
Feuille d’exercices no13
Mathématiques spéciales

Exercices obligatoires : 1 ; 2 ; 4 ; 5 ; 9 ; 11 ; 12 ; 15 ; 20 ; 23 ; 26.

1. Révision de Sup’ sur les séries numériques

Exercice 1.Exercice 1.

Étudier la convergence des séries
∑

un suivantes :

1. un =

(
1

2

)√
n

2. un = ann!, a ∈ R 3. un = ne−
√
n

4. un =
ln(n2 + 3)

√
2n + 1

4n
. 5. un =

lnn

ln(en − 1)
6.

(
1

n

)1+ 1
n

.

Exercice 2.Exercice 2.

Donner la nature des séries numériques
∑

un suivantes :

1. un = 1− cos π
n

2. un =

√
ch 1

n
− 1

3. un =

(
n

n+ 1

)n2 .

Exercice 3.Exercice 3.

Montrer que la série de terme général

un =
1√
n− 1

− 2√
n
+

1√
n+ 1

(pour n ≥ 2) est convergente, et calculer sa somme.

Exercice 4.Exercice 4.

Sachant que e =
∑

n≥0
1
n! , déterminer la valeur des sommes suivantes :

1.
∑
n≥0

n+ 1

n!
2.

∑
n≥0

n2 − 2

n!
3.

∑
n≥0

n3

n!
.
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Exercice 5.Exercice 5.

Soit
∑

n un une série à termes positifs.
1. On suppose que

∑
n un converge. Prouver que, pour tout α > 1,

∑
n u

α
n converge.

2. On suppose que
∑

n un diverge. Prouver que, pour tout α ∈]0, 1[,
∑

n u
α
n diverge.

Exercice 6.Exercice 6.

Soit (un) une suite de réels positifs. On pose vn = un

1+un
.

1. Prouver que la fonction x 7→ x
1+x est croissante sur [0,+∞[.

2. Démontrer que les séries
∑

n un et
∑

n vn sont de même nature.

Exercice 7.Exercice 7.

Soit (un) une suite de nombres réels. Dire si les affirmations suivantes sont vraies ou fausses.
1. Si un > 0 et si la série

∑
un converge, alors un+1/un a une limite strictement inférieure à

1.
2. Si un > 0 et si la série

∑
un converge, alors (un) est décroissante à partir d’un certain

rang.
3. Si un > 0, et si la série

∑
un converge, alors la série de terme général u2

n converge.
4. Si (−1)nnun → 1, la série

∑
un converge.

5. Si (−1)nn2un → 1, la série
∑

un converge.

Exercice 8.Exercice 8.

Soit (un) une suite positive et décroissante. Prouver que si la série
∑

n un est convergente, alors
(nun) tend vers 0.

2. Séries : techniques de Spé

a. Exercices basiques

Exercice 9.Exercice 9.

Étudier les séries de terme général suivant :

1. un =
n!

nan
, a ∈ R 2. un =

nα(lnn)n

n!
avec α ∈ R 3. un = (n!)α

(2n)! , α ∈ R.
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Exercice 10.Exercice 10.

Soit, pour n ≥ 1 et a > 0, la suite un = ann!
nn .

1. Étudier la convergence de la série
∑

n un lorsque a 6= e.
2. Lorsque a = e, prouver que, pour n assez grand, un+1/un ≥ 1. Que dire de la nature de la

série
∑

n un ?

Exercice 11.Exercice 11.

Soit A =

(
4/3 −5/6
5/3 −7/6

)
. Démontrer que la série

∑
An converge, et donner la valeur de

∑
n≥0 A

n.

Exercice 12.Exercice 12.

Déterminer un équivalent simple de ln(n!).

Exercice 13.Exercice 13.

Étudier la nature des séries
∑

un suivantes :

1. un =
sinn2

n2
2. un =

(−1)n lnn

n

3. un =
cos(n2π)

n lnn

Exercice 14.Exercice 14.

1. Démontrer que la série
∑

n
(−1)n√

n
converge.

2. Démontrer que (−1)n√
n+ (−1)n

=
(−1)n√

n
− 1

n
+

(−1)n

n
√
n

+ o

(
1

n
√
n

)
.

3. Étudier la convergence de la série
∑
n

(−1)n√
n+ (−1)n

.

4. Qu’a-t-on voulu mettre en évidence dans cet exercice ?

Exercice 15.Exercice 15.

Suivant la valeur de α ∈ R, déterminer la nature de la série
∑

n un, où

un =

√
1 +

√
2 + · · ·+

√
n

nα
.
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Exercice 16.Exercice 16.

On souhaite étudier, suivant la valeur de α, β ∈ R, la convergence de la série de terme général

un =
1

nα(lnn)β
.

1. Démontrer que la série converge si α > 1.
2. Traiter le cas α < 1.
3. On suppose que α = 1. On pose Tn =

∫ n

2
dx

x(ln x)β
.

(a) Montrer si β ≤ 0, alors la série de terme général un est divergente.
(b) Montrer que si β > 1, alors la suite (Tn) est bornée, alors que si β ≤ 1, la suite (Tn)

tend vers +∞.
(c) Conclure pour la série de terme général un, lorsque α = 1.

Exercice 17.Exercice 17.

1. En remarquant que 1
n ∼+∞ ln(n+ 1)− ln(n), donner un équivalent de la somme

∑n
k=1

1
k .

2. En remarquant que 1
n2 ∼+∞

1
n(n−1) , donner un équivalent du reste

∑+∞
k=n+1

1
k2 .

Exercice 18.Exercice 18.

Soit pour n ≥ 1, un = 1
(2n−1)52n−1 .

1. Montrer que la série de terme général un converge.
2. On note Rn =

∑+∞
k=n+1 uk. Montrer que Rn ≤ 25

24un+1.
3. En déduire la valeur de

∑+∞
n=1 un à 0,001 près.

Exercice 19.Exercice 19.

Écrire un algorithme sous Python donnant un encadrement à 10−5 près de
∑

n≥1
(−1)n

n ln(n+1) .

Exercice 20.Exercice 20.

Soient (a, b) ∈ C2 tels que |a| < 1 et |b| < 1. Prouver que
1

(1− a)(1− b)
=

+∞∑
n=0

an+1 − bn+1

a− b
si a 6= b,

1

(1− a)2
=

+∞∑
n=0

(n+ 1)an si a = b.
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Exercice 21.Exercice 21.

Pour n ≥ 0, on pose wn = 2−n
∑n

k=0
4k

k! .
1. Montrer que la série de terme général wn converge.
2. Calculer sa somme en utilisant le produit d’une série géométrique par une autre série

classique.

Exercice 22.Exercice 22.

Soit, pour n ≥ 0, un = (−1)n√
n+1

.
1. Vérifier que

∑
n un est semi-convergente.

2. Montrer que le produit de Cauchy de
∑

un par
∑

un ne converge pas.
3. Soit σ : N → N définie par σ(3p) = 2p, σ(3p+1) = 4p+1, σ(3p+2) = 4p+3. Vérifier que

σ est une permutation de N. Que peut-on dire de la série
∑

n uσ(n) ?

b. Exercices d’entraînement

Exercice 23.Exercice 23.

1. Soit (an) et (bn) deux suites de réels strictement positifs. On suppose qu’il existe N ∈ N
tel que, pour tout n ≥ N , an+1

an
≤ bn+1

bn
.

(a) Démontrer que pour tout n ≥ N , bNan ≤ aNbn.
(b) En déduire que

i. Si
∑

bn converge, alors
∑

an converge.
ii. Si

∑
an diverge, alors

∑
bn diverge.

2. Soit α > 0 et bn = 1
nα . Justifier que

bn+1

bn
= 1− α

n
+ o

(
1

n

)
.

3. Soit (an) une suite de réels positifs telle qu’il existe β ∈ R avec

an+1

an
= 1− β

n
+ o

(
1

n

)
.

(a) On suppose β > 1. Démontrer qu’il existe α > 1 et N ∈ N tel que, pour tout n ≥ N ,
on ait, en gardant les mêmes notations pour (bn),

an+1

an
≤ bn+1

bn
.

En déduire que
∑

n an converge.
(b) Démontrer que si β < 1, alors

∑
n an diverge.

(c) Application : Soit an = (2n)!
(n!)2

(
1
4

)n. Démontrer que
∑

n an diverge.
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Exercice 24.Exercice 24.

Soit (un) une suite à termes positifs telle qu’il existe a ∈ R vérifiant

un+1

un
= 1− a

n
+ o

(
1

n

)
.

1. On suppose a > 1. Soit b ∈]1, a[ et posons vn = 1
nb . Comparer un et vn. En déduire que∑

n un converge si a > 1.
2. Démontrer que

∑
n un diverge si a < 1.

3. En utilisant les séries de Bertrand, montrer que le cas a = 1 est douteux.
4. On suppose que un+1

un
= 1− 1

n +O
(

1
n2

)
. On pose vn = ln(nun) et wn = vn+1 − vn.

(a) Montrer que wn = O
(

1
n2

)
.

(b) En déduire que un ∼ λ
n avec λ > 0 et que

∑
un est divergente.

Exercice 25.Exercice 25.

Déterminer lim
a→+∞

+∞∑
n=1

a

n2 + a2
.

Exercice 26.Exercice 26.

Le but de l’exercice est de calculer
∑

n≥1
1
n2 et de donner un développement asymptotique de

la somme partielle Sn =
∑n

k=1
1
k2 .

1. (a) Soit α > 1 et k ≥ 2. Démontrer que∫ k+1

k

dt

tα
≤ 1

kα
≤

∫ k

k−1

dt

tα
.

(b) En déduire que ∑
k≥n

1

kα
∼+∞

1

(α− 1)nα−1
.

2. Soit f une fonction de classe C1 sur [0, π]. Démontrer que∫ π

0

f(t) sin
(
(2n+ 1)t

2

)
dt −→n→+∞ 0.

3. On pose An(t) =
1
2 +

∑n
k=1 cos(kt). Vérifier que, pour t ∈]0, π], on a

An(t) =
sin ((2n+ 1)t/2)

2 sin(t/2) .

4. Déterminer deux réels a et b tels que, pour tout n ≥ 1,∫ π

0

(at2 + bt) cos(nt)dt = 1

n2
.

Vérifier alors que ∫ π

0

(at2 + bt)An(t)dt = Sn − π2

6
.
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5. Déduire des questions précédentes que Sn → π2

6 .

6. Déduire des questions précédentes que

Sn =
π2

6
− 1

n
+ o

(
1

n

)
.

Exercice 27.Exercice 27.

Le but de l’exercice est de déterminer un équivalent du reste de certaines séries alternées.
On considère (un)n≥0 une suite de réels positifs décroissant vers 0, et on considère la série∑

n≥0(−1)nun dont on rappelle qu’elle est convergente. On note Rn =
∑+∞

k=n+1(−1)kuk son
reste. On suppose de plus que la suite (un) vérifie les deux conditions suivantes :

∀n ≥ 0, un+2 − 2un+1 + un ≥ 0 et lim
n→+∞

un+1

un
= 1.

1. Démontrer que pour tout n ≥ 0, |Rn|+ |Rn+1| = un+1.
2. Démontrer que la suite (|Rn|) est décroissante.

3. En déduire que Rn ∼+∞
(−1)n+1un

2 .

c. Exercices d’approfondissement

Exercice 28.Exercice 28.

Soient (un) et (an) deux suites de réels strictement positifs.
1. On suppose qu’il existe p ∈ N et A > 0 tels que, pour tout n ≥ p, on a

an
un

un+1
− an+1 ≥ A.

Démontrer que la série
∑

n un converge.
2. On suppose qu’il existe un entier p ∈ N tel que, pour tout n ≥ p, on a

an
un

un+1
− an+1 ≤ 0.

On suppose en outre que
∑

n
1
an

diverge. Prouver que
∑

n un diverge.
3. Application 1 : retrouver la règle de d’Alembert.
4. Application 2 : étudier la convergence de

∑
n un pour

un =
1× 3× 5× · · · × (2n− 1)

2× 4× · · · × 2n
et un =

1

n
× 1× 3× 5× · · · × (2n− 1)

2× 4× · · · × 2n
.
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Exercice 29.Exercice 29.

Soit (un) une suite de réels positifs telle que
∑

n un diverge. On note Sn =
∑n

k=1 uk. A l’aide
d’une comparaison à une intégrale, démontrer que pour tout α > 1, la série

∑
n

un

Sα
n

est conver-
gente.

Exercice 30.Exercice 30.

Soit f : [1,+∞[→ C une fonction de classe C1 telle que f ′ est intégrable sur [1,+∞[.
1. Pour n ∈ N, on pose

un =

∫ n+1

n

f(t)dt− f(n).

Démontrer que
∑

n un est absolument convergente.
2. Démontrer que la série numérique

∑
f(n) converge si et seulement si la suite

(∫ n

1
f(t)dt

)
converge.

3. Application : étudier la nature de
∑

n
sin(

√
n)

n .
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