
Corrigé de la feuille d’exercices no15
Mathématiques spéciales

1. Convergence uniforme/normale des séries de fonctions

Exercice 1.Exercice 1.

Pour n ≥ 1 et x ∈ R, on pose un(x) = nx2e−x
√
n.

1. Démontrer que la série
∑

n un converge simplement sur R+.
2. Démontrer que la convergence n’est pas normale sur R+.
3. Démontrer que la convergence est normale sur tout intervalle [a,+∞[ avec a > 0.
4. La convergence est-elle uniforme sur R+ ?

Correction.

1. Soit x ≥ 0 fixé. Alors n2un(x) = x2e−x
√
n+3 ln n tend vers 0. Par comparaison à une série

de Riemann convergente, la série
∑

n un(x) est convergente.
2. On va calculer supx∈R |un(x)|. On remarque d’abord que un est une fonction positive. De

plus, elle est dérivable et sa dérivée vaut

u′
n(x) = n(2x− x2

√
n)e−x

√
n = nx(2− x

√
n)e−x

√
n.

On en déduit que un est croissante sur l’intervalle [0, 2/
√
n] et décroissante sur l’intervalle

[2/
√
n,+∞[. On a donc

‖un‖∞ = un(2/
√
n) = 4e−2.

C’est le terme général d’une série (grossièrement) divergente, et donc la convergence n’est
pas normale sur R+.

3. Pour n ≥ 4
a2 , on a a ≥ 2/

√
n et donc la fonction un est décroissante sur [a,+∞[. On en

déduit que, pour tout x ≥ a, on a

|un(x)| ≤ un(a).

Le membre de droite est le terme général d’une série numérique (il ne dépend plus de x)
convergente : ceci prouve la convergence normale de la série

∑
n un sur [a,+∞[. Remarquons

que le fait que l’inégalité ne soit vraie qu’à partir d’un certain rang (qui est indépendant
de x ∈ [a,+∞[) ne change rien à la convergence normale.

4. Notons Rn le reste d’ordre n de la série. Puisque uk ≥ 0 pour tout k, on a

Rn(x) =

+∞∑
k=n+1

uk(x) ≥ un+1(x).

D’après le résultat de la question 2.,

‖Rn‖∞ ≥ ‖un+1‖∞ = 4e−2.

Ceci ne tend pas vers 0 et donc la convergence n’est pas uniforme sur R+.
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Exercice 2.Exercice 2.

Soit un(x) = (−1)n ln
(
1 + x

n(1+x)

)
défini pour x ≥ 0 et n ≥ 1.

1. Montrer que la série
∑

n≥1 un converge simplement sur R+.
2. Montrer que la série

∑
n≥1 un converge uniformément sur R+.

3. La convergence est-elle normale sur R+ ?

Correction.

1. On va appliquer le critère des séries alternées. Il est clair que |un(x)| tend vers 0, reste à
voir que, pour x ≥ 0, on a |un+1(x)| ≤ |un(x)[. Mais,

x

(n+ 1)(1 + x)
≤ x

n(1 + x)
,

et on conclut par croissance de la fonction logarithme.
2. Le critère des séries alternées nous donne même une majoration du reste de la série. On a

en effet

|Rn(x)| =

∣∣∣∣∣∣
∑

k≥n+1

uk(x)

∣∣∣∣∣∣ ≤ |un+1(x)| ≤
x

(n+ 1)(1 + x)
≤ 1

n+ 1

où on a utilisé que ln(1 + t) ≤ t pour t > −1. On a majoré le reste pour tout x ∈ R+ par
une quantité qui ne dépend plus de x et qui tend vers 0 lorsque n tend vers +∞. C’est bien
que la série converge uniformément sur R+.

3. On n’a même pas convergence absolue de la série à x > 0 fixé. Par exemple,

|un(1)| = ln
(
1 +

1

2n

)
∼+∞

1

2n
.

La série
∑

n |un(1)| diverge. A fortiori, il en est de même de la série
∑

n ‖un‖∞.

Exercice 3.Exercice 3.

Pour x ∈ I = [0, 1], a ∈ R et n ≥ 1, on pose un(x) = naxn(1− x).
1. Étudier la convergence simple sur I de la série de terme général un. On notera dans la

suite S la somme de la série.
2. Étudier la convergence normale sur I de la série de terme général un.
3. On suppose dans cette question que a = 0. Calculer S sur [0, 1[. En déduire que la conver-

gence n’est pas uniforme sur [0, 1].
4. On suppose a > 0. Démontrer que la convergence n’est pas uniforme sur I.

Correction.

1. Pour x ∈]0, 1[, un(x) > 0 et
un+1(x)

un(x)
→ x ∈]0, 1[.
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Par le critère de d’Alembert, la série de terme général un(x) est convergente. Si x = 1, alors
un(x) = 0 et la convergence est triviale. De plus, on a clairement S(1) = 0. La convergence
dans le cas x = 0 est elle aussi triviale.

2. Pour étudier la convergence normale, on doit étudier la série
∑

n ‖un‖∞. Pour calculer
‖un‖∞, on dérive un :

u′
n(x) = na+1xn−1(1− x)− naxn = naxn−1 (n(1− x)− x) .

Ainsi, u′
n s’annule en 0 et en xn = n

n+1 qui sont tous les deux des points de [0, 1]. Puisque
un(0) = un(1) = 0, on trouve que

‖un‖∞ = |un(xn)|

= na

(
n

n+ 1

)n (
1− n

n+ 1

)
=

na

n+ 1

(
n

n+ 1

)n

.

Or, en passant par l’exponentielle et le logarithme, on prouve facilement que(
n

n+ 1

)n

→ e−1.

On en déduit que
‖un‖∞ ∼+∞ e−1na−1.

Ainsi, il y a convergence normale si et seulement si a < 0.
3. Si a = 0 et x ∈ [0, 1[, on peut encore écrire

S(x) =
∑
n≥1

xn −
∑
n≥1

xn+1 = x.

Ainsi, S(x) = x si x ∈ [0, 1[ et S(1) = 0. La convergence ne peut pas être uniforme sur
[0, 1]. En effet, si cela était le cas, alors puisque chaque terme x 7→ un(x) est continue sur
[0, 1], ce serait également le cas de la somme, ce qui n’est pas le cas ici.

4. Nous allons utiliser la question précédente, en remarquant que, pour x ∈ [0, 1[, a > 0 et
n ≥ 1,

naxn(1− x) ≥ xn(1− x)

ce qui implique S(x) ≥ x si x ∈ [0, 1[. Une nouvelle fois, ceci interdit la convergence uniforme
puisque l’inégalité précédente implique que S n’est pas continue en 1.

Exercice 4.Exercice 4.

Pour x ≥ 0, on pose un(x) =
x

n2+x2 .

1. Montrer que la série
∑+∞

n=1 un converge simplement sur R+.
2. Montrer que la série

∑+∞
n=1 un converge uniformémement sur tout intervalle [0, A], avec

A > 0.
3. Vérifier que, pour tout n ∈ N,

∑2n
k=n+1

n
n2+k2 ≥ 1

5 .
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4. En déduire que la série
∑

n≥1 un ne converge pas uniformément sur R+.

5. Montrer que la série
∑+∞

n=1(−1)nun converge uniformément sur R+.
6. Montrer que la série

∑+∞
n=1(−1)nun converge normalement sur tout intervalle [0, A], avec

A > 0.
7. Montrer que la série

∑+∞
n=1(−1)nun ne converge pas normalement sur R+.

Correction.

1. Il est très facile de prouver la convergence simple sur R+. Pour x = 0, on a en effet un(0) = 0,
qui est bien le terme général d’une série convergente. Pour x > 0, on a un(x) ∼n→+∞

x
n2 ,

qui est aussi le terme général d’une série convergente.
2. On va prouver la convergence normale. On a en effet, pour tout x ∈ [0, A],

|un(x)| ≤
A

n2
,

terme général d’une série convergente.
3. Il suffit d’écrire que, pour n + 1 ≤ k ≤ 2n, on a n2 + k2 ≤ 5n2, et donc n

n2+k2 ≥ 1
5n . On

obtient finalement
2n∑

k=n+1

n

n2 + k2
≥ n× 1

5n
=

1

5
.

4. Il est plus difficile de prouver la non-convergence uniforme. On peut procéder de la façon
suivante. Supposons que la convergence est uniforme. Alors, pour tout ε > 0, il existe un
entier N tel que, pour tout n ≥ N , et tout x ∈ R+, on ait∣∣∣∣∣

+∞∑
k=n+1

uk(x)

∣∣∣∣∣ ≤ ε.

Mais alors, d’après l’inégalité triangulaire, pour tout n ≥ N , on a∣∣∣∣∣
2n∑

k=n+1

uk(x)

∣∣∣∣∣ =
∣∣∣∣∣

+∞∑
k=n+1

uk(x)−
+∞∑

k=2n+1

uk(x)

∣∣∣∣∣ ≤
∣∣∣∣∣

+∞∑
k=n+1

uk(x)

∣∣∣∣∣+
∣∣∣∣∣

+∞∑
k=2n+1

uk(x)

∣∣∣∣∣ ≤ 2ε.

En particulier, pour n = N et x = N , on a la double inégalité

1

5
≤

∣∣∣∣∣
2N∑

k=N+1

uk(N)

∣∣∣∣∣ ≤ 2ε.

Bien sûr, si on a choisi 2ε < 1/5, c’est impossible.
5. Nous allons prouver la convergence uniforme en utilisant le critère des séries alternées.

En effet, à x fixé, la suite (un(x)) est positive, décroissante et tend vers 0. La série∑+∞
n=1(−1)nun(x) est donc convergente, et on a la majoration du reste :∣∣∣∣∣

+∞∑
k=n

(−1)nun(x)

∣∣∣∣∣ ≤ un(x) =
x

n2 + x2
.
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Reste à majorer le membre de droite de l’équation précédente par un terme qui tend vers
0 et ne dépend pas de x. Mais on a

x

n2 + x2
≤

√
x2 + n2

n2 + x2
≤ 1√

x2 + n2
≤ 1

n
.

On a donc bien convergence uniforme sur R+.
6. Puisque |(−1)nun(x)| = |un(x)|, la convergence normale sur [0, A] se démontre comme

ci-dessus.
7. D’autre part, si on avait convergence normale sur R+, alors on aurait aussi convergence

normale de la série
∑

n un(x) sur R+, donc convergence uniforme de cette même série, ce
qui n’est pas le cas d’après la première question.

Exercice 5.Exercice 5.

On considère la série de fonctions
∑

n≥2 un, avec un(x) =
xe−nx

ln n .
1. Démontrer que

∑
n≥2 un converge simplement sur R+.

2. Démontrer que la convergence n’est pas normale sur R+.
3. Pour x ∈ R+, on pose Rn(x) =

∑
k≥n+1 uk(x). Démontrer que, pour tout x > 0,

0 ≤ Rn(x) ≤
xe−x

ln(n+ 1)(1− e−x)
,

et en déduire que la série converge uniformément sur R+.

Correction.

1. Pour x = 0, la série converge car un(0) = 0. Pour x > 0 fixé, on a

un(x) = o

(
1

n2

)
,

et donc la série
∑

n un(x) converge.
2. Une étude rapide de un montre qu’elle atteint son maximum en 1/n. On a donc∑

n≥2

‖un‖∞ =
∑
n≥2

un(1/n) =
∑
n≥2

e−1

n lnn
.

Il est bien connu que cette dernière série est divergente, et donc la convergence n’est pas
normale.

3. On va utiliser la somme d’une série géométrique. En effet, pour x > 0, on a e−kx = (e−x)k

et 0 < e−x < 1. De plus, pour k ≥ n+ 1, on a

0 ≤ uk(x) ≤
x(e−x)k

ln(n+ 1)
.

On en déduit que

0 ≤ Rn(x) ≤
x

ln(n+ 1)
× e−(n+1)x

1− e−x
≤ 1

ln(n+ 1)
× xe−x

1− e−x
.
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Or, il est facile de vérifier que la fonction x 7→ xe−x

1−e−x est bornée sur R+. On peut étudier
cette fonction ou remarquer que

— Elle se prolonge par continuité en 0 : en effet

xe−x

1− e−x
=

x+ o(x)

x+ o(x)
→ 1.

— La fonction est donc bornée sur tout intervalle du type [0, A].
— La fonction tend vers 0 en +∞, on sait donc que sa valeur absolue est majorée par 1

sur un certain intervalle [A,+∞[.
On peut aussi écrire

xe−x

1− e−x
=

x

ex − 1
≤ 1

puisque par convexité de la fonction exponentielle, ex − 1 ≥ x. Soit M un majorant de la
fonction x 7→ xe−x

1−e−x . On a donc, pour tout x ≥ 0 (l’inégalité est aussi valable pour x = 0
car Rn(0) = 0) :

|Rn(x)| ≤
M

ln(n+ 1)
.

On a majoré le reste par quelque chose qui ne dépend pas de x ∈ R+ et qui tend vers 0
lorsque n tend vers +∞. C’est bien que la série converge uniformément sur R+.

Exercice 6.Exercice 6.

On considère la série de fonctions
∑

n≥2 un, avec un(x) =
xe−nx

ln n .
1. Démontrer que

∑
n≥2 un converge simplement sur R+.

2. Démontrer que la convergence n’est pas normale sur R+.
3. Pour x ∈ R+, on pose Rn(x) =

∑
k≥n+1 uk(x). Démontrer que, pour tout x > 0,

0 ≤ Rn(x) ≤
xe−x

ln(n+ 1)(1− e−x)
,

et en déduire que la série converge uniformément sur R+.

Correction.

1. Pour x = 0, la série converge car un(0) = 0. Pour x > 0 fixé, on a

un(x) = o

(
1

n2

)
,

et donc la série
∑

n un(x) converge.
2. Une étude rapide de un montre qu’elle atteint son maximum en 1/n. On a donc

∑
n≥2

‖un‖∞ =
∑
n≥2

un(1/n) =
∑
n≥2

e−1

n lnn
.
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Il est bien connu que cette dernière série est divergente, et donc la convergence n’est pas
normale.

3. On va utiliser la somme d’une série géométrique. En effet, pour x > 0, on a e−kx = (e−x)k

et 0 < e−x < 1. De plus, pour k ≥ n+ 1, on a

0 ≤ uk(x) ≤
x(e−x)k

ln(n+ 1)
.

On en déduit que

0 ≤ Rn(x) ≤
x

ln(n+ 1)
× e−(n+1)x

1− e−x
≤ 1

ln(n+ 1)
× xe−x

1− e−x
.

Or, il est facile de vérifier que la fonction x 7→ xe−x

1−e−x est bornée sur R+. On peut étudier
cette fonction ou remarquer que

— Elle se prolonge par continuité en 0 : en effet

xe−x

1− e−x
=

x+ o(x)

x+ o(x)
→ 1.

— La fonction est donc bornée sur tout intervalle du type [0, A].
— La fonction tend vers 0 en +∞, on sait donc que sa valeur absolue est majorée par 1

sur un certain intervalle [A,+∞[.
On peut aussi écrire

xe−x

1− e−x
=

x

ex − 1
≤ 1

puisque par convexité de la fonction exponentielle, ex − 1 ≥ x. Soit M un majorant de la
fonction x 7→ xe−x

1−e−x . On a donc, pour tout x ≥ 0 (l’inégalité est aussi valable pour x = 0
car Rn(0) = 0) :

|Rn(x)| ≤
M

ln(n+ 1)
.

On a majoré le reste par quelque chose qui ne dépend pas de x ∈ R+ et qui tend vers 0
lorsque n tend vers +∞. C’est bien que la série converge uniformément sur R+.

Exercice 7.Exercice 7.

Soit g : [0,+∞[→ R une fonction continue et bornée telle que g(0) = 0. On considère la suite de
fonctions définie sur [0,+∞[ par fn(x) = g(x)e−nx.

1. (a) Étudier la convergence simple de la suite.
(b) Montrer que la suite converge uniformément sur tout intervalle [a,+∞[, avec a > 0.
(c) On fixe ε > 0. Montrer que l’on peut choisir a > 0 tel que |fn(x)| ≤ ε pour tout

x ∈ [0, a] et pour tout n ≥ 1. En déduire que la suite converge uniformément sur
[0,+∞[.

2. On considère la série de fonctions
∑

n≥0 g(x)e
−nx.

(a) Démontrer qu’elle converge simplement sur [0,+∞[ et normalement sur tout intervalle
[a,+∞[ avec a > 0.
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(b) Démontrer l’équivalence entre les deux propositions suivantes :
i) la courbe représentative de g est tangente à l’axe des abscisses à l’origine ;
ii) la série de fonctions

∑
n≥0 g(x)e

−nx converge uniformément sur [0,+∞[.

Correction.

1. (a) Pour 0, fn(0) = 0 et la suite converge. Pour x > 0, la suite (g(x)e−nx) tend vers 0. La
suite de fonctions (fn) converge donc simplement vers 0.

(b) Notons M un majorant de |g|. Pour x > a, on a |fn(x)| ≤ Me−nx ≤ Me−na, suite qui
tend vers 0 indépendamment de x. Ceci prouve la convergence uniforme sur [a,+∞[.

(c) Par continuité de g en 0, et puisque g(0) = 0, il existe a > 0 tel que |g(x)| ≤ ε pour
x ∈ [0, a]. Il vient |fn(x)| ≤ ε pour tout x ∈ [0, a]. De plus, ce a étant fixé, la suite
(fn) converge uniformément vers 0 sur [a,+∞[. On peut donc trouver N tel que, pour
n ≥ N , |fn(x)| ≤ ε. Résumons. Pour tout ε > 0, on peut trouver N ∈ N tel que, pour
tout n ≥ N , on a

|fn(x)| ≤ ε

(le a n’apparait plus, il sert uniquement dans la preuve.) C’est bien que la suite (fn)
converge uniformément vers 0 sur R+.

2. (a) L’étude se fait suivant le même principe. Pour x = 0, le terme général est nul, et pour
x > 0, il s’agit du terme général d’une suite géométrique de raison de module inférieur
strict à 1. On a bien convergence de

∑
n fn(x). De plus, si x ∈ [a,+∞[, on a

|fn(x)| ≤ Me−na,

qui est le terme général d’une série numérique convergente. C’est bien que la série
converge normalement sur [a,+∞[.

(b) Considérons le reste de rang n de la série : pour x > 0,

Rn(x) =
∑

k≥n+1

fk(x) =
g(x)

1− e−x
e−(n+1)x.

Si la courbe représentative de g est tangente à l’axe des abscisses à l’origine, c’est que
g(x)/x tend vers 0. Posons alors pour x > 0 g1(x) =

g(x)
1−e−x . Puisque 1− e−x ∼0 x, on

peut prolonger g1 par continuité en 0 en posant g1(0) = 0. Ceci définit une fonction
bornée sur R+ et continue en 0. On se retrouve dans la situation de la question (1), et
on a bien convergence uniforme du reste vers 0 sur R+, ou encore convergence uniforme
de la série sur cet intervalle. Réciproquement supposons que g(x)/x ne tend pas vers
0. Alors, g1 non plus ne tend pas vers 0 en 0 et donc il existe ε > 0 tel que

∀η > 0, ∃x ∈]0, η[ tel que |g1(x)| > ε.

En prenant des nombres η de la forme η = 1/n, on obtient pour chaque n ≥ 1 un réel
xn tel que

0 < xn <
1

n
et |g1(xn)| > ε.

Mais alors,
|Rn(xn)| ≥ εe−(n+1)xn ≥ εe−(n+1)/n ≥ e−1ε/2

dès que n est assez grand. Ceci nie la convergence uniforme sur R+.
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2. Étude d’une fonctions définies par une limite/somme de suite/série de fonctions

a. Exercices basiques

Exercice 8.Exercice 8.

On considère la série de fonctions S(x) =
∑+∞

n=1
(−1)n

x+n .
1. Prouver que S est définie sur I =]− 1,+∞[.
2. Prouver que S est continue sur I.
3. Prouver que S est dérivable sur I, calculer sa dérivée et en déduire que S est croissante

sur I.
4. Quelle est la limite de S en −1 ? en +∞ ?

Correction.

1. Il est clair que la suite
(

1
x+n

)
n
, pour x > −1 fixé, est positive, décroissante et tend vers 0.

Par application du critère des séries alternées, la série est convergente pour tout x > −1.
2. Posons un(x) =

(−1)n

x+n . Nous avons vérifié à la question précédente que, pour x > −1 fixé,
la série

∑
n un(x) vérifie le critère des séries alternées. Par conséquent, on sait que son reste

Rn(x) vérifie
|Rn(x)| ≤ |un+1(x)| ≤

1

x+ n+ 1
.

Puisque x > −1, on a en particulier

|Rn(x)| ≤
1

n
.

Ceci tend vers 0 (indépendamment de x), de sorte qu’on a prouvé la convergence uniforme
de la série

∑
n un(x) sur I. Puisque chaque fonction un est continue, la fonction S est

continue sur I.
3. Chaque fonction un est dérivable sur I avec u′

n(x) = (−1)n+1

(x+n)2 . De même qu’à la question
précédente, pour x > −1 fixé, la série

∑+∞
n=1 u

′
n(x) est convergente car elle vérifie les condi-

tions du critère des séries alternées. De plus, si on note Tn(x) =
∑+∞

k=n+1 u
′
k(x) son reste,

on a |Tn(x)| ≤ 1
(x+n+1)2 ≤ 1

n2 , inégalité valable pour tout x > −1. On peut donc majorer
uniformément le reste par une quantité qui tend vers 0 : la série dérivée est uniformément
convergente. On en déduit que la fonction S est dérivable, et que sa dérivée est donnée par∑

n≥1
(−1)n+1

(x+n)2 . De plus, on sait qu’on peut encadrer la somme d’une série alternée par deux
sommes partielles consécutives, par exemple ici

0 ≤ 1

(x+ 1)2
− 1

(x+ 2)2
≤ u′(x) ≤ 1

(x+ 1)2
.

En particulier, la dérivée est positive et la fonction est croissante.
4. De même qu’à la question précédente, par le critère des séries alternées, on peut encadrer

S par deux sommes partielles consécutives :
−1

x+ 1
≤ S(x) ≤ −1

x+ 1
+

1

x+ 2
.
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Il suffit alors d’appliquer le théorème d’encadrement des limites pour prouver que

lim
x→−1

S(x) = −∞ et lim
x→+∞

S(x) = 0.

Exercice 9.Exercice 9.

Pour tout t ∈ R, on pose un(t) =
arctan(nt)

n2 .
1. Justifier que pour tout t ∈ R, la série

∑
n≥1 un(t) est convergente. On note S(t) sa somme.

2. Démontrer que S est une fonction continue sur R et impaire.
3. Déterminer la limite de S en +∞ (on rappelle que

∑+∞
n=1

1
n2 = π2

6 ).
4. Quel est le sens de variation de S ?
5. Soit N ∈ N. Démontrer qu’il existe un réel t0 > 0 tel que, pour tout t ∈ –]t0, t0[\{0}, on a

N∑
n=1

un(t)

t
≥ 1

2

N∑
n=1

1

n
.

6. En déduire que la courbe représentative de S admet une tangente verticale au point d’abs-
cisse 0.

7. Tracer la courbe représentative de S.

Correction.

1. Pour tout t ∈ R, on a |un(t)| ≤ 1
n2 , qui est le terme général d’une série convergente. La

série
∑

n un(t) est donc absolument convergente pour tout t ∈ R.
2. L’argument de la question précédente prouve qu’en réalité, la convergence est normale sur

R (on a obtenu une majoration qui ne dépend pas de t). Puisque chaque fonction un est
continue sur R, il en est donc de même de S. De plus, chaque un est impaire, et donc S est
impaire.

3. Puisque la série converge normalement, donc uniformément, sur R, on peut appliquer le
théorème de la double limite et on a

lim
t→+∞

S(t) =

+∞∑
n=1

lim
t→+∞

un(t) =

+∞∑
n=1

π

2n2
=

π3

12
.

4. Puisque la fonction arctan est croissante, chaque un est croissante. On en déduit que S est
croissante.

5. Remarquons que, pour tout n ≥ 1,

lim
t→0

un(t)

t
= lim

t→0

arctan(nt)
n(nt)

=
1

n
lim
u→0

arctanu

u
=

1

n
.

Puisqu’on a une somme finie, on a

lim
t→0

N∑
n=1

un(t) =

N∑
n=1

lim
t→0

un(t) =

N∑
n=1

1

n
.
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Appliquant la définition de la limite avec ε = 1
2

∑N
n=1

1
n , on obtient le résultat demandé.

6. Fixons A > 0. Alors, puisque la série
∑

n
1
n est divergente, il existe un entier N tel que

1

2

N∑
n=1

1

n
≥ A.

D’après la question précédente, il existe t0 > 0 tel que, pour tout t ∈ [−t0, t0]\{0},

N∑
n=1

un(t)

t
≥ A.

Puisque pour t 6= 0, arctan(nt)/t ≥ 0, on en déduit que, pour tout t ∈]t0, t0[\{0},

S(t)

t
≥

N∑
n=1

un(t)

t
≥ A.

Ceci prouve que limt→0
S(t)−S(0)

t−0 = +∞, ce qui prouve que la courbe représentative de S
admet une tangente verticale au point d’abscisse 0.

Exercice 10.Exercice 10.

Soit la série de fonctions S(x) =
∑

n≥1
x

n2+x2 .
1. Démontrer que S définit une fonction continue sur R.
2. Soit x > 0 et n ≥ 1. Justifier que∫ n+1

n

x

x2 + t2
dt ≤ x

x2 + n2
≤

∫ n

n−1

x

x2 + t2
dt.

3. En déduire que S admet une limite en +∞ et la déterminer.

Correction.

1. Remarquons d’abord que la série est convergente quelque soit x ∈ R. Notons un(x) =
x

x2+n2

et fixons M > 0. Alors, pour tout x ∈ [−M,M ], on a

|un(x)| ≤
M

n2
,

et le membre de droite est le terme général d’une série numérique convergente. On en déduit
que la série de fonctions S(x) =

∑
n≥1 un(x) converge normalement (donc uniformément)

sur [−M,M ]. Puisque chaque fonction x 7→ un(x) est continue, on en déduit que S est
continue sur [−M,M ]. Comme M > 0 est arbitraire, on en déduit finalement que S est
continue sur R.

2. La fonction t 7→ x
x2+t2 est décroissante sur [0,+∞]. En particulier, pour tout t ∈ [n, n+ 1],

on a
x

t2 + x2
≤ x

n2 + x2
.

11



Intégrer cette inégalité entre n et n+1 donne la partie droite de l’inégalité précédente. Pour
l’autre partie, on part de

x

n2 + x2
≤ x

t2 + x2
pour tout t ∈ [n− 1, n],

et on intègre cette inégalité entre n− 1 et n.
3. Sommons les inégalités précédentes pour n allant de 1 à +∞. On trouve :∫ +∞

1

x

x2 + t2
dt ≤ S(x) ≤

∫ +∞

0

x

x2 + t2
dt.

Mais on peut calculer les intégrales, et on trouve que

π

2
− 1

x
arctan(1/x) ≤ S(x) ≤ π/2.

Si on fait tendre x vers +∞, on trouve par le théorème des gendarmes que S(x) tend vers
π/2.

Exercice 11.Exercice 11.

Soit C, a > 0 et ϕ : [−a, a] une fonction continue vérifiant |ϕ(x)| ≤ C|x| pour tout x ∈ [−a, a].
On souhaite étudier les fonctions f : [−a, a] → R vérifiant la propriété suivante (notée P) : f
est continue, f(0) = 0 et :

∀x ∈ [−a, a], f(x)− f(x/2) = ϕ(x).

1. Montrer que la série de fonctions
∑

n≥0 ϕ
(

x
2n

)
est normalement convergente sur [−a, a].

On note h la somme de cette série.
2. Montrer que h vérifie P.
3. Montrer que h est la seule fonction vérifiant P.
4. On suppose de plus que ϕ est de classe C1 sur [−a, a]. Démontrer que h est de classe C1

sur [−a, a].

Correction.

1. Soit x ∈ [−a, a]. Alors ∣∣∣ϕ( x

2n

)∣∣∣ ≤ C
|x|
2n

≤ Ca

2n
.

Or la série numérique
∑

n Ca/2n est convergente. La série de fonctions
∑

n ϕ
(

x
2n

)
est bien

normalement convergente sur [−a, a].
2. On remarque d’abord que ϕ(0) = 0 et donc que

h(0) =
∑
n≥0

ϕ(0) = 0.

Ensuite, chaque fonction x 7→ ϕ(x/2n) est continue sur [−a, a]. Par convergence normale,
la fonction h, somme de la série

∑
n ϕ(x/2

n), est elle aussi continue sur [−a, a]. Enfin, on

12



a, pour tout x ∈ [−a, a],

h(x)− h(x/2) =

+∞∑
n=0

ϕ
( x

2n

)
−

+∞∑
n=0

ϕ
( x

2n+1

)
=

+∞∑
n=0

ϕ
( x

2n

)
−

+∞∑
n=1

ϕ
( x

2n

)
= ϕ(x)

où on a fait un changement d’indice dans la deuxième somme.
3. Soit g une fonction vérifiant P. Alors, puisque g et h vérifient tous les deux P, on sait que,

pour tout x ∈ [−a, a], on a

h(x)− h(x/2) = g(x)− g(x/2) ⇐⇒ h(x)− g(x) = h(x/2)− g(x/2).

En particulier, par une récurrence facile, on peut démontrer que, pour tout n ∈ N,

h(x)− g(x) = h(x/2n)− g(x/2n).

Faisons tendre n vers +∞ dans cette égalité. Puisque les fonctions h et g sont continues en
0, on obtient

h(x)− g(x) = h(0)− g(0) = 0.

Ainsi, g = h et h est l’unique fonction vérifiant P.
4. Posons, pour n ≥ 0, un(x) = ϕ(x/2n). Alors chaque un est de classe C1 et vérifie, pour tout

x ∈ [−a, a], u′
n(x) =

1
2nϕ

′ ( x
2n

)
. Puisque ϕ est de classe C1, ϕ′ est continue sur le segment

[−a, a]. Elle y est donc bornée, et il existe M > 0 tel que |ϕ′(x)| ≤ M pour tout x ∈ [−a, a].
On en déduit que

|u′
n(x)| ≤

M

2n
.

La série
∑

n≥0 u
′
n est donc normalement convergente sur [−a, a]. On en déduit que h est de

classe C1 sur [−a, a] et que, pour tout x ∈ [−a, a], h′(x) =
∑

n≥0 u
′
n(x).

b. Exercices d’entraînement

Exercice 12.Exercice 12.

Pour x > 0, on pose S(x) =

+∞∑
n=0

(−1)n

1 + nx
.

1. Justifier que S est définie et continue sur ]0,+∞[.
2. Déterminer la limite de S en +∞.
3. Établir que S est de classe C1 sur ]0,+∞[ et déterminer S′.

13



Correction.

On pose un(x) =
(−1)n

1+nx .
1. La série définissant S converge d’après le critère des séries alternées. De plus, notant Rn(x)

le reste de la série, le critère des séries alternées donne également

|Rn(x)| ≤
1

1 + (n+ 1)x
.

Fixons maintenant a > 0. Alors, pour tout x ≥ a,

|Rn(x)| ≤
1

1 + (n+ 1)x
≤ 1

1 + (n+ 1)a
.

Ainsi, la suite (|Rn(x)|) est majorée pour x ∈ [a,∞[ par la suite
(

1
1+(n+1)a

)
, qui ne dépend

pas de x, et qui tend vers 0. Ceci prouve la convergence uniforme de la série sur l’intervalle
[a,∞[. Comme chaque fonction est continue sur [a,+∞[, il en est de même de S. Puisque
a > 0 est arbitraire, S est continue sur ]0,+∞[.

2. Puisque la convergence est uniforme sur l’intervalle [1,+∞[, on peut appliquer le théorème
d’interversion limite/séries et on a

lim
x→+∞

∑
n≥0

un(x) =
∑
n≥0

lim
x→+∞

un(x) = 1.

On pouvait également appliquer le critère des séries alternées, et encadrer la somme par les
deux premières sommes partielles. On a donc, pour tout x > 0,

1− 1

1 + x
≤ S(x) ≤ 1.

Il suffit alors d’appliquer le théorème des gendarmes.
3. La fonction S converge simplement sur ]0,+∞[. Chaque fonction un est de classe C1 sur

ce même intervalle, avec

u′
n(x) =

(−1)n+1n

(1 + nx)2
.

On fixe a > 0 et on va démontrer la convergence uniforme de la série
∑

n≥0 u
′
n(x) sur

[a,+∞[ en appliquant le critère des séries alternées. Soit x ≥ a. On a après réduction au
même dénominateur et simplification

|u′
n(x)| − |u′

n+1(x)| =
n(n+ 1)x2 − 1

(1 + nx)2(1 + (n+ 1)x)2
.

Soit n0 ∈ N tel que, pour n ≥ n0, on ait

n(n+ 1)a2 − 1 ≥ 0.

Alors n(n+1)x2 − 1 ≥ 0 et donc la série de terme général u′
n(x) converge d’après le critère

des séries alternées. De plus, si on note Tn le reste de la série
∑

n u
′
n, alors on a

|Tn(x)| ≤
1

(1 + (n+ 1)x)2
≤ 1

(1 + (n+ 1)a)2
.

On conclut à la convergence uniforme comme à la première question. Donc, par les théorèmes
généraux, S est de classe C1 sur [a,+∞[. Comme a > 0 est arbitraire, S est C1 sur R∗

+. Sa
dérivée est donnée par S′(x) =

∑
n≥0 u

′
n(x).
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Exercice 13.Exercice 13.

On appelle fonction ζ de Riemann la fonction de la variable s ∈ R définie par la formule

ζ(s) =
∑
n≥1

1

ns
.

1. Donner le domaine de définition de ζ et démontrer qu’elle est strictement décroissante sur
celui-ci.

2. Prouver que ζ est continue sur son domaine de définition.
3. Déterminer lims→+∞ ζ(s).
4. Montrer que pour tout entier k ≥ 1 et tout s > 0, on a

1

(k + 1)s
≤

∫ k+1

k

dx

xs
≤ 1

ks
.

En déduire que ζ(s) ∼1+
1

s−1 .
5. Démontrer que ζ est convexe.
6. Tracer la courbe réprésentative de ζ.

Correction.

1. La série définissant ζ(s) est une série de Riemann. Elle est convergente si et seulement si
s > 1. De plus, pour chaque n ≥ 1, les fonctions s 7→ n−s sont décroissantes, et même
strictement décroissantes pour n ≥ 2. Pour 1 < s < t, on a donc

1 + 2−s > 1 + 2−t et
∑
n≥3

1

ns
≥

∑
n≥3

1

nt

(la deuxième inégalité n’est qu’une inégalité large car on passe à la limite). Ajoutant les
deux inégalités, on en déduit que

ζ(s) > ζ(t),

ce qui prouve que ζ est décroissante.
2. Chaque fonction s 7→ n−s est continue sur son domaine de définition. Il suffit de démontrer

que la série de fonctions converge normalement, donc uniformément, sur tout intervalle du
type [a,+∞[, avec a > 1, pour prouver que la fonction est continue sur ]1,+∞[. Or, pour
tout s ∈ [a,+∞[, on a ∣∣∣∣ 1ns

∣∣∣∣ ≤ 1

na
,

et le terme de droite est le terme général d’une série numérique convergente. Ceci prouve
la convergence normale de f sur [a,+∞[.

3. Puisque la série définissant ζ converge uniformément sur [a,+∞[, on peut appliquer le
théorème d’interversion des limites, et on obtient

lim
s→+∞

ζ(s) =
∑
n≥1

lim
s→+∞

1

ns
= 1.

4. Pour x ∈ [k, k + 1], on a
1

(k + 1)s
≤ 1

xs
≤ 1

ks
.
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En intégrant cette inégalité entre k et k + 1, on trouve

1

(k + 1)s
≤

∫ k+1

k

dx

xs
≤ 1

ks
.

On somme maintenant ces deux inégalités pour k allant de 1 à +∞. On obtient

ζ(s)− 1 ≤
∫ +∞

1

dx

xs
≤ ζ(s).

Or, ∫ +∞

1

dx

xs
=

1

s− 1
.

On obtient finalement :
1

s− 1
≤ ζ(s) ≤ 1

s− 1
+ 1

ou encore
1 ≤ (s− 1)ζ(s) ≤ 1 + (s− 1).

Par le théorème des gendarmes, (s − 1)ζ(s) tend vers 1 lorsque s tend vers 1. C’est bien
que ζ(s) ∼1+

1
s−1 . En particulier, lims→1 ζ(s) = +∞.

5. On va démontrer que ζ est de classe C2 sur ]1,+∞[ et prouver que ζ ′′(s) ≥ 0 pour tout
s > 1. Pour prouver que ζ est dérivable sur ]1,+∞[, on prouve que la série dérivée converge
uniformément sur tout intervalle [a,+∞[, a > 1. Notons fn(s) = n−s, n ≥ 1 et s > 1. Alors
f ′
n(s) = (− lnn)n−s. Pour s ∈ [a,+∞[, on a

|f ′
n(s)| ≤

lnn

na
.

Or, le terme apparaissant à gauche est le terme général d’une série numérique convergente.
En effet, pour b ∈]1, a[, on a

nb lnn

na
→ 0 et donc lnn

na
= o(n−b).

Comme
∑

n≥1 n
−b converge, il en est de même de la série

∑
n≥1

ln n
na . Par théorème de

dérivation d’une série de fonctions, on en déduit que ζ est C1 sur tout intervalle [a,+∞[,
donc sur ]1,+∞[, et que sa dérivée ζ ′ vérifie

ζ ′(s) =
∑
n≥1

− lnn

ns
.

De même, on prouve que ζ est de classe C2 et que

ζ ′′(s) =
∑
n≥1

(lnn)2

ns
.

Comme tous les termes apparaissant dans la série sont positifs, on en déduit que ζ ′′ est
positive. En particulier, ζ est convexe.

6.
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Exercice 14.Exercice 14.

On considère la fonction µ(x) =
∑
n≥1

(−1)n+1

nx
.

1. Quel est le domaine de définition de µ ?
2. Montrer que µ est de classe C∞ sur son domaine de définition.
3. Démontrer que µ admet une limite en +∞ et la calculer.
4. On souhaite démontrer que µ admet une limite en 0.

(a) Démontrer que, pour tout x > 0, on a

−1 + 2µ(x) =
∑
n≥1

(−1)n+1

(
1

nx
− 1

(n+ 1)x

)
.

(b) En déduire que pour tout x > 0, on a

0 ≤ −1 + 2µ(x) ≤ 1− 1

2x
.

(c) Conclure.

Correction.

1. Si x ≤ 0, la série diverge grossièrement, et si x > 0, elle vérifie le critère des séries alternées
et donc elle est convergente.

2. Posons vn(x) = 1
nx de sorte que µ(x) =

∑
n≥1(−1)n+1vn(x). Fixons a > 0. Puisque

chaque fonction vn est de classe C∞, il suffit de prouver que, pour chaque p ≥ 0, la série∑
n≥1(−1)n+1v

(p)
n (x) converge uniformément sur [a,+∞[. On a

v(p)n (x) = (−1)p(lnn)pn−x.

On souhaite appliquer le critère des séries alternées à
∑

n≥1(−1)n+1vn(x) mais il faut
vérifier que la valeur absolue du terme général est bien décroissante. Pour cela, on introduit
h(t) = (ln t)pt−x. Alors h est dérivable et h′(t) = (ln t)p−1t−x−1(p − lnx). Lorsque n est
supérieur à exp(p/x), on a h(n+ 1) ≤ h(n) et donc la série vérifie bien le critère des séries
alternées. En particulier, pour tout x ∈ [a,+∞[, pour tout n ≥ exp(p/a) (remarquons que
ce terme ne dépend pas du x choisi dans [a,+∞[), on a par le critère des séries alternées

|Rn(x)| ≤ lnp(n+ 1)−x ≤ lnp(n+ 1)(n+ 1)−a,

où Rn(x) désigne le reste de la série
∑

n≥1(−1)n+1v
(p)
n (x). Le reste est donc majorée indé-

pendamment de x ∈ [a,+∞[ par une suite qui tend vers 0. La série
∑

n≥1(−1)n+1v
(p)
n (x)

est donc uniformément convergente sur [a,+∞[ pour p ≥ 0, ce qui prouve que µ est de
classe C∞ sur ]0,+∞[ et que µ(p)(x) =

∑
n≥1(−1)n+1v

(p)
n (x).

3. Puisque la série définissant µ converge uniformément sur [1,+∞[, on peut appliquer le
théorème d’interversion des limites. Or, pour chaque N ≥ 1,

lim
x→+∞

N∑
n=1

(−1)n+1

nx
= 1
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(le premier terme de cette somme finie est constant égal à 1, les autres termes tendent vers
0). On en déduit que µ tend vers 1 en +∞.

4. (a) C’est un calcul simple si on remarque que µ(x) = 1 +
∑

n≥1
(−1)n+2

(n+1)x .

(b) Fixons x > 0. Alors la suite n 7→ 1
nx − 1

(n+1)x tend vers 0 et est décroissante (par
exemple, en utilisant le théorème des accroissements finis ou en étudiant la fonction
u 7→ 1

ux − 1
(u+1)x ). En particulier, la série

∑
n≥1(−1)n+1

(
1
nx − 1

(n+1)x

)
vérifie le critère

des séries alternées. Sa somme est donc du signe de son premier terme, ici positif, et
est majorée en valeur absolue par la valeur absolue du premier terme, ici 1− 1/2x. On
trouve bien que

0 ≤ −1 + 2µ(x) ≤ 1− 1

2x
.

(c) Il suffit d’écrire que
1

2
≤ µ(x) ≤ 1− 1

2x+1

et d’appliquer le théorème des gendarmes.

Exercice 15.Exercice 15.

Pour x ≥ 0 et n ≥ 1, on pose fn(x) =
x√

n(x+ n)
.

1. Montrer que la série de fonctions de terme général fn est simplement convergente sur R+.
On note f sa somme.

2. Montrer que la série de fonctions de terme général fn est normalement convergente sur
[0,M ] pour tout M > 0. Est-elle normalement convergente sur R+ ?

3. Montrer que f est continue sur R+ puis qu’elle est dérivable et croissante sur R+.

4. Soit n ≥ 1 et x0 ≥ n ≥ 1. Montrer que f(x0) ≥
n∑

k=1

1

2
√
k

. En déduire que

lim
x→+∞

f(x) = +∞.

5. Montrer que lim
x→+∞

f(x)

x
= 0.

Correction.

1. Le réel x étant fixé dans R+, fn(x) ∼+∞
x

n3/2 si x 6= 0, et fn(0) = 0. Ceci prouve la
convergence de

∑
n fn(x).

2. Pour x ∈ [0,M ], on a
0 ≤ fn(x) ≤

M√
n(0 + n)

=
M

n
√
n
.

Le membre de droite est le terme général d’une série numérique convergente. On a donc
prouvé la convergence normale de

∑
n fn sur [0,M ]. La convergence n’est pas normale sur

R. En effet, on a
‖fn‖∞ ≥ fn(n) =

n√
n(n+ n)

=
1

2
√
n
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et
∑

n ‖fn‖∞ est divergente.
3. La série de fonctions convergeant normalement, donc uniformément, sur tout intervalle

[0,M ], et chaque fonction fn étant continue, la somme f est continue sur tout intervalle
[0,M ], donc sur R. Pour montrer la dérivabilité sur R, on va s’intéresser à la série des
dérivées

∑
n f

′
n. En effet, chaque fn est de classe C1 sur R+ et un calcul simple prouve que

f ′
n(x) =

√
n

(x+ n)2
.

On va prouver la convergence normale de
∑

n f
′
n sur tout [0,+∞[. On a en effet, pour x ≥ 0,

0 ≤ f ′
n(x) ≤

1

n3/2
.

Le membre de droite est une série numérique convergente,
∑

n f
′
n converge normalement

sur [0,+∞[ et donc f est de classe C1 sur [0,+∞[ avec f ′(x) =
∑

n f
′
n(x) ≥ 0 puisque

chaque f ′
n est positive. Ainsi, f est croissante sur [0,+∞[.

4. Si x0 ≥ n ≥ 1, alors

f(x0) ≥
n∑

k=1

x0√
k(x0 + n)

.

Puisque 2x0 ≥ x0 + n, on a
x0

x0 + n
≥ 1

2

et on trouver bien que

f(x0) ≥
n∑

j=1

1

2
√
k

(on pouvait aussi démontrer cette propriété en utilisant la croissance de f et plus particu-
lièrement l’inégalité f(x0) ≥ f(n)). Déduisons en que la limite de f en +∞ est +∞. Fixons
A > 0. La série

∑
k≥1

1
2
√
k

étant positive et divergente, on peut trouver un entier n > 0 tel
que

∑n
k=1

1
2
√
k
≥ A. Pour tout x ≥ n, on a

f(x) ≥
n∑

k=1

1

2
√
k
≥ A.

Ceci implique que f tend vers +∞ en +∞.
5. On sait que

f(x)

x
=

+∞∑
n=1

1√
n(x+ n)

.

De plus, la série
∑

n≥1
1√

n(x+n)
converge normalement sur R+. En effet, pour tout x ≥ 0,

on a ∣∣∣∣ 1√
n(x+ n)

∣∣∣∣ ≤ 1

n3/2
,

terme général d’une série convergente. De plus,

lim
n→+∞

1√
n(n+ x)

= 0.

D’après le théorème d’interversion des limites,

lim
x→+∞

f(x)

x
=

∑
n≥1

0 = 0.
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Exercice 16.Exercice 16.

Pour x ∈ R, on pose un(x) =
1

n+n2x .

1. Étudier la convergence simple de la série
∑

n≥1 un(x). On note S(x) sa somme.
2. Démontrer que S est définie et continue sur R∗

+.
3. Étudier la monotonie de S sur R∗

+.
4. Déterminer la limite de S en +∞.
5. Justifier que S admet une limite en 0. Démontrer que, pour tout entier N , on a

lim
x→0

S(x) ≥
N∑

n=1

1

n
.

En déduire la valeur de limx→0 S(x).

Correction.

1. Remarquons d’abord que s’il existe n ≥ 1 de sorte que x = − 1
n , alors un(x) n’est pas définie.

On considère donc x ∈ R qui n’est pas égal à l’un des − 1
n . Si x = 0, alors un(x) ∼n→+∞

1
n ,

et donc la série est divergente. Si x 6= 0, alors un(x) ∼n→+∞
1

n2x et donc la série est
convergente. On en déduit que la série converge simplement sur R∗\{− 1

n ; n ≥ 1}.
2. On va démontrer la convergence normale de la série de fonctions sur tout intervalle [a,+∞[,

avec a > 0. Chaque un étant continue, ceci démontrera que S est continue sur [a,+∞[.
Puisque a > 0 est arbitraire, ceci prouvera la continuité de S sur R∗

+. Donc, pour x ≥ a,
on a

0 ≤ un(x) ≤
1

n+ n2a
.

Or, 1
n+n2a est le terme général d’une série numérique convergente. Donc la série

∑
n≥1 un(x)

converge normalement sur [a,+∞[.
3. Chaque un étant décroissante sur R∗

+, il en est de même de la somme S. On aurait pu aussi
démontrer que S est dérivable sur R∗

+, et étudier le signe de la dérivée.
4. Par convergence normale, donc uniforme, sur [1,∞[, on a

lim
x→+∞

∑
n≥1

un(x) =
∑
n≥1

lim
x→+∞

un(x) = 0.

5. Puisque S est décroissante sur R∗
+, S admet une limite en 0. Pour x > 0, on a

S(x) ≥
N∑

n=1

1

n+ n2x
.

On passe à la limite, et on obtient

lim
x→0

S(x) ≥
N∑

n=1

1

n
.

Fixons maintenant A > 0. Par divergence de la série de terme général 1
n , on sait qu’il existe

N ∈ N de sorte que
N∑

n=1

1

n
≥ A.
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On a donc
lim
x→0

S(x) ≥ A.

Puisque A est arbitraire, il vient limx→0 S(x) = +∞.

Exercice 17.Exercice 17.

On considère la série de fonctions
∑

n≥1
e−nt

1+n2 et on note f sa somme.
1. Quel est le domaine de définition de f ?
2. Démontrer que f est continue sur R+ et de classe C∞ sur ]0,+∞[.
3. On fixe A > 0.

(a) Justifier l’existence d’un entier N ≥ 1 tel que

N∑
n=1

n

1 + n2
≥ A.

(b) En déduire qu’il existe δ > 0 tel que, pour tout h ∈]0, δ[,

N∑
n=1

e−nh − 1

h(1 + n2)
≤ −A+ 1.

(c) Démontrer que f n’est pas dérivable en 0, mais que sa courbe représentative admet
une tangente verticale au point d’abscisse 0.

4. Déterminer la limite de f en +∞.

Correction.

1. Pour t < 0, e−nt

1+n2 ne tend pas vers 0. La série diverge donc grossièrement. Pour t ≥ 0, on a
l’inégalité suivante :

0 ≤ e−nt

1 + n2
≤ 1

1 + n2
.

Comme le terme de droite est le terme général d’une série convergente, la série
∑

n
e−nt

1+n2

est convergente. Donc le domaine de définition de f est [0,+∞[.
2. L’inégalité précédente prouve en fait que la série de fonctions est normalement convergente

sur [0,+∞[. Chaque fonction t 7→ e−nt

1+n2 étant continue, f est elle-même continue. On va
maintenant étudier la convergence normale des séries dérivées. Fixons a > 0 et posons
fn(t) =

e−nt

1+n2 . Alors, pour k ≥ 1, on a

f (k)
n (t) = (−1)knk e−nt

1 + n2
.

En particulier, pour t ≥ a, on a ∣∣∣f (k)
n (t)

∣∣∣ ≤ nk e−na

1 + n2
.
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Or, le terme apparaissant à droite est le terme général d’une série convergente, puisque
a > 0 et donc

nk e−na

1 + n2
= o(n−2).

Ainsi, chaque série
∑

n f
(k)
n converge normalement sur [a,+∞[. Ceci prouve que f est de

classe C∞ sur [a,+∞[. Comme a > 0 est arbitraire, la fonction est de classe C∞ sur ]0,+∞[.
3. (a) Puisque n

1+n2 ∼+∞
1
n , la série

∑
n≥1

n
1+n2 est divergente, et la suite de ces sommes

partielles tend vers +∞. On en déduit l’existence de N ≥ 1 tel que

N∑
n=1

n

1 + n2
≥ N.

(b) Lorsque h tend vers 0, la quantité
∑N

n=1
e−nh−1
h(1+n2) converge vers

∑N
n=1

−n
1+n2 ≤ −A. En

particulier, il existe δ > 0 tel que, pour tout h ∈]0, δ[, on a

N∑
n=1

e−nh − 1

h(1 + n2)
≤ −A+ 1.

(c) Le taux de variation de f en 0 est égal à

f(h)− f(0)

h
=

+∞∑
n=1

e−nh − 1

h(1 + n2)
.

Puisque, pour tout n ≥ 1, e−nh ≤ 1, on en déduit que

f(h)− f(0)

h
≤

N∑
n=1

e−nh − 1

h(1 + n2)
.

D’après le résultat de la question précédente, on peut trouver δ < 0 tel que, pour tout
h ∈]0, δ[, on a

f(h)− f(0)

h
≤ −A+ 1.

Ceci est la définition de limh→0+
f(h)−f(0)

h = −∞. Ainsi, f n’est pas dérivable en 0,
mais sa courbe représentative admet au point d’abscisse 0 une tangente verticale.

4. Puisque la série définissant f converge normalement sur R, on peut appliquer le théorème
d’interversion des limites. On en déduit

lim
t→+∞

∑
n≥1

e−nt

1 + n2
=

∑
n≥1

lim
t→+∞

e−nt

1 + n2
= 0.

Exercice 18.Exercice 18.

Sur I =]− 1,+∞[, on pose

S(x) =

+∞∑
n=1

(
1

n
− 1

n+ x

)
.
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1. Montrer que S est définie et continue sur I.
2. Étudier la monotonie de S.
3. Calculer S(x+ 1)− S(x).
4. Déterminer un équivalent de S(x) en −1+.
5. Établir que, pour tout n ∈ N, S(n) =

∑n
k=1

1
k .

6. En déduire un équivalent de S(x) en +∞.

Correction.

1. Posons, pour x ∈ I, un(x) =
1
n − 1

n+x = x
n(n+x) . On a, pour x > −1 fixé, un(x) ∼n→+∞

x
n2

et donc la série
∑

n un(x) est convergente. Pour prouver la continuité de S sur I, fixons
−1 < a < b et prouvons la convergence normale sur [a, b]. On a en effet, pour tout x ∈ [a, b],

|un(x)| ≤
max(|a|, |b|)
n(n+ a)

.

Le membre de droite est le terme général d’une série numérique convergente, et donc la
série converge normalement sur [a, b].

2. Il est facile de vérifier (par exemple en les dérivant) que toutes les fonctions un sont crois-
santes. Donc S est croissante.

3. On a

S(x+ 1)− S(x) =

+∞∑
n=1

(
1

n
− 1

n+ x+ 1

)
−

+∞∑
n=1

(
1

n
− 1

n+ x

)

=

+∞∑
n=2

(
1

n− 1
− 1

n+ x

)
−

+∞∑
n=1

(
1

n
− 1

n+ x

)

=

+∞∑
n=2

(
1

n− 1
− 1

n

)
− 1 +

1

x+ 1

= 1− 1 +
1

x+ 1

=
1

x+ 1
.

4. On remarque que S(0) = 0. Par continuité de S en 0, S(x+1) → 0 si x → −1+. On a donc

S(x) = S(x+ 1)− 1

x+ 1
∼−1+

−1

x+ 1
.

5. D’après la troisième question, on sait que pour tout n ∈ N,

S(n+ 1)− S(n) =
1

n+ 1
.

Sachant que S(0) = 0, une récurrence immédiate établit immédiatement le résultat voulu.
6. On a, par croissance de la fonction S, pour tout x > 0,

S([x]) ≤ S(x) ≤ S([x] + 1)
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soit
lnx

ln[x] ×
lnS([x])

ln[x] ≤ S(x)

lnx
≤ lnx

ln[x] ×
lnS([x+ 1])

ln[x] .

On montre facilement que les membres de gauche et de droite de cette inégalité tendent
vers 1, notamment parce que ln(x)/ ln([x]) tend vers 1 si x tend vers +∞. C’est donc que

S(x) ∼+∞ ln(x).

c. Exercices d’approfondissement

Exercice 19.Exercice 19.

Soit (fn)n⩾1 la suite de fonctions définies sur [−1, 1] par fn(t) =
1

n
tn sinnt.

1. Montrer que la série
∑

fn converge simplement sur ]− 1, 1[.
2. Soit a ∈]0, 1[.

(a) Montrer que la série
∑

f ′
n converge normalement sur [−a, a].

(b) En déduire que la fonction f =

+∞∑
n=1

fn est de classe C1 sur ] − 1, 1[ et montrer que,

pour x ∈]− 1, 1[,

f ′(x) =
sinx+ x cosx− x2

1− 2x cosx+ x2
.

(c) Montrer que f(t) = arctan t sin t

1− t cos t pour t ∈]− 1, 1[.

3. On pose pour tout n ∈ N∗ et t ∈ [−1, 1], An(t) =

n∑
k=1

tk sin k t.

(a) Montrer qu’il existe M > 0 tel que pour tout n ∈ N∗ et t ∈ [−1, 1] on ait |An(t)| ⩽ M.

(b) Montrer en écrivant tk sin(k t) = Ak(t)−Ak−1(t) que

n∑
k=1

tk sin k t

k
=

n−1∑
k=1

Ak(t)

k(k + 1)
+

An(t)

n
.

(c) En déduire que la série
∑

n fn converge simplement sur [−1, 1] et que f(t) =
+∞∑
k=1

Ak(t)

k(k + 1)
sur [−1, 1]. Montrer que f est continue sur cet intervalle.

(d) En déduire les valeurs de
+∞∑
n=1

sinn

n
et de

+∞∑
n=1

(−1)n sinn

n
.
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Correction.

1. Pour x ∈]− 1, 1[ fixé, on a

|fn(x)| ≤
xn

n
= o

(
1

n2

)
,

et donc la série (numérique)
∑

n fn(x) converge (absolument) pour tout x ∈]− 1, 1[. Autre-
ment dit, la série (de fonctions)

∑
n fn converge simplement sur ]− 1, 1[.

2. (a) On commence par calculer f ′
n :

f ′
n(x) = xn−1 sin(nx) + xn cos(nx).

Pour tout x ∈ [−a, a], on a
|f ′

n(x)| ≤ 2an−1,

qui est le terme général d’une série convergente. Ainsi,
∑

n f
′
n converge normalement

sur [−a, a].
(b)

∑
n fn converge simplement vers f sur ] − 1, 1[, chaque fn est C1 et

∑
n f

′
n converge

normalement, donc uniformément, sur [−a, a]. Ainsi, f est C1 sur [−a, a] avec f ′ =∑
n f

′
n. Comme a est arbitraire dans ]0, 1[, f est C1 sur ] − 1, 1[, de dérivée f ′(x) =∑

n≥1 f
′
n(x). En fait, on peut effectivement calculer f ′. En effet, pour x ∈] − 1, 1[,

puisque xeix 6= 1,

f ′
n(x) =

1

x

∑
n≥1

=m
((
xeix

)n)
+

∑
n≥1

<e
((
xeix

)n)
= =m

(
eix

1− xeix

)
+ <e

(
xeix

1− xeix

)
= =m

(
eix(1− xe−ix)

(1− xeix)(1− xe−ix)

)
+ <e

(
xeix(1− xe−ix)

(1− xeix)(1− xe−ix)

)
= =m

(
eix − x

1− 2x cosx+ x2

)
+ <e

(
xeix − x2

1− 2x cosx+ x2

)
=

sinx+ x cosx− x2

1− 2x cosx+ x2
.

(c) Posons g(t) = arctan t sin t

1− t cos t . Un calcul facile (mais fastidieux !) prouve que g′(t) =

f ′(t) pour tout t ∈]− 1, 1[. De plus, g(0) = f(0) = 0. C’est bien que f = g sur ]− 1, 1[.
3. (a) On calcule cette somme de la même façon qu’à la question précédente :

An(t) = =m
(
teit − tn+1ei(n+1)t

1− teit

)
.

Or, |teit − tn+1ei(n+1)t| ≤ 2 pour t ∈ [−1, 1], et 1− teit est une fonction continue qui
ne s’annule pas sur [−1, 1]. Elle est donc minorée par une constante a > 0, et donc

|An(t)| ≤
2

a
.

(b) C’est un calcul direct en faisant un changement d’indices dans la somme.
(c) La seule nouveauté est la convergence en 1 et en -1, mais on traite tout [−1, 1]. On a

d’une part, pour tout t ∈ [−1, 1],

An(t)

n
→ 0.
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D’autre part, puisque ∣∣∣∣ Ak(t)

k(k + 1)

∣∣∣∣ ≤ M

k

2

,

la série
∑

k
Ak(t)
k(k+1) converge (absolument). Ceci signifie que la suite

(∑n−1
k=1

Ak(t)
k(k+1)

)
n

admet une limite. De l’écriture obtenue à la question précédente, on déduit que la
somme

∑n
k=1 fk(t) converge et que

f(t) =
∑
k≥1

fk(t) =

+∞∑
k=1

Ak(t)

k(k + 1)
.

Or, la série
∑+∞

k=1
Ak(t)
k(k+1) converge normalement sur l’intervalle [−1, 1], puisque

|Ak(t)|
k(k + 1)

≤ M

k(k + 1)
.

Chaque terme t 7→ Ak(t)
k(k+1) étant continue, f est elle-même continue sur [−1, 1].

(d) Prenons l’égalité
f(t) = arctan t sin t

1− t cos t
valable pour t ∈]− 1, 1[. On fait tendre t vers 1 dans les deux membres. Comme on a
deux fonctions continues, on obtient∑

n≥1

sinn

n
= arctan

(
sin 1

1− cos 1

)
.

On peut simplifier ce résultat à l’aide des formules de trigonométrie pour obtenir que∑
n≥1

sinn

n
=

π − 1

2
.

Exercice 20.Exercice 20.

Soit la série de fonctions
∑

n≥2 fn, avec fn(x) =
xe−nx

lnn
. On note S sa somme.

1. Etudier la convergence simple, normale, uniforme de cette série sur [0,+∞[.
2. Montrer que S est de classe C1 sur ]0,+∞[.
3. Montrer que S n’est pas dérivable à droite en 0.
4. Montrer que, pour tout k, S(x) = o(x−k) en +∞.

Correction.

1. La convergence simple est immédiate. Pour la convergence normale, remarquons que le
maximum de xe−nx sur [0,+∞[ est 1

en
. Donc ‖fn‖∞ = 1

en ln n . Mais la série de Bertrand
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1
n ln nn diverge, et notre série ne converge pas normalement sur [0,+∞[. Prouvons mainte-
nant la convergence uniforme : pour x > 0, on a :

0 ≤ Rn(x) ≤
x

lnn+ 1

+∞∑
k=n+1

e−kx =
xe−nx

(ex − 1) ln(n+ 1)
≤ 1

ln(n+ 1)
,

où on a utilisé pour la dernière inégalité que ex − 1 ≥ x. C’est aussi vrai pour x = 0 : il y
a convergence uniforme sur [0,+∞[.

2. On peut prouver que S est de classe C1 sur ]0,+∞[ en étudiant la convergence uniforme de
S′ sur [a, b] ⊂]0,+∞[. Mais il y a plus malin : posons A(u) =

∑
n≥2

un

ln n . Cette série entière
a pour rayon de convergence 1 d’après la règle de D’Alembert. La fonction A est donc C∞

sur ] − 1, 1[. Comme x 7→ e−x est de classe C∞ et envoie ]0,+∞[ sur ]0, 1[, la fonction S
définie par S(x) = xA(e−x) est C∞ sur ]0,+∞[.

3. On a, pour x > 0, et N > 0 :

S(x)

x
≥

N∑
n=2

e−nx

lnn
≥ e−Nx

N∑
n=2

1

lnn
.

Posons xN = 1
N . On a e−Nx = 1

e , et

S(xN )

xN
≥ 1

e

N∑
n=2

1

lnn
.

S n’est pas dérivable en 0 (en travaillant un tout petit peu plus, on aurait pu prouver que
la limite de S(x)/x en 0 est +∞).

4. Avec les notations de la deuxième question, on a A(u) ∼0
u2

ln2 . Donc S(x) ∼+∞
xe−2x

ln 2 , ce
qui prouve bien ce que l’on cherchait à montrer. Cette méthode est assez astucieuse. On
pouvait également faire plus classique en utilisant une méthode de “double limite”.
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