vers 17, alors que la série

N
Z anz™ < S(xz) < 4.
n=0

Si on fait tendre x vers 17, on obtient que

N
Zangﬂ.

n=0

Les sommes partielles de la série ) ay,, qui est a termes positifs, sont majorées, et donc
la série est convergente. De plus, on a par le passage a la limite précédent E::E) a, < £.
Fixons ensuite € > 0 et € [0, 1] tel que S(z) > ¢ — €. 1l vient,

+oo +oo
Zan > Zanx” >0 —e¢.
n=0 n=0

Ceci prouve le résultat demandé.

Exercice 16.

Soit f(z) =), anz™ une série entiere de rayon de convergence R > 0 et soit r €0, R|.

1. Montrer que, pour tout entier k, la série de fonctions 6 — > ayret(n—ko

normalement sur [0, 27].

converge

2. En déduire que pour tout k£ € N, on a
27

2mrkay, = f(re®)e*0qg.
0

3. Application : on suppose que R = 400 et que f est bornée sur C. Montrer que f est
constante.

14



1. Puisque 7 < R, il résulte du lemme d’Abel que la série ) |a,|r™ est convergente. Puisque
|an et R0 = |a,|r™ pour tout @ € [0,2n], on en déduit la convergence normale de la
série demandée sur [0, 27].

2. On a
f( i0 71199 Zanr ezn k)6

Puisque la série converge normalement, donc uniformément sur [0,27], on peut inverser
I’intégration et la sommation et on trouve

F(re'®) *Z’“"da—zan / 'R qp,

La dernieére intégrale est égale a 0 si k # n, et & 27 sinon. On en conclut que

27

0

27
f(re®®)e*0dg = 2mwayrt.
0

3. Pour £ > 1, 0n a
L o i0Y ,—ik0
U = 53 ! f(re™)e=""de.

Soit M > 0 tel que |f(z)| < M pour tout z € C. Alors on a
1 [ M

< -
okl < 27k Jo Mdb rk

Faisant tendre r vers +oc0, on trouve ay = 0 pour k > 1, ce qui entraine que f est constante.

Exercice 17.

Soit (an) une suite de réels tel que ) a,z™ soit de rayon de convergence 1. On note f la somme
de cette série entiere. On suppose de plus que la série numérique ), a, converge et on note

+oo
> o

k=n-+1

1. Démontrer que, pour tout = € [0,1] et tout n > 1, on a

+o00 n 400
—Zak:Zak(:ﬂk—l)—i—(x—l) Z Rpaz® + R, (2" —1).
k=0 k=0 k=n+1
2. En déduire que
+o00
li = .
Jim £(z) =) a

15



1. On commence par couper la somme en n et par remarquer que
+oo n +oo
f(x)—Zak:Zak(mk—l)—l— Z apz® — R,.
k=0 k=0 k=n+1

La clé ici est d’écrire dans la deuxiéme somme ay = Ri_1 — Ry (et d’effectuer ce qu’on
appelle une transformation d’Abel). Pour m > n + 1, il vient

m m m
E apz® = E (Rg—1 — Rk):ck = E Rk(l’k+1 — xk) + Rpz" Tt — Rzt
k=n-+1 k=n-+1 k=n-+1

Puisque (R,) tend vers 0, on peut faire tendre m vers co et on trouve

o0 —+o0
E apz® = (x—1) E Ripz* + Rz,
k=n-+1 k=n-+1

ce qui donne bien

+oo n 400
f@)‘Zak:Zak(CEk—l)—i—(x—l) Z kak—i-Rn(x"'H—l),
k=0 k=0

k=n+1

2. On va d’abord fixer n pour que la deuxiéme somme soit petite, indépendamment de x dans
[0, 1], puis on va faire tendre x vers 1. Soit donc € > 0. Il existe n € N tel que, pour k > n,
on a |Ry| < e. On en déduit, pour tout x € [0,1],

+oo —+oo
(r—1) Z Ryx®| <elz — 1| x Z zF <e.
k=n+1 k=N+1

On a de plus, toujours pour cette valeur de n,
|Rn(x”+1 —1)] < 2.

Cette valeur de n étant fixée, la fonction z +— Y j_ ax(z” — 1) est continue en 0, de limite
nulle. Ainsi, on peut trouver § > 0 tel que, pour tout x €]1 — 4, 1[, on a

n

<e.

Finalement, en mettant tous les résultats ensembles, on trouve qu’il existe § > 0 tel que,
pour tout x €]1 — 4§, 1[, on a

< 4e.

+oo
‘f(x) — Z apz”
k=0

Ceci est exactement le résultat voulu.

16



Exercice 18.

Pour les séries entieres suivantes, donner le rayon de convergence et exprimer leur somme en
termes de fonctions usuelles :

2n

3
ano ST 2. ano e’ 3. ano(_l)"H”xQnH

n

x
4. ano 4n2—1"

2n . . . z . .
1. Posons u, = sr—y. On a upi1/u, — . Ainsi, si [z < 1, la série est convergente et si

|z| > 1, la série est divergent. Autrement dit, on a prouvé que le rayon de convergence est
égal a 1. Posons, pour z €] — 1,1[, S(z) la somme de la série entiere. Alors S est dérivable
sur | —1,1] et

(@8) (@)= 3 ™ = —— = /2 1/2

== .
i 1—2 l—z 14«2

Par intégration, on en déduit que pour tout x €] — 1, 1], on a

25(x) = ;m(l”)

1—=2

et donc, pour x # 0,

De plus, S(0) = 1.
2. Posons u,, = %3, On a
Un+1 o 1 (TL —+ 1)3

— X — 0.
Uy, n+1 n3

Par le critére de d’Alembert, le rayon de convergence de la série étudiée est égal a +oo.
Pour la sommer, on va exprimer n® en fonction de n(n — 1)(n — 2), n(n — 1) et n pour se
ramener a des séries dérivées. On a en effet :

n3 =n(n—1)(n—2)+3n(n —1) +n.
Utilisant que la dérivée de exp(z) est égale & exp(x), on trouve

SO0 s R D2 sy

= x” exp(x
n!
n>0 n>0

De méme, on a

On conclut que

17



3. Il est clair, d’apres la regle de d’Alembert, que le rayon de convergence est égal a 1. De

plus, si on pose f(x) = H%’ on a pour tout z €] — 1, 1],

En dérivant, il vient

soit finalement

2 3

Z(_l)n+1nz2n+1 -z % ((1 +x2)2> — (1 +m2)2.

n>0

4. 11 est facile de vérifier, a I’aide de la regle de d’Alembert, que le rayon de convergence de la
série entiere vaut 1. On décompose ensuite en éléments simples la fraction rationnelle. On
trouve

1 1/2 1/2
4n2—-1 2n—-1 2n+1

Posons f(x) = >, <, % et g(z) = > ,50 35— Alors, d’apres la premiére question, on

sait que pour = # 0, on a
1 1+2
—1 .
f@) = 2z n(l—x)

On se rameéne a ce cas pour g, en remarquant que

(n—1)
g(@) = 1+Z n—l +1
) 2n
= -1
e Z2n+1
n>0
= —1+42%f(z).

Finalement, on trouve que, notant S la somme de la série initiale, pour « # 0 dans I'intervalle

}_171[7
1 z2-1 1+
S(a:)——§—|- ype hl(l—x)'

Il est aussi clair que S(0) = —1.

3. Exercices d’approfondissement
a. Rayon de convergence et séries entiéres

Exercice 19.

Soit ), anz™ une série entiere de rayon de convergence p. Soit S, = ag + --- + a, et soit R le
rayon de convergence de la série ) Sp,z".

18



1. Montrer que R < p.
2. Montrer que inf(1, p) < R.

1. Remarquons que a, = S, — S,,—1 et donc que Y anz™ =% Spz™ — > S,_12". Ainsi,
>, an2" est la différence de deux séries entieres de rayon de convergence R, son rayon de
convergence p vérifie p > R.

2. La série ) S,2" est le produit de Cauchy des deux séries entieres > a,z" et > 2". Ces
deux séries ont pour rayon de convergence respectif p et 1. On en déduit que le rayon de
convergence R de la série ) S,2" vérifie R > inf(1, p).

Exercice 20.

Soit (ay) une suite de réels qui converge vers .
- N an n
1. Quel est le rayon de convergence de la série entiere ano Tt ?

2. On note f la somme de la série entiere précédente. Déterminer limy_, 1o, e f(x).

1. Puisque la suite (a,) est convergente, elle est bornée, disons par M > 0. Mais, par appli-
cation du critere de d’Alembert, la série ) Ma™/n! est convergente pour tout réel z. Le
rayon de convergence de la série est donc égal a +oo.

2. Soit € > 0 et N > 1 tel que, pour n > N, on a |a, — I| < . On écrit alors

=Xa +oo(a =1) =1
n n _ n n _pn
Zn!x o Z n! z +Zn!$
n=0

n=0 n=0
+oo
—1
= Sl e
— nl
On écrit ensuite
+oo N-1 +oo
(a _l) n (a’ _Z) n (a _l) n
2) nn! z :Z% nng r +Z nn! " = fi(z) + fa().
n= n= N

Puisque f; est un polynéme, on a lim,_, . e ®fi(x) = 0. Il existe donc 2y € R tel que,

pour xz > xq,
| i) <e.
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De plus, on a, pour z > 0 :

_ |lan — 1|
x < n
+o0o G
n
< Zax
N
+o0 =
n

< ge e =e.
Utilisant I'inégalité triangulaire on trouve, pour tout = > x,
le™ f(z) =] < 2e.

Ainsi, e=* f(z) tend vers [ lorsque z tend vers +oo.

Exercice 21.

Soit S(x) = >, ~, ana™ une série entiere de rayon de convergence 1. On suppose de plus que
S(z) admet une limite lorsque x tend vers 1~ et on note £ cette limite. On suppose enfin que
an = o(1/n). Pour N € N et x € [0,1], on note

N +oo
An(x) =8S(x) — ¢, By(x) = Z(l —z")ay,, Cn(z) = Z anx”.
n=0 n=N+1

1. Vérifier que Zg:o an — ¢ = An(x) + By(z) — Cy(x).
2. Soit € > 0. Démontrer qu’il existe un entier Ny tel que, pour tout N > Ny,

|Cn(2)] < Ni—2)

3. Démontrer que la série ) a, converge et que sa somme vaut £.

1. Il s’agit d’une simple vérification algébrique.

2. Soit Ny tel que, pour tout n > Ny, |a,| < &/n. Pour N > Ny, il vient

+ oo
€] - €]

€
C < "< — < ——.
On@l< > Setsm T =N1-2
n=N+1 n>N+1

3. Le résultat de la question précédente nous incite a choisir x =1 — %, de sorte a avoir une
grande valeur de x qui garantisse néanmoins que |Cn(z)| < e. Majorons ensuite les autres
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termes. Pour Ay (), c’est facile. Il existe un entier N; € N tel que, pour tout N > Ny,

| Aw(z)] = ‘5 (1 - ;) —z‘ <

D’autre part, d’apres 'inégalité des accroissements finis appliquée a la fonction ¢ — ¢™, on
a

1—2a" <n(l—2)<

==

Il vient

| X
|By(z)] < N Znan.
n=0

D’apres le théoréme de Cesaro, puisque (na,) tend vers 0, on sait que |By(1 —1/N)| tend
vers 0, et donc il existe No € N tel que, pour tout N > No,

|By(x)] < e.

Finalement, pour tout N > max(Ny, N1, Na), on trouve

N
Zan —/
n=0

< 3e.

Ceci prouve la convergence de la série 3, a,, et que >0 a, = ¢.

Exercice 22.

Soit f une fonction développable en série entiere, non identiquement nulle, dont le rayon de
convergence vaut +oo. Démontrer que ’ensemble A des zéros de f (sur C) est un fermé constitué
de points isolés ?

On regle d’abord le cas ou f est identiquement nulle. Dans le cas contraire, prouvons d’abord que
A est fermé : si (z,,) est une suite de zéros de f, et si z, — z, alors par continuité de f en z on a
aussi f(z) =0, et donc z € A. En outre, A est constitué uniquement de points isolés, c’est-a-dire
que si zp € A, il existe un voisinage V' de zg tel que VN A = @. En effet, puisque le rayon de
convergence du développement en série entiere de f vaut +oo, f est aussi développable en série
entiere au voisinage de zp, avec un développement ayant un rayon de convergence égal a +o00. Ce
développement s’écrit :

f(2) = an(z — 20)" + ang1(z — 20)" T + ...,
ol on peut supposer a, # 0 (f est non identiquement nulle). On a alors :
f(z) = (2 — 20)"g(2),

ol g est une fonction continue vérifiant g(z9) = a, # 0. Par continuité, g, donc f, ne s’annule
pas dans un voisinage de zg, sauf en zj.
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