Mathématiques spéciales

Corrigé de la feuille d’exercices n°15

1. Convergence uniforme/normale des séries de fonctions

Exercice 1.

Pour n > 1 et 2 € R, on pose uy, (x) = nx2e V",
1. Démontrer que la série ) u, converge simplement sur R.
2. Démontrer que la convergence n’est pas normale sur R,.
3. Démontrer que la convergence est normale sur tout intervalle [a, +o0o[ avec a > 0.

4. La convergence est-elle uniforme sur Ry ?

1. Soit 2 > 0 fixé. Alors n?u, (z) = x2e~ V37 tend vers 0. Par comparaison & une série
de Riemann convergente, la série ) u,(x) est convergente.

2. On va calculer sup,cp |u,(x)|. On remarque d’abord que w,, est une fonction positive. De
plus, elle est dérivable et sa dérivée vaut

ul (z) = n(2z — 2%vn)e V" = nx(2 — zv/n)e V.

On en déduit que u,, est croissante sur Uintervalle [0,2/1/n] et décroissante sur 'intervalle
[2/y/n, +00[. On a donc
[tnlloo = un(2/v/n) = 4e72.
C’est le terme général d’une série (grossiérement) divergente, et donc la convergence n’est
pas normale sur R;.
3. Pour n > %, on a a > 2/y/n et donc la fonction u, est décroissante sur [a,+oo[. On en
déduit que, pour tout = > a, on a

|un(2)] < un(a).

Le membre de droite est le terme général d’une série numérique (il ne dépend plus de x)
convergente : ceci prouve la convergence normale de la série ) u, sur [a, +o00[. Remarquons
que le fait que 'inégalité ne soit vraie qu’a partir d’un certain rang (qui est indépendant
de z € [a, +00]) ne change rien a la convergence normale.

4. Notons R,, le reste d’ordre n de la série. Puisque u; > 0 pour tout k, on a

“+ o0

R,(z) = Z ug(z) > upt1(z).

k=n+1
D’apres le résultat de la question 2.,
1Rnlloo > lluntilloo = 4e72.

Ceci ne tend pas vers 0 et donc la convergence n’est pas uniforme sur R, .



Exercice 2.

Soit uy,(x) = (—1)"In (1 + L) défini pour x > 0 et n > 1.

n(l4+xz)

1. Montrer que la série > -, u, converge simplement sur R.

2. Montrer que la série ), -, u, converge uniformément sur R.

3. La convergence est-elle normale sur R ?

On va appliquer le critére des séries alternées. Il est clair que |u,(z)| tend vers 0, reste a
voir que, pour z > 0, on a |un41(2)| < |uy(z)[. Mais,

mrD(+2) = nl+2)’

et on conclut par croissance de la fonction logarithme.

. Le critére des séries alternées nous donne méme une majoration du reste de la série. On a

en effet
x 1
<
n+1)(1+2) " n+1

|Ba(@)| =] Y uk(@)| < Junta(@)] <

k>n+1

ol on a utilisé que In(1 +¢) < ¢ pour ¢ > —1. On a majoré le reste pour tout x € Ry par
une quantité qui ne dépend plus de x et qui tend vers 0 lorsque n tend vers +o0o0. C’est bien
que la série converge uniformément sur R, .

. On n’a méme pas convergence absolue de la série a x > 0 fixé. Par exemple,

1 1
un()] =10 (14 3= ) ~sce 5

La série ) |u,(1)| diverge. A fortiori, il en est de méme de la série >, |un||oc-

Exercice 3.

Pour x € I =1[0,1], a € R et n > 1, on pose uy,(z) = n*z™(1 — z).

1.

Etudier la convergence simple sur I de la série de terme général u,. On notera dans la
suite S la somme de la série.

2. Etudier la convergence normale sur I de la série de terme général u,,.

3. On suppose dans cette question que a = 0. Calculer S sur [0, 1[. En déduire que la conver-

gence n’est pas uniforme sur [0, 1].

. On suppose a > 0. Démontrer que la convergence n’est pas uniforme sur I.

. Pour z €]0,1], un(z) > 0 et

un+1(1‘)

i (2) — z €]0,1].



Par le critére de d’Alembert, la série de terme général u,, (z) est convergente. Si z = 1, alors
un(x) = 0 et la convergence est triviale. De plus, on a clairement S(1) = 0. La convergence
dans le cas x = 0 est elle aussi triviale.

2. Pour étudier la convergence normale, on doit étudier la série ) ||un||o. Pour calculer
|tn||co, on dérive u,, :

ul(z) = n*t2" (1 — z) — n%2™ = n®2" ! (n(l —2) — ).

Ainsi, u/, s’annule en 0 et en z,, = nLH qui sont tous les deux des points de [0, 1]. Puisque
unlloo = €z

un(0) = u, (1) = 0, on trouve que
_ efm 1"
n+1 n+1
n® "

_ n
T on+1\n+1

Or, en passant par I’exponentielle et le logarithme, on prouve facilement que

n n—>e_1
n+1 '

l[tnllco ~+oc0 e tnoTl

On en déduit que

Ainsi, il y a convergence normale si et seulement si a < 0.

3. Sia=0et z €[0,1], on peut encore écrire

S(z) = Zx" - Zx"“ =ux.

n>1 n>1

Ainsi, S(z) =z si ¢ € [0,1] et S(1) = 0. La convergence ne peut pas étre uniforme sur
[0,1]. En effet, si cela était le cas, alors puisque chaque terme x — u, () est continue sur
[0, 1], ce serait également le cas de la somme, ce qui n’est pas le cas ici.
4. Nous allons utiliser la question précédente, en remarquant que, pour x € [0,1], a > 0 et
n>1,
n®z"(1—x) > 2" (1 — x)

ce qui implique S(z) > x six € [0, 1]. Une nouvelle fois, ceci interdit la convergence uniforme
puisque l'inégalité précédente implique que S n’est pas continue en 1.

Exercice 4.

Pour z > 0, on pose u, () = 555
s . +oo .
1. Montrer que la série > '~ u, converge simplement sur R.

2. Montrer que la série Zzz uy, converge uniformémement sur tout intervalle [0, A], avec
A>0.

3. Vérifier que, pour tout n € N, Zi’;nﬂ e 2 %




. En déduire que la série ), -, u, ne converge pas uniformément sur R .

. Montrer que la série Zzz(—l)”un converge uniformément sur R .

. Montrer que la série > (—1)"u,, converge normalement sur tout intervalle [0, A], avec
A>0.

. Montrer que la série 37> (—~1)™u,, ne converge pas normalement sur R.

. Il est tres facile de prouver la convergence simple sur R . Pour z = 0, on a en effet u,, (0) = 0,
qui est bien le terme général d’une série convergente. Pour & > 0, on a 1, (%) ~pjoo 73,
qui est aussi le terme général d’une série convergente.

. On va prouver la convergence normale. On a en effet, pour tout = € [0, 4],

A
[un(@)] < =,

terme général d’une série convergente.

. 1 suffit d’écrire que, pour n+1 < k < 2n, on a n® + k* < 5n°, et donc 5l > . On
obtient finalement

} : 2 o= 5
k:an + k 5 5

. Il est plus difficile de prouver la non-convergence uniforme. On peut procéder de la facon
suivante. Supposons que la convergence est uniforme. Alors, pour tout ¢ > 0, il existe un
entier N tel que, pour tout n > N, et tout z € R, on ait

+oo

Z ug(x)

k=n-+1

<e.

Mais alors, d’apres l'inégalité triangulaire, pour tout n > N, on a

2n 400 400 +o00 400
Z up(x)| = Z up(z) — Z up(z)| < Z up ()| + Z up(z)| < 2e.
k=n+1 k=n-+1 k=2n+1 k=n-+1 k=2n+1

En particulier, pour n = N et x = N, on a la double inégalité

2N

> w(N)

k=N-+1

< < 2e.

ot =

Bien siir, si on a choisi 2¢ < 1/5, ¢’est impossible.

. Nous allons prouver la convergence uniforme en utilisant le critere des séries alternées.
En effet, & = fixé, la suite (u,(x)) est positive, décroissante et tend vers 0. La série

:ﬁ(—l)”un(x) est donc convergente, et on a la majoration du reste :

—+oo

> (1) un(2)

k=n

X

== oy




Reste a majorer le membre de droite de I’équation précédente par un terme qui tend vers
0 et ne dépend pas de x. Mais on a

. _V x? 4+ n? < 1 < 1
n2+x2 = n?4+a?2 T 224+ n2 " n
On a donc bien convergence uniforme sur R, .
6. Puisque |(—=1)"un(z)| = |un(z)|, la convergence normale sur [0, A] se démontre comme

ci-dessus.

7. D’autre part, si on avait convergence normale sur R, alors on aurait aussi convergence
normale de la série ) u,(z) sur Ry, donc convergence uniforme de cette méme série, ce
qui n’est pas le cas d’apres la premiere question.

Exercice 5.

re—"®

Inn

On considere la série de fonctions 3, <, un, avec uy,(z) =
1. Démontrer que anz Uy converge simplement sur R .
2. Démontrer que la convergence n’est pas normale sur R;.
3. Pour x € Ry, on pose R, (z) = > 45,41 uk(2). Démontrer que, pour tout > 0,

—

0 Balo) < gsa—esy

et en déduire que la série converge uniformément sur R, .

1. Pour z = 0, la série converge car u,(0) = 0. Pour = > 0 fixé, on a

1
up(x) =0 — |,
et donc la série ) u,(x) converge.
2. Une étude rapide de u,, montre qu’elle atteint son maximum en 1/n. On a donc
—il

> llunlloo = Y wn(l/m) = >0 ——.

n>2 n>2 n>2

Il est bien connu que cette derniére série est divergente, et donc la convergence n’est pas
normale.

3. On va utiliser la somme d’une série géométrique. En effet, pour z > 0, on a e7+% = (e=%)*
et 0 <e™® < 1. De plus, pour k >n-+1, on a

x(e—x>k
0< < .
< uk(@) < In(n +1)
On en déduit que
T ex L= 1 e ¥

0<R < < .
- n(m)_ln(n—i—l) 1 e “In(n+1) 1 e



Or, il est facile de vérifier que la fonction z — 1’”_6;,1 est bornée sur R,. On peut étudier
cette fonction ou remarquer que

— Elle se prolonge par continuité en 0 : en effet

xe * x + o(x)
= — 1.
l—e® x+o(x)

— La fonction est donc bornée sur tout intervalle du type [0, A].

— La fonction tend vers 0 en +o00, on sait donc que sa valeur absolue est majorée par 1
sur un certain intervalle [A, +ool.

On peut aussi écrire
—x

ze T

l—e=® ex—17
puisque par convexité de la fonction exponentielle, e* — 1 > z. Soit M un majorant de la
fonction  — £ . On a donc, pour tout z > 0 (inégalité est aussi valable pour = = 0

T—e—@ °

car R,(0) =0) :

M
‘Rn(x” < m

On a majoré le reste par quelque chose qui ne dépend pas de x € Ry et qui tend vers 0
lorsque n tend vers +oo. C’est bien que la série converge uniformément sur R, .

Exercice 6.

On considere la série de fonctions ) <, uy, avec u,(x) =

ze "

Inn °

1. Démontrer que ), -, u, converge simplement sur R .
2. Démontrer que la convergence n’est pas normale sur R;..
3. Pour € Ry, on pose Ry, (x) =} ;~, .1 ur(z). Démontrer que, pour tout = > 0,

—X

xre
< <
0<Fal®) < L ina—eoy

et en déduire que la série converge uniformément sur R .

. Pour x = 0, la série converge car u,(0) = 0. Pour z > 0 fixé, on a
1
un(x) =0 <n2> ,

. Une étude rapide de wu,, montre qu’elle atteint son maximum en 1/n. On a donc

et donc la série ), u, (x) converge.

1

3 lunlloo = 3 un(l/m) = 3 .

n>2 n>2 n>2




Il est bien connu que cette derniere série est divergente, et donc la convergence n’est pas
normale.

. On va utiliser la somme d’une série géométrique. En effet, pour 2 > 0, on a e %% = (e=%)*
et 0 <e ™™ < 1. Deplus, pour k >n+1,0ona

x(efz)k
< < .
U= ue(z) = In(n+ 1)
On en déduit que
x e~ (ntl)z 1 xe "

0<R,(z) < < .
- (x)_ln(n—f—l)x l—e=® _ln(n—l—l)xl—eﬂ”

Or, il est facile de vérifier que la fonction z — % est bornée sur R;. On peut étudier
cette fonction ou remarquer que
— Elle se prolonge par continuité en 0 : en effet
xe x + o(x)

= — 1.
l—e® x+o(x)

— La fonction est donc bornée sur tout intervalle du type [0, A].
— La fonction tend vers 0 en 400, on sait donc que sa valeur absolue est majorée par 1
sur un certain intervalle [A, +oo].

On peut aussi écrire
ze ” 4
l—e? e*—1"7"

puisque par convexité de la fonction exponentielle, e — 1 > z. Soit M un majorant de la

fonction x — ff;m . On a donc, pour tout > 0 ('inégalité est aussi valable pour = 0

car R,(0) =0) :

|<L
“In(n+1)°

On a majoré le reste par quelque chose qui ne dépend pas de z € R et qui tend vers 0
lorsque n tend vers +oo. C’est bien que la série converge uniformément sur R, .

| R ()

Exercice 7.

Soit g : [0, +00[— R une fonction continue et bornée telle que g(0) = 0. On considére la suite de

fonctions définie sur [0, +oo[ par fr,(z) = g(z)e

—Nnx

1. (a) Etudier la convergence simple de la suite.
(b) Montrer que la suite converge uniformément sur tout intervalle [a, +o00[, avec a > 0.

(¢) On fixe € > 0. Montrer que I'on peut choisir a > 0 tel que |f,(x)| < e pour tout
x € [0,a] et pour tout n > 1. En déduire que la suite converge uniformément sur
[0, +-o00].
2. On considere la série de fonctions -, g(x)e™"".
(a) Démontrer qu’elle converge simplement sur [0, +oo[ et normalement sur tout intervalle
[a, +oo] avec a > 0.



1.

(b) Démontrer 1’équivalence entre les deux propositions suivantes :

(a)
(b)
(c)

i) la courbe représentative de g est tangente a 1'axe des abscisses a l'origine;

ii) la série de fonctions >, -, g(x)e”"™" converge uniformément sur [0, 4o0].

~") tend vers 0. La

Pour 0, f,(0) = 0 et la suite converge. Pour = > 0, la suite (g(x)e
suite de fonctions (f,,) converge donc simplement vers 0.

Notons M un majorant de |g|. Pour > a, on a |f,(z)] < Me ™" < Me™ "%, suite qui
tend vers 0 indépendamment de x. Ceci prouve la convergence uniforme sur [a, +oo].
Par continuité de g en 0, et puisque g(0) = 0, il existe a > 0 tel que |g(z)| < € pour
x € [0,a]. I vient |f,(z)| < e pour tout z € [0,a]. De plus, ce a étant fixé, la suite
(fn) converge uniformément vers 0 sur [a, +oo[. On peut donc trouver N tel que, pour
n> N, |fn(z)|] < e. Résumons. Pour tout € > 0, on peut trouver N € N tel que, pour
tout n > N, on a

[fu(z)] <€

(le @ n’apparait plus, il sert uniquement dans la preuve.) C’est bien que la suite (f,,)
converge uniformément vers 0 sur R, .

L’étude se fait suivant le méme principe. Pour x = 0, le terme général est nul, et pour
x > 0, il s’agit du terme général d’une suite géométrique de raison de module inférieur
strict & 1. On a bien convergence de ) f,(z). De plus, si « € [a,+00[, on a

|[fn(2)| < Me™"%,

qui est le terme général d’une série numérique convergente. C’est bien que la série
converge normalement sur [a, +00[.

Considérons le reste de rang n de la série : pour x > 0,

R, (z) = Z fe(z) = ﬂ&e—(nﬂ)x_

J— e*CL‘
k>n+1

Si la courbe représentative de g est tangente a I’axe des abscisses a l'origine, c’est que
g(z)/z tend vers 0. Posons alors pour z > 0 g1(z) = 15(:_)m. Puisque 1 — e™% ~qg x, on
peut prolonger g; par continuité en 0 en posant g1(0) = 0. Ceci définit une fonction
bornée sur R et continue en 0. On se retrouve dans la situation de la question (1), et
on a bien convergence uniforme du reste vers 0 sur R, ou encore convergence uniforme
de la série sur cet intervalle. Réciproquement supposons que g(z)/x ne tend pas vers

0. Alors, g; non plus ne tend pas vers 0 en 0 et donc il existe € > 0 tel que

x

Vn > 0, 3z €]0,n[ tel que |g1(z)| > .

En prenant des nombres 7 de la forme n = 1/n, on obtient pour chaque n > 1 un réel
T, tel que
1
0<a, < - et [g1(xn)| > €.
Mais alors,

|Rp(z0)] > ge™(MHDon > ge=(Hl)/n > o=1g /9

des que n est assez grand. Ceci nie la convergence uniforme sur R, .



2. Etude d’une fonctions définies par une limite/somme de suite/série de fonctions
a. Exercices basiques

Exercice 8.

On considére la série de fonctions S(z) = 37> (;_3:
1. Prouver que S est définie sur I =] — 1, 4+o0].

2. Prouver que S est continue sur I.

3. Prouver que S est dérivable sur I, calculer sa dérivée et en déduire que S est croissante
sur I.

4. Quelle est la limite de S en —17 en +00?

1. Il est clair que la suite (ﬁ) , pour & > —1 fixé, est positive, décroissante et tend vers 0.

n
Par application du critere des séries alternées, la série est convergente pour tout =z > —1.

=) eps s . 2.7 p
2. Posons u,(x) = (w +2l . Nous avons vérifié a la question précédente que, pour x > —1 fixé,

la série ) u,(x) vérifie le critere des séries alternées. Par conséquent, on sait que son reste
R, (x) vérifie
1

R, < |up < —.
[Fon(@)] < i ()] € ———

Puisque x > —1, on a en particulier

1

| Ry (2))|

Ceci tend vers 0 (indépendamment de z), de sorte qu’on a prouvé la convergence uniforme
de la série ) wun(x) sur I. Puisque chaque fonction w, est continue, la fonction S est

continue sur [.
_1yn+1
3. Chaque fonction u,, est dérivable sur I avec u,(z) = % De méme qu’a la question

précédente, pour z > —1 fixé, la série 225 u/, () est convergente car elle vérifie les condi-

tions du critére des séries alternées. De plus, si on note Ty, (z) = >/, uj,(x) son reste,

on a |T,(z)| < m < L, inégalité valable pour tout z > —1. On peut donc majorer

uniformément le reste par une quantité qui tend vers 0 : la série dérivée est uniformément

convergente. On en déduit que la fonction S est dérivable, et que sa dérivée est donnée par
_ ’Vl+1 . . 7

Zn21 % De plus, on sait qu’on peut encadrer la somme d’une série alternée par deux

sommes partielles consécutives, par exemple ici
1 1 1

O GreESY@ G

En particulier, la dérivée est positive et la fonction est croissante.

4. De méme qu’a la question précédente, par le critere des séries alternées, on peut encadrer
S par deux sommes partielles consécutives :

-1 =1 1
<




1l suffit alors d’appliquer le théoreme d’encadrement des limites pour prouver que

lim S(z) =—ccet lim S(z)=

rz——1 r—400

Exercice 9.

Pour tout ¢t € R, on pose u,(t) =
1.

. Démontrer que S est une fonction continue sur R et impaire.

T = W N

arctan(nt)
2

Justifier que pour tout ¢ € R, la série ), - uy(t) est convergente. On note S(t) sa somme.

+ 2
oo 1 %).

. Déterminer la limite de S en +oo (on rappelle que ) '~ —5 =
. Quel est le sens de variation de S'?7

. Soit N € N. Démontrer qu'il existe un réel to > 0 tel que, pour tout ¢ € —]tg, to[\{0}, on a

N Unp (T
Z n
n=1

. En déduire que la courbe représentative de S admet une tangente verticale au point d’abs-

cisse 0.

. Tracer la courbe représentative de S.

Pour tout ¢t € R, on a |u,(t)| < 25, qui est le terme général d'une série convergente. La

série Y u,(t) est donc absolument convergente pour tout ¢ € R.

L’argument de la question précédente prouve qu’en réalité, la convergence est normale sur
R (on a obtenu une majoration qui ne dépend pas de t). Puisque chaque fonction wu, est
continue sur R, il en est donc de méme de S. De plus, chaque u,, est impaire, et donc S est
impaire.

Puisque la série converge normalement, donc uniformément, sur R, on peut appliquer le
théoreme de la double limite et on a

=3 ™ 7T3
n=

. Puisque la fonction arctan est croissante, chaque w,, est croissante. On en déduit que S est

croissante.

. Remarquons que, pour tout n > 1,

un(t) .. arctan(nt) 1 arctanu 1

lim = — = —lim — =

=0t t=0  n(nt) nu—s0 U n’

Puisqu’on a une somme finie, on a



Appliquant la définition de la limite avec € = % ZN L on obtient le résultat demandé.

n=1n’

6. Fixons A > 0. Alors, puisque la série ) % est divergente, il existe un entier N tel que

D’apres la question précédente, il existe tg > 0 tel que, pour tout ¢t € [—tg, to]\{0},

i Un (2) A

t

n=1

Puisque pour ¢ # 0, arctan(nt)/t > 0, on en déduit que, pour tout ¢ €tg, to[\{0},

5, i wnl®) 5 4

Ceci prouve que lim;_, %g‘(o) = +00, ce qui prouve que la courbe représentative de S

admet une tangente verticale au point d’abscisse 0.
Exercice 10.

Soit la série de fonctions S(z) =3, 5 ;7ios-
1. Démontrer que S définit une fonction continue sur R.
2. Soit x > 0 et n > 1. Justifier que

n+1 T T n T
2 2dt§ 2 2 < 276%'
n T4t x2+n 1 T2 + 2

3. En déduire que S admet une limite en +oo et la déterminer.

1. Remarquons d’abord que la série est convergente quelque soit € R. Notons u, (z) = P
et fixons M > 0. Alors, pour tout € [-M, M], on a

un(@)| < .

et le membre de droite est le terme général d’une série numérique convergente. On en déduit
que la série de fonctions S(z) = ), <, un(z) converge normalement (donc uniformément)
sur [—M, M]. Puisque chaque fonction x + u,(x) est continue, on en déduit que S est
continue sur [—M, M]. Comme M > 0 est arbitraire, on en déduit finalement que S est
continue sur R.

2. La fonction ¢ — 575 est décroissante sur [0, +-00]. En particulier, pour tout ¢ € [n,n + 1],

on a
€T €T

t2+ﬂ72 — n2+x2'

11



Intégrer cette inégalité entre n et n+1 donne la partie droite de I'inégalité précédente. Pour
I’autre partie, on part de

x x
T e < PR pour tout t € [n — 1,n],

et on integre cette inégalité entre n — 1 et n.

3. Sommons les inégalités précédentes pour n allant de 1 & +o00. On trouve :

+oo T +oo T
/ T gt < S@) < / T
1 1:2 + t2 0 x2 + t2

Mais on peut calculer les intégrales, et on trouve que

g = %arctan(l/x) < S(x) < /2.

Si on fait tendre z vers 400, on trouve par le théoréme des gendarmes que S(z) tend vers
/2.

Exercice 11.

Soit Cya > 0 et ¢ : [—a, a] une fonction continue vérifiant |¢(x)| < C|z| pour tout x € [—a, al.
On souhaite étudier les fonctions f : [—a,a] — R vérifiant la propriété suivante (notée P) : f
est continue, f(0) =0 et :

Vr € [-a,a], f(x) = f(2/2) = é(x).

1. Montrer que la série de fonctions >, ., ¢ (2 ) est normalement convergente sur [—a, a].
On note h la somme de cette série.

2. Montrer que h vérifie P.

3. Montrer que h est la seule fonction vérifiant P.

4. On suppose de plus que ¢ est de classe C! sur [—a,a]. Démontrer que h est de classe C!
sur [—a,al.

1. Soit € [—a,al]. Alors

e Ee=

Or la série numérique ), Ca/2™ est convergente. La série de fonctions ), ¢ (27) est bien
normalement convergente sur [—a, al.

2. On remarque d’abord que ¢(0) = 0 et donc que

h(0) =) ¢(0) = 0.

n>0

Ensuite, chaque fonction & — ¢(z/2™) est continue sur [—a,a]. Par convergence normale,
la fonction h, somme de la série ) ¢(x/2"), est elle aussi continue sur [—a, a]. Enfin, on

12



a, pour tout x € [—a,al,
+oo % +oo .
h@) —h(@/2) =Y ¢ (3) = 2. ¢ (557
n=0 n=0

00 > 00 .
=2 4(5) -2 (5)
= ¢()

ou on a fait un changement d’indice dans la deuxieme somme.

. Soit g une fonction vérifiant P. Alors, puisque g et h vérifient tous les deux P, on sait que,
pour tout x € [—a,al, on a

hz) — h(z/2) = g(z) — g(x/2) <= h(z) —g(x) = h(z/2) — g(x/2).

En particulier, par une récurrence facile, on peut démontrer que, pour tout n € N,

h(z) = g(z) = h(z/2") — g(x/2").

Faisons tendre n vers +o0o dans cette égalité. Puisque les fonctions h et g sont continues en
0, on obtient

h(z) — g(z) = h(0) — g(0) = 0.
Ainsi, g = h et h est 'unique fonction vérifiant P.

. Posons, pour n > 0, u,(z) = ¢(x/2"). Alors chaque u,, est de classe C' et vérifie, pour tout
z € [—a,a], u,(z) = 5=¢' (&). Puisque ¢ est de classe C', ¢’ est continue sur le segment

[—a,a]. Elle y est donc bornée, et il existe M > 0 tel que |¢'(x)| < M pour tout = € [—a,a).
On en déduit que
, M
(@) < o
La série ), -, u;, est donc normalement convergente sur [—a, al. On en déduit que h est de
classe C' sur [—a,a] et que, pour tout z € [—a,a], h'(z) = 3, 5o up (7).

b. Exercices d’entrainement

Exercice 12.

Pour > 0, on pose S(x) = Z

+o0o n
(-1
1+ nz

n=0

1. Justifier que S est définie et continue sur |0, +oo].

2. Déterminer la limite de S en +oo.

3. Etablir que S est de classe C sur |0, +oo[ et déterminer S'.

13



(71)71
14nx *

1. La série définissant S converge d’apres le critére des séries alternées. De plus, notant R, (z)
le reste de la série, le critére des séries alternées donne également

1
|Rn(x)| < m

On pose uy,(z) =

Fixons maintenant a > 0. Alors, pour tout x > a,

1 1
R < <
| n(x”_l—&-(n—i-l):v_l—i—(n—&—l)a

Ainsi, la suite (|R,,(z)|) est majorée pour x € [a, o] par la suite (m), qui ne dépend
pas de z, et qui tend vers 0. Ceci prouve la convergence uniforme de la série sur l'intervalle
[a, 00]. Comme chaque fonction est continue sur [a,+oo[, il en est de méme de S. Puisque
a > 0 est arbitraire, S est continue sur |0, +o0].

2. Puisque la convergence est uniforme sur l'intervalle [1, +o00[, on peut appliquer le théoréme
d’interversion limite/séries et on a

lim g U (X E lim w,(z) =1.
T—r+00 T—r—+00
n>0 n>0

On pouvait également appliquer le critere des séries alternées, et encadrer la somme par les
deux premieres sommes partielles. On a donc, pour tout z > 0,

1 —

< <1.
1+I_S(33)_

Il suffit alors d’appliquer le théoreme des gendarmes.

3. La fonction S converge simplement sur 0, +o0o[. Chaque fonction wu,, est de classe C'! sur
ce méme intervalle, avec

(1"t
Un () = 77
(14 nx)
On fixe a > 0 et on va démontrer la convergence uniforme de la série En>0 ul,(z) sur

[a, +oo[ en appliquant le critere des séries alternées. Soit x > a. On a apres réduction au
méme dénominateur et simplification

n(n+1)z? — 1
(1+nz)2(1+ (n+1)x)?’

|un (@)] = Jup g ()] =
Soit ng € N tel que, pour n > ng, on ait
n(n+1)a®> —1>0.

Alors n(n +1)z% — 1 > 0 et donc la série de terme général u/,(x) converge d’apres le critere
des séries alternées. De plus, si on note T}, le reste de la série > wu/,, alors on a

1 ” 1
(I4+(n+1Dx)2 = 1+ (n+1)a)?

T ()] <

On conclut a la convergence uniforme comme a la premiére question. Donc, par les théoréemes

généraux, S est de classe C'! sur [a, +oo[. Comme a > 0 est arbitraire, S est C* sur R%.. Sa
g a PN )

dérivée est donnée par S'(z) = 3_, 50 up ().

14



Exercice 13.

On appelle fonction ¢ de Riemann la fonction de la variable s € R définie par la formule

(=3~

ns’
n>1

1. Donner le domaine de définition de ¢ et démontrer qu’elle est strictement décroissante sur
celui-ci.

2. Prouver que ( est continue sur son domaine de définition.

3. Déterminer limg_, 4o C(8).

4. Montrer que pour tout entier k£ > 1 et tout s > 0, on a

BEE S
Gr1)p =), o "k

En déduire que ¢(s) ~1+ Sil.

5. Démontrer que ( est convexe.

6. Tracer la courbe réprésentative de (.

1. La série définissant {(s) est une série de Riemann. Elle est convergente si et seulement si
s > 1. De plus, pour chaque n > 1, les fonctions s — n~° sont décroissantes, et méme
strictement décroissantes pour n > 2. Pour 1 < s < t, on a donc

1425>1+4+2 et Z%zZ%

n>3 n>3

(la deuxiéme inégalité n’est qu’'une inégalité large car on passe a la limite). Ajoutant les
deux inégalités, on en déduit que
¢(s) > <(D),
ce qui prouve que ¢ est décroissante.
2. Chaque fonction s — n~° est continue sur son domaine de définition. Il suffit de démontrer
que la série de fonctions converge normalement, donc uniformément, sur tout intervalle du
type [a,+o0[, avec a > 1, pour prouver que la fonction est continue sur |1, +oo[. Or, pour

tout s € [a, +0o0[, on a
1

nS

na’

et le terme de droite est le terme général d’une série numérique convergente. Ceci prouve
la convergence normale de f sur [a, +o00].

3. Puisque la série définissant ¢ converge uniformément sur [a,+oo[, on peut appliquer le
théoreme d’interversion des limites, et on obtient

. . 1
LS = 2 BT
4. Pour z € [k,k+ 1], on a
1 1 1
— < — < —.

15



En intégrant cette inégalité entre k et k + 1, on trouve

L[
Gr1)p =), o "k

On somme maintenant ces deux inégalités pour k allant de 1 a +o00. On obtient

e =
Or,
/+°°d:c 1
. z8 s—1'
On obtient finalement :
L <((s) < 1 +1
s
s—17 “s—1

ou encore
1< (s=1)¢(s) <14 (s—1).

Par le théoréme des gendarmes, (s — 1){(s) tend vers 1 lorsque s tend vers 1. C’est bien

que ((s) ~1+ 3_% En particulier, lim,_,; {(s) = +oo0.

. On va démontrer que ¢ est de classe C? sur |1, +oo[ et prouver que ¢”(s) > 0 pour tout
s > 1. Pour prouver que ¢ est dérivable sur |1, +00[, on prouve que la série dérivée converge
uniformément sur tout intervalle [a, +o0[, @ > 1. Notons f,(s) =n~%,n > 1 et s > 1. Alors
fl(s) = (=Inn)n=*%. Pour s € [a,+o0[, on a

Inn

!/
fa(e)] <
Or, le terme apparaissant a gauche est le terme général d’une série numérique convergente.
En effet, pour b €]1,qa[, on a

Inn Inn
n®— — 0 et donc — = o(n?).
n n

Inn

b converge, il en est de méme de la série Y, - 2. Par théoréme de

Comme ) ., n~
dérivation d’une série de fonctions, on en déduit que ¢ est C* sur tout intervalle [a, +oo],
donc sur |1, +o0], et que sa dérivée ¢’ vérifie

(=Y =2

n>1

De méme, on prouve que ¢ est de classe C? et que
2
nio N (Inn)
C (S) o Z ns
n>1

Comme tous les termes apparaissant dans la série sont positifs, on en déduit que ¢” est
positive. En particulier, ¢ est convexe.
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Exercice 14.

On considére la fonction p(z) = Z

1
2
3
4

1.

(_1)n+1
n>1 nt o
Quel est le domaine de définition de p?
Montrer que p est de classe C'°° sur son domaine de définition.
Démontrer que 1 admet une limite en +o00 et la calculer.
On souhaite démontrer que 4 admet une limite en 0.

(a) Démontrer que, pour tout z > 0, on a

—1+2pu(x) = Z(—l)"+1 (nlx - M) .

n>1

(b) En déduire que pour tout > 0, on a

1
0< —1+2u(x) <1- .

(¢) Conclure.

Six <0, la série diverge grossierement, et si « > 0, elle vérifie le critere des séries alternées
et donc elle est convergente.

. Posons v,(z) = & de sorte que p(z) = Y ,o1(—1)""v,(z). Fixons a > 0. Puisque

chaque fonction v,, est de classe C'*°, il suffit de prouver que, pour chaque p > 0, la série
Zn>1(—1)"+1v%p)(a:) converge uniformément sur [a, +oo[. On a

v®P)(z) = (=1)P(Inn)Pn7.

On souhaite appliquer le critére des séries alternées a Y. o,(—1)""lv,(x) mais il faut
vérifier que la valeur absolue du terme général est bien décroissante. Pour cela, on introduit
h(t) = (Int)Pt=*. Alors h est dérivable et h'(t) = (Int)P~1¢=*~1(p — Inz). Lorsque n est
supérieur a exp(p/x), on a h(n + 1) < h(n) et donc la série vérifie bien le critére des séries
alternées. En particulier, pour tout x € [a, +00[, pour tout n > exp(p/a) (remarquons que
ce terme ne dépend pas du z choisi dans [a, +00]), on a par le critére des séries alternées

R, (2)] <InP(n+1)"" <In’(n+1)(n+1)"%,

ou R, (z) désigne le reste de la série an(fl)"“v,&p) (7). Le reste est donc majorée indé-

pendamment de x € [a, +0o[ par une suite qui tend vers 0. La série Zn>1(—1)”+1vf«bp)(m)
est donc uniformément convergente sur [a, +oo[ pour p > 0, ce qui prouve que p est de
classe C* sur |0, +oo[ et que P (z) = Zn>1(—1)”+1v2p)(z).

Puisque la série définissant p converge uniformément sur [1,+oo[, on peut appliquer le
théoreme d’interversion des limites. Or, pour chaque N > 1,

o~ (1)

im 5 CUT
——+00 n®

n=1

=1

17



4.

(le premier terme de cette somme finie est constant égal & 1, les autres termes tendent vers
0). On en déduit que p tend vers 1 en +oo.

(a) C’est un calcul simple si on remarque que p(z) =1+ 3 -, %

(b) Fixons z > 0. Alors la suite n — L — ﬁ tend vers 0 et est décroissante (par

exemple, en utilisant le théoréme des accroissements finis ou en étudiant la fonction
L_# . . s . _ n_l’_l L _ # s . LY
el ey ). En particulier, la série ZnZl( 1) (nw (n+1)w) vérifie le critére
des séries alternées. Sa somme est donc du signe de son premier terme, ici positif, et
est majorée en valeur absolue par la valeur absolue du premier terme, ici 1 —1/2%. On

trouve bien que
1
0<—1+42ux) < 1—27-
(¢) Il suffit d’écrire que
1

1
§§N($)§1—ﬁ

et d’appliquer le théoreme des gendarmes.

Exercice 15.

Pour £ > 0 et n > 1, on pose f,(x) =

1.

T

vin(z+n)
Montrer que la série de fonctions de terme général f,, est simplement convergente sur R .
On note f sa somme.

. Montrer que la série de fonctions de terme général f,, est normalement convergente sur

[0, M] pour tout M > 0. Est-elle normalement convergente sur R, ?

. Montrer que f est continue sur R} puis qu’elle est dérivable et croissante sur R .

"1

.Soit n > 1 et zgp > n > 1. Montrer que f(z9) > ——. En déduire que
;NE

. Montrer que lim M:0.

r——+0o0 X

Le réel z étant fixé dans Ry, fu(z) ~1oo 37z si @ # 0, et f,(0) = 0. Ceci prouve la
convergence de Y fn(x).

. Pour z € [0, M], on a

0< fn(z) < M M
x = .
M= /m(04n)  nyn
Le membre de droite est le terme général d’une série numérique convergente. On a donc
prouvé la convergence normale de ) f,, sur [0, M]. La convergence n’est pas normale sur

R. En effet, on a

n 1
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et >, | fnllo est divergente.

. La série de fonctions convergeant normalement, donc uniformément, sur tout intervalle
[0, M], et chaque fonction f,, étant continue, la somme f est continue sur tout intervalle
[0, M], donc sur R. Pour montrer la dérivabilité sur R, on va s’intéresser a la série des
dérivées > f/. En effet, chaque f,, est de classe C'!' sur Ry et un calcul simple prouve que

fi(z) = L
" (x +n)?
On va prouver la convergence normale de ) f, sur tout [0, +00[. On a en effet, pour > 0,
1
!/

Le membre de droite est une série numérique convergente, > f) converge normalement
sur [0, +oo[ et donc f est de classe C! sur [0,4o00[ avec f'(z) = >, fi(z) > 0 puisque
chaque f], est positive. Ainsi, f est croissante sur [0, +o0].

. Sixzg>n>1,alors

Puisque 229 > 9 +n, on a

et on trouver bien que

(on pouvait aussi démontrer cette propriété en utilisant la croissance de f et plus particu-
lierement 'inégalité f(zg) > f(n)). Déduisons en que la limite de f en 400 est +oc0. Fixons
A > 0. La série Zk21 ﬁ étant positive et divergente, on peut trouver un entier n > 0 tel

que ZZ=1 ﬁ > A. Pour tout z > n, on a

"1
;2 sz.

Ceci implique que f tend vers +o0o en +oc.

/()

Y

S

. On sait que

fl) R 1
z ‘,;\/mm'

De plus, la série >, m converge normalement sur Ry . En effet, pour tout > 0,
on a

1
V(e )
terme général d’une série convergente. De plus,

lim #
n—+o00 \/ﬁ(n + x)
D’apres le théoreme d’interversion des limites,

lim M:Zozo.

r——+o0 X
n>1

1

=0.

19



Exercice 16.

1
Pour z € R, on pose u, () = -

1. Etudier la convergence simple de la série ", u,(z). On note S(z) sa somme.
2. Démontrer que S est définie et continue sur R .

3. Etudier la monotonie de S sur R%.
4. Déterminer la limite de S en +o0.

5. Justifier que S admet une limite en 0. Démontrer que, pour tout entier N, on a

N1
g ()2 3 o
=

En déduire la valeur de lim,_,o S(x).

1. Remarquons d’abord que s’il existe n > 1 de sorte que x = —--, alors u, (z) n’est pas définie.
On considére donc = € R qui n’est pas égal a I'un des ——= Sl x =0, alors u, (z) ~p—+too %,
et donc la série est divergente. Si x # 0, alors un(x) -4 oo % et donc la série est
convergente. On en déduit que la série converge simplement sur R*\{—%; n > 1}.

2. On va démontrer la convergence normale de la série de fonctions sur tout intervalle [a, +o0],
avec a > 0. Chaque u,, étant continue, ceci démontrera que S est continue sur [a, 400l
Puisque a > 0 est arbitraire, ceci prouvera la continuité de S sur R% . Donc, pour x > a,
on a

0 < un(z) < —

S Up(T) =

" n+ n2a

1 o2 5 2 q 2 q , .

Or, 7, est le terme général d’une série numérique convergente. Donc la série -, -, un ()
converge normalement sur [a, +00].

3. Chaque u,, étant décroissante sur R7, il en est de méme de la somme S. On aurait pu aussi
démontrer que S est dérivable sur R% , et étudier le signe de la dérivée.

4. Par convergence normale, donc uniforme, sur [1,00[, on a

lim g U (X E lim w,(z) =0.
T—+00 T—r+00

n>1 n>1

5. Puisque S est décroissante sur R* , S admet une limite en 0. Pour z > 0, on a

1
S@2) s

n=1

On passe a la limite, et on obtient
Sl
lim S(x —
Iy S@ 23 o

Fixons maintenant A > 0. Par divergence de la série de terme général %, on sait qu’il existe
N € N de sorte que
N

SM—‘



On a donc
lim S(z) > A.

z—0

Puisque A est arbitraire, il vient lim,_,q S(z) = +o0.

Exercice 17.

. N /. . eint
On considere la série de fonctions ), -, {17 et on note f sa somme.
1. Quel est le domaine de définition de f 7

2. Démontrer que f est continue sur RT et de classe C* sur |0, +oo|.
3. On fixe A > 0.

(a) Justifier existence d’un entier N > 1 tel que

N
DR
n:11+n2

(b) En déduire qu'’il existe é > 0 tel que, pour tout h €]0, J],

N —nh

e -1
g — 0 <A+ 1.
= h(1+n?)

(c) Démontrer que f n’est pas dérivable en 0, mais que sa courbe représentative admet
une tangente verticale au point d’abscisse 0.

4. Déterminer la limite de f en +oo.

1. Pour ¢t <0, Tz he tend pas vers 0. La série diverge donc grossierement. Pour ¢ > 0, on a
I’inégalité suivante :

e ™ 1
0 —— <L .
~“14+n2 ~ 1+n2
—WT

Comme le terme de droite est le terme général d'une série convergente, la série > >

est convergente. Donc le domaine de définition de f est [0, +o0].

. I’inégalité précédente prouve en fait que la série de fonctions est normalement convergente
sur [0,+o00[. Chaque fonction ¢ f; > étant continue, f est elle-méme continue. On va
maintenant étudier la convergence normale des séries dérivées. Fixons a > 0 et posons
fa(t) = 1+n2 Alors, pour k > 1, on a

t
£ = (-1)fnt
" 1+ n2
En particulier, pour t > a, on a
(k}) + ‘ < k e na
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Or, le terme apparaissant a droite est le terme général d’une série convergente, puisque
a > 0 et donc

—na

L €

_ —2

Ainsi, chaque série ) fy(Lk) converge normalement sur [a, +o0o[. Ceci prouve que f est de
classe C* sur [a, +00[. Comme a > 0 est arbitraire, la fonction est de classe C* sur |0, +-o0].

3. (a) Puisque —25 ~4o +, la série —2- est divergente, et la suite de ces sommes
14+n + n n>1 14n
partielles tend vers +o0o. On en déduit 'existence de N > 1 tel que

>z

n=1

—nh

(b) Lorsque h tend vers 0, la quantité ny:l Z(Tn_zl) converge vers 22;1 7z < —A. En

particulier, il existe § > 0 tel que, pour tout h €]0, d][, on a

Puisque, pour tout n > 1, e=™" < 1, on en déduit que

h

S —10) _ 5~ ;i(finzl) |
n=1

D’apres le résultat de la question précédente, on peut trouver d < 0 tel que, pour tout

h €]0,4][, on a
f(h) = f(0)
h

Ceci est la définition de lim,_,q+ w = —oo0. Ainsi, f n’est pas dérivable en 0,
mais sa courbe représentative admet au point d’abscisse 0 une tangente verticale.

< -A+1.

4. Puisque la série définissant f converge normalement sur R, on peut appliquer le théoréme
d’interversion des limites. On en déduit

—nt —nt

. € . e .
tilinoozl—l—nQ 7Ztllr+nool+n2 =0

n>1 n>1

Exercice 18.

Sur I =] — 1,400, on pose

s0-S (-2
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. Posons, pour z € I, u,(z) = - — =

. Montrer que S est définie et continue sur 1.

. Etudier la monotonie de S.

. Calculer S(x + 1) — S(z).

. Déterminer un équivalent de S(z) en —17F.

. Etablir que, pour tout n € N, S(n) = Y1t

. En déduire un équivalent de S(x) en +oo.

1 1 ;
e W On a, pour z > —1 fixé, un (%) ~nsyoo nz
et donc la série ) w,(x) est convergente. Pour prouver la continuité de S sur I, fixons
—1 < a < b et prouvons la convergence normale sur [a, b]. On a en effet, pour tout « € [a, ],

max(|al, [b])

Le membre de droite est le terme général d’une série numérique convergente, et donc la
série converge normalement sur [a, b].

. Il est facile de vérifier (par exemple en les dérivant) que toutes les fonctions u,, sont crois-

santes. Donc S est croissante.

On a
400 “+ o0
1 1 1 1
S )-8 = == — Z_
(z+1) (z) nz:l<n n—i—x—i—l) nl(n n—f—x)
B *ii 11\ &1
B = n—1 n+zx = \n n+tw
B n—1 n rz+1
n=2
1
- 1-1
+Jc—i—l
T o2+l
On remarque que S(0) = 0. Par continuité de S en 0, S(z+1) — 0si z — —17. On a donc

1 -1
41 '

S(z)=S(x+1)

. D’apres la troisieme question, on sait que pour tout n € N|

1

S(n+1)—8(n) = T

Sachant que S(0) = 0, une récurrence immédiate établit immédiatement le résultat voulu.

On a, par croissance de la fonction S, pour tout x > 0,

S(a]) < S(z) < S([2] + 1)
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soit

Inz InS(z])  S(z)  Inz InS(z+1))
In[z] . In[z] — Inz ~ In[z] . Infz]

On montre facilement que les membres de gauche et de droite de cette inégalité tendent
vers 1, notamment parce que In(z)/In([z]) tend vers 1 si x tend vers +o00. C'est donc que

S(x) ~too In(z).
c. Exercices d’approfondissement
Exercice 19.

1
Soit (fn)n>1 la suite de fonctions définies sur [—1,1] par f,(t) = — ¢™ sinnt.
n

1. Montrer que la série Y f,, converge simplement sur | — 1, 1].
2. Soit a €]0,1].
(a) Montrer que la série Y f; converge normalement sur [—a, al.
“+o0
(b) En déduire que la fonction f = Z fn est de classe C! sur ] — 1,1 et montrer que,
n=1

pour z €] — 1, 1],

sinz + z cosx — 2

1N
flw) = 1—2xcosx + a2
(¢) Mont F(t) = arctan — S0t tel—1,1]
¢) Montrer que = arctan ————— pour — .
4 1—¢cost © ’

3. On pose pour tout n € N* et ¢t € [—1,1], A,(t) = Z tk sinkt.
k=1

(a) Montrer qu’il existe M > 0 tel que pour tout n € N* et ¢t € [—1, 1] on ait |4, ()] < M.
(b) Montrer en écrivant t* sin(kt) = Ag(t) — Ar_1(t) que

(c) En déduire que la série > f, converge simplement sur [—1,1] et que f(t) =

+oo A (t)
Z kil) sur [—1, 1]. Montrer que f est continue sur cet intervalle.
k=1

— k(k +
(d) En déduire les valeurs de +ZOO sinn et de +§ (=1)" sinn
V - .
n=1 " n=1 n
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1. Pour z €] — 1,1] fixé, on a

2.

3.

(c) Posons g(t) = arctan

n2

@l < T =o( ),

et donc la série (numérique) > f,(x) converge (absolument) pour tout « €] —1,1[. Autre-
ment dit, la série (de fonctions) > f, converge simplement sur | — 1, 1[.

(a) On commence par calculer f :

fi(x) = 2™ sin(nz) + 2™ cos(nx).

Pour tout = € [—a,a], on a
|[fu(@)] < 207,

qui est le terme général d’une série convergente. Ainsi, ) f} converge normalement
sur [—a,a).

(b) >°,, fn converge simplement vers f sur | — 1,1[, chaque f, est C* et > f/ converge

normalement, donc uniformément, sur [—a,a]. Ainsi, f est C! sur [—a,a] avec f' =
>, fr. Comme a est arbitraire dans ]0,1[, f est C! sur | — 1,1[, de dérivée f'(z) =
Y st fr(x). En fait, on peut effectivement calculer f’. En effet, pour = €] — 1,1,

puisque ze'® # 1,

fule) = =30 Sm((e)") + 3 Re (@)

n>1 n>1

S eia: xeiax
- o (1 - xe“) aat (1 —meim>

e (1 — xe™®) ze'®(1 — ze™'*)
((1 —ze®)(1 — xe—”)) P ((1 — ze®)(1 — ze~®)

e _ o ret® — 2
R
(12xcosx+x2)+ e<12xcosx+:172>

2

[
Q
3

[
Q
3

sinx +xrcosx —x
1—2xcosx + a2

tsint
T im 7 Un calcul facile (mais fastidieux!) prouve que ¢'(t) =
—t cos

f'(t) pour tout t €] — 1, 1[. De plus, g(0) = f(0) = 0. C’est bien que f = g sur | —1,1].

(a) On calcule cette somme de la méme fagon qu’a la question précédente :

teit _ t’n+lei(n+1)t
1 — tett )

An(t) = Sm (

Or, |tet — t"+1ei (Dt < 2 pour t € [—1,1], et 1 — te' est une fonction continue qui
ne s’annule pas sur [—1,1]. Elle est donc minorée par une constante a > 0, et donc
2

4] < 2.

(b) C’est un calcul direct en faisant un changement d’indices dans la somme.

(c) La seule nouveauté est la convergence en 1 et en -1, mais on traite tout [—1,1]. On a

d’une part, pour tout ¢ € [—1, 1],
An(2)

n

— 0.
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D’autre part, puisque
Ar®) | _ M?
k(k+1)| — k

la série ), ,:(‘,’57_(:1)) converge (absolument). Ceci signifie que la suite (Ez;ll %)

admet une limite. De I’écriture obtenue a la question précédente, on déduit que la
somme >, _, fx(t) converge et que

)= /i) Zkk+1

E>1

Or, la série ZZ_OC{ kA,’C‘fl)) converge normalement sur I'intervalle [—1, 1], puisque

At M
k(k+1) ~ k(k+1)

Chaque terme ¢ — 7 ,’C‘J(rtl)) étant continue, f est elle-méme continue sur [—1, 1].

(d) Prenons ’égalité
t sint

1 —t cost

valable pour ¢t €] — 1, 1[. On fait tendre ¢ vers 1 dans les deux membres. Comme on a
deux fonctions continues, on obtient

sinn sin 1
Z = arctan { ——— | .
n 1—cosl

n>1

f(t) = arctan

On peut simplifier ce résultat a ’aide des formules de trigonométrie pour obtenir que

sinn w—1
Z n 2

n>1

Exercice 20.

Soit la série de fonctions ), -, fn, avec f,(z) =

=W N =

—nxT

Te
. On note S sa somme.

Inn

. Etudier la convergence simple, normale, uniforme de cette série sur [0, +oo].
. Montrer que S est de classe C! sur )0, +o0].
. Montrer que S n’est pas dérivable a droite en 0.

. Montrer que, pour tout k, S(z) = o(x~*) en +oc.

. La convergence simple est immédiate. Pour la convergence normale, remarquons que le

1
maximum de ze~ " sur [0, 400 est —. Donc || fnllco = Mais la série de Bertrand
en

en lnn

26



nh}nn diverge, et notre série ne converge pas normalement sur [0, +oo[. Prouvons mainte-

nant la convergence uniforme : pour x > 0, on a :

+00 —
. re T 1
0< Rp(z) < ———r s =
< Ry(z) < 1nn+1k§16 (e —D)In(n+1) ~ In(n+1)’

ou on a utilisé pour la derniére inégalité que ¢* — 1 > x. C’est aussi vrai pour x =0 : il y
a convergence uniforme sur [0, +00[.

. On peut prouver que S est de classe C! sur |0, +oo[ en étudiant la convergence uniforme de
S’ sur [a, b] C]0,+o0o[. Mais il y a plus malin : posons A(u) =", <, % Cette série entiere
a pour rayon de convergence 1 d’apres la régle de D’Alembert. La fonction A est donc C'*
sur | — 1,1[. Comme z +— e~ * est de classe C* et envoie |0, +oo[ sur ]0, 1], la fonction S
définie par S(z) = zA(e™") est C* sur |0, +o0.

. Ona,pourz>0,et N>0:

S(@) , §2 7 5 vy L
r Inn Inn
n=2 n=2
Posons xy = % Onae Ve = %, et
N
Saw) y 1g~ 1
TN e Inn

S n’est pas dérivable en 0 (en travaillant un tout petit peu plus, on aurait pu prouver que
la limite de S(x)/x en 0 est +00).

2 —2z
. ” . @ e
. Avec les notations de la deuxieme question, on a A(u) ~¢ 755. Donc S(x) ~1 Ts, ce

qui prouve bien ce que l'on cherchait a montrer. Cette méthode est assez astucieuse. On
pouvait également faire plus classique en utilisant une méthode de “double limite”.
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