Mathématiques spéciales

Feuille d'exercices n°9 bis : révisions d'algèbre linéaire de Sup'

Exercices à traiter en priorité:

Exercices: 1; 3; 9; 15; 16; 18; 19; 30; 39; 46; 53.

1. Exercices basiques

Exercice 1.

Résoudre les systèmes linéaires suivants (de préférence avec le pivot de Gauss) :

$$\begin{cases} x+y+2z & = & 3 \\ x+2y+z & = & 1 \\ 2x+y+z & = & 0 \end{cases} \qquad \begin{cases} x+2z & = & 1 \\ -y+z & = & 2 \\ x-2y & = & 1 \end{cases}$$

Exercice 2.

Résoudre les systèmes suivants :

$$\begin{cases} x+y+z-3t &= 1 \\ 2x+y-z+t &= -1 \end{cases} \begin{cases} x+2y-3z &= 4 \\ x+3y-z &= 11 \\ 2x+5y-5z &= 13 \\ x+4y+z &= 18 \end{cases}$$

Exercice 3.

Soit $E = \mathbb{R}^3$. On note $\mathcal{B} = \{\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3\}$ la base canonique de E et u l'endomorphisme de \mathbb{R}^3 défini par la donnée des images des vecteurs de la base :

$$u(\mathcal{E}_1) = -2\mathcal{E}_1 + 2\mathcal{E}_3, u(\mathcal{E}_2) = 3\mathcal{E}_2, u(\mathcal{E}_3) = -4\mathcal{E}_1 + 4\mathcal{E}_3.$$

- 1. Écrire la matrice de u dans la base canonique.
- 2. Déterminer une base de ker u. u est-il injectif? peut-il être surjectif? Pourquoi?
- 3. Déterminer une base de Im u. Quel est le rang de u?
- 4. Montrer que $E = \ker u \bigoplus \operatorname{Im} u$.

Exercice 4.

Montrer que $P_1(X) = (X-1)^2$, $P_2(X) = X^2$ et $P_3(X) = (X+1)^2$ forment une base de $\mathbb{R}_2[X]$ et donner les coordonnées de $X^2 + X + 1$ dans cette base.

Exercice 5.

On considère l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^4 définie par

$$f(x, y, z) = (x + z, y - x, z + y, x + y + 2z).$$

- 1. Déterminer une base de Im(f).
- 2. Déterminer une base de ker(f).
- 3. L'application f est-elle injective? surjective?

Exercice 6.

Soit $E = \mathbb{R}^4$ et $F = \mathbb{R}^2$. On considère $H = \{(x, y, z, t) \in \mathbb{R}^4; x = y = z = t\}$. Existe-t-il des applications linéaires de E dans F dont le noyau est H?

Exercice 7.

On considère l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x,y,z) = (2x-2z,y,x-z). f est-elle une symétrie? une projection? Déterminer une base de ses éléments caractéristiques.

Exercice 8.

Soit $E = \mathcal{C}^{\infty}(\mathbb{R})$ et $\phi \in \mathcal{L}(E)$ définie par $\phi(f) = f'$. Quel est le noyau de ϕ ? Quelle est son image? ϕ est-elle injective? surjective?

Exercice 9.

Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3. On définit u l'application de E dans lui-même par

$$u(P) = P + (1 - X)P'.$$

- 1. Montrer que u est un endomorphisme de E.
- 2. Déterminer une base de Im(u).
- 3. Déterminer une base de ker(u).
- 4. Montrer que $\ker(u)$ et $\operatorname{Im}(u)$ sont deux sous-espaces vectoriels supplémentaires de E.

Exercice 10.

- 1. Pour $n \geq 2$, déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 2. Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Déduire de la question précédente la valeur de A^n , pour $n \ge 2$.

Exercice 11.

Déterminer, suivant la valeur du réel a, le rang de la matrice suivante :

$$A = \begin{pmatrix} 1 & a & a^2 & a^3 \\ a & a^2 & a^3 & 1 \\ a^2 & a^3 & 1 & a \\ a^3 & 1 & a & a^2 \end{pmatrix}.$$

Exercice 12.

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$M = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{array}\right).$$

Donner une base de $\ker(f)$ et de $\operatorname{Im}(f)$. En déduire que $M^n=0$ pour tout $n\geq 2$.

Exercice 13.

Soit u l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 dont la matrice dans leur base canonique respective est

$$A = \left(\begin{array}{ccc} 2 & -1 & 1 \\ 3 & 2 & -3 \end{array}\right).$$

On appelle (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et (f_1, f_2) celle de \mathbb{R}^2 . On pose

$$e'_1 = e_2 + e_3, \ e'_2 = e_3 + e_1, \ e'_3 = e_1 + e_2 \text{ et } f'_1 = \frac{1}{2}(f_1 + f_2), \ f'_2 = \frac{1}{2}(f_1 - f_2).$$

- 1. Montrer que (e_1', e_2', e_3') est une base de \mathbb{R}^3 puis que (f_1', f_2') est une base de \mathbb{R}^2 .
- 2. Quelle est la matrice de u dans ces nouvelles bases?

Exercice 14.

Soient $u: \mathbb{R}^2 \to \mathbb{R}^3$ et $v: \mathbb{R}^3 \to \mathbb{R}^2$ définies par u(x,y) = (x+2y,2x-y,2x+3y) et v(x,y,z) = (x-2y+z,2x+y-3z).

- 1. Montrer que u et v sont linéaires et donner les matrices de $u, v, u \circ v$ et $v \circ u$ dans les bases canoniques de leurs espaces de définition respectifs. En déduire les expressions de $u \circ v(x, y, z)$ et $v \circ u(x, y)$.
- 2. Soit $\mathcal{B}_2 = \{\mathcal{E}_1, \mathcal{E}_2\}$ et $\mathcal{B}_3 = \{\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3\}$ les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 . Montrer que $\mathcal{B}_2' := \{\mathcal{E}_1', \mathcal{E}_2'\}$ et $\mathcal{B}_3' := \{\mathcal{F}_1', \mathcal{F}_2', \mathcal{F}_3'\}$ sont des bases de \mathbb{R}^2 et \mathbb{R}^3 resp., où $\mathcal{E}_1' := \mathcal{E}_1$, $\mathcal{E}_2' := \mathcal{E}_1 \mathcal{E}_2$, $\mathcal{F}_1' := \mathcal{F}_1$, $\mathcal{F}_2' := \mathcal{F}_1 + \mathcal{F}_2$ et $\mathcal{F}_3' := \mathcal{F}_1 + \mathcal{F}_2 + \mathcal{F}_3$.
- 3. Donner la matrice P de passage de la base \mathcal{B}_2 à la base \mathcal{B}_2' puis la matrice Q de passage de la base \mathcal{B}_3 à la base \mathcal{B}_3' .
- 4. Écrire la matrice de u dans les bases \mathcal{B}'_2 et \mathcal{B}_3 puis dans les bases \mathcal{B}'_2 et \mathcal{B}'_3 et enfin celle de v dans les bases \mathcal{B}'_3 et \mathcal{B}'_2 .

Exercice 15.

Soit Δ_n le déterminant de taille n suivant :

$$\Delta_n = \begin{vmatrix} 3 & 1 & 0 & \dots & 0 \\ 2 & 3 & 1 & \ddots & \vdots \\ 0 & 2 & 3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 2 & 3 \end{vmatrix}.$$

- 1. Démontrer que, pour tout $n \ge 1$, on a $\Delta_{n+2} = 3\Delta_{n+1} 2\Delta_n$.
- 2. En déduire la valeur de Δ_n pour tout $n \geq 1$.

Exercice 16.

Soit $n \geq 2$ et $\alpha_1, \ldots, \alpha_n$ nombres complexes distincts. On se propose de calculer le déterminant suivant :

$$V(\alpha_1, \dots, \alpha_n) = \begin{vmatrix} 1 & 1 & \dots & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \dots & \alpha_n^2 \\ \vdots & \vdots & & & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \dots & \dots & \alpha_n^{n-1} \end{vmatrix}.$$

- 1. Calculer $V(\alpha_1, \alpha_2)$ et $V(\alpha_1, \alpha_2, \alpha_3)$. On les donnera sous forme factorisée.
- 2. Démontrer que $V(\alpha_1,\ldots,\alpha_{n-1},x)$ est une fonction polynômiale de x dont on précisera le degré.
- 3. En déduire que $V(\alpha_1,\ldots,\alpha_{n-1},x)=V(\alpha_1,\ldots,\alpha_{n-1})\prod_{i=1}^{n-1}(x-\alpha_i)$.
- 4. En déduire l'expression générale de $V(\alpha_1, \ldots, \alpha_n)$.

Exercice 17.

Soit $A = (a_{i,j}) \in M_n(\mathbb{R})$. On note A(x) la matrice dont le terme général est $a_{i,j} + x$.

- 1. Montrer que la fonction $x \mapsto \det(A(x))$ est une fonction polynômiale de degré inférieur ou égal à 1.
- 2. Pour a et b deux réels distincts et $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, en déduire la valeur du déterminant suivant

$$\begin{vmatrix} \alpha_1 & a & \dots & a \\ b & \alpha_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ b & \dots & b & \alpha_n \end{vmatrix}.$$

Exercice 18.

Pour $\alpha \in \mathbb{R}$, on considère

$$M_{\alpha} = \left(\begin{array}{ccc} 1 & 3 & \alpha \\ 2 & -1 & 1 \\ -1 & 1 & 0 \end{array} \right).$$

Déterminer les valeurs de α pour lesquelles l'application linéaire associée à M_{α} est bijective.

Exercice 19.

- 1. Dans \mathbb{R}^2 , considérons les sous-espaces vectoriels $D_1 = \{(x,y) \in \mathbb{R}^2; \ y = x\}$ et $D_2 = \{(x,y) \in \mathbb{R}^2; \ y = 0\}$. Démontrer que $D_1 \oplus D_2 = \mathbb{R}^2$. Considérons s la symétrie par rapport à D_1 parallèlement à D_2 et p la projection sur D_1 parallèlement à D_2 . Dessiner les sous-espaces vectoriels D_1, D_2 ainsi que l'image par p et s des vecteurs suivants : $\vec{u} = (1,0)$, $\vec{v} = (1,1)$, $\vec{w} = (2,1)$. Vérifier vos résultats par le calcul.
- 2. Dans \mathbb{R}^3 , considérons les sous-espaces vectoriels $D=\{(x,y,z)\in\mathbb{R}^3;\ y=x,z=0\}$ et $P=\{(x,y,z)\in\mathbb{R}^3;\ x=0\}$. Démontrer que $D\oplus P=\mathbb{R}^3$. Considérons s la symétrie par rapport à P parallèlement à D et p la projection sur P parallèlement à D. Dessiner les sous-espaces vectoriels D,P ainsi que l'image par p et s des vecteurs suivants : $\vec{u}=(1,0,0)$, $\vec{v}=(1,0,1)$, $\vec{w}=(2,1,0)$. Vérifier vos résultats par le calcul.

Exercice 20.

Soit f l'endomorphisme de \mathbb{R}^3 tel que f(x,y,z)=(-3x+2y-4z,2x+2z,4x-2y+5z). Montrer que f est la projection sur un plan P parallèlement à une droite D. Donner une équation cartésienne du plan P et un vecteur directeur de D.

Exercice 21.

Soit $A \in \mathbb{R}[X]$ non nul, et $\phi : \mathbb{R}[X] \to \mathbb{R}[X]$ l'application qui à un polynôme P associe son reste dans la division euclidienne par A. Démontrer que ϕ est un projecteur et préciser ses éléments caractéristiques.

Exercice 22.

Soit E un espace vectoriel et p, q deux projecteurs de E tels que $p \neq 0, q \neq 0$ et $p \neq q$. Démontrer que (p, q) est une famille libre de $\mathcal{L}(E)$.

Exercice 23.

Soient E_1, \ldots, E_n des sous-espaces vectoriels de E. On suppose que $E_1 \oplus \cdots \oplus E_n = E$. On note p_i le projecteur sur E_i parallèlement à $\bigoplus_{j \neq i} E_j$. Montrer que $p_i \circ p_j = 0$ si $i \neq j$ et que $p_1 + \cdots + p_n = Id_E$.

Exercice 24.

Soit E un K-espace vectoriel, et soit $u \in \mathcal{L}(E)$. On dit qu'un sous-espace vectoriel F de E est stable par u si $u(x) \in F$ pour tout $x \in F$. Soit p un projecteur de E. Démontrer que u commute avec p si et seulement si Im(p) et Ker(p) sont stables par u.

Exercice 25.

Pour chacun des sous-espaces vectoriels F et G de \mathbb{R}^3 suivants, déterminer s'ils sont en somme

1.
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 \mid \begin{cases} 2x + y + 3z = 0 \\ x - 2y - z = 0 \end{cases} \}$

$$\begin{aligned} &1. \ F = \left\{ (x,y,z) \in \mathbb{R}^3 \mid x+2y+z=0 \right\} \text{ et } G = \left\{ (x,y,z) \in \mathbb{R}^3 \mid \left\{ \begin{array}{l} 2x+y+3z=0 \\ x-2y-z=0 \end{array} \right\}; \\ &2. \ F = \left\{ (x,y,z) \in \mathbb{R}^3 \mid x+y+2z=0 \right\} \text{ et } G = \left\{ (x,y,z) \in \mathbb{R}^3 \mid \left\{ \begin{array}{l} 2x+y+3z=0 \\ x-2y-z=0 \end{array} \right\}. \end{aligned}$$

Exercice 26.

Dans $E = \mathbb{R}^4$, on considère les sous-espaces vectoriels $F = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}$ et $G = \{(2a, -a, 0, a), \text{ avec } a \in \mathbb{R}\}.$

- 1. Démontrer que F et G sont en somme directe.
- 2. Soit $(x, y, z, t) \in \mathbb{R}^4$. Déterminer $a \in \mathbb{R}$ tel que le vecteur $(x 2a, y + a, z, t a) \in F$.
- 3. En déduire que F et G sont supplémentaires.

Exercice 27.

Soit $E = \mathbb{R}^4$. On considère (u_1, u_2, u_3, u_4) une famille libre de E et on pose

$$F = \text{vect}(u_1 + u_2, u_3), G = \text{vect}(u_1 + u_3, u_4), H = \text{vect}(u_1 + u_4, u_2).$$

Démontrer que $F \cap G = \{0\}$, que $F \cap H = \{0\}$ et que $G \cap H = \{0\}$. La somme F + G + Hest-elle directe?

Exercice 28.

Soit $F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) : f(0) = f(1) = 0 \}$ et $G = \{ x \mapsto ax + b : a, b \in \mathbb{R} \}$.

- 1. Démontrer que F et G sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb{R},\mathbb{R})$.
- 2. Démontrer que F et G sont en somme directe.
- 3. Soit $h \in \mathcal{F}(\mathbb{R}, \mathbb{R})$. Déterminer $a, b \in \mathbb{R}$ tels que la fonction f définie pour tout $x \in \mathbb{R}$ par f(x) = h(x) - (ax + b) vérifie $f \in F$.
- 4. En déduire que F et G sont supplémentaires dans $\mathcal{F}(\mathbb{R},\mathbb{R})$.

Exercice 29.

On considère les vecteurs de \mathbb{R}^4 suivants :

$$u_1 = (0, 1, -2, 1), \quad u_2 = (1, 0, 2, -1), \quad u_3 = (3, 2, 2, -1), \quad u_4 = (0, 0, 1, 0).$$

Dire, en justifiant, si les propositions suivantes sont vraies ou fausses.

- 1. $Vect(u_1, u_2, u_3) = Vect((1, 1, 0, 0), (-1, 1, -4, 2));$
- 2. $(1,1,0,0) \in \text{Vect}(u_1,u_2) \cap \text{Vect}(u_2,u_3,u_4)$;
- 3. $Vect(u_1, u_2) + Vect(u_2, u_3, u_4) = \mathbb{R}^4$.

Exercice 30.

1. Calculer le déterminant suivant :

$$\left|\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{array}\right|.$$

2. Soit E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^2 = -Id_E$. Que dire de la dimension de E?

Exercice 31.

$$\text{Montrer que } D = \left| \begin{array}{ccc} 1+a & a & a \\ b & 1+b & b \\ c & c & 1+c \end{array} \right| = 1+a+b+c \text{ sans le développer}.$$

Exercice 32.

Pour $\alpha \in \mathbb{R}$, on considère

$$M_{\alpha} = \left(\begin{array}{ccc} 1 & 3 & \alpha \\ 2 & -1 & 1 \\ -1 & 1 & 0 \end{array} \right).$$

Déterminer les valeurs de α pour lesquelles l'application linéaire associée à M_{α} est bijective.

Exercice 33.

Calculer en mettant en évidence la factorisation le déterminant suivant :

$$D = \begin{vmatrix} 1 & \cos a & \cos 2a \\ 1 & \cos b & \cos 2b \\ 1 & \cos c & \cos 2c \end{vmatrix}.$$

Exercice 34.

Soient $s_1,\ldots,s_n\in\mathbb{R}.$ Calculer le déterminant suivant :

$$\begin{bmatrix} s_1 & \dots & s_1 \\ \vdots & s_2 & \dots & s_2 \\ \vdots & \vdots & \ddots & \vdots \\ s_1 & s_2 & \dots & s_n \end{bmatrix}.$$

Exercice 35.

Soient a_0, \dots, a_{n-1} n nombres complexes et soit

$$A = \begin{pmatrix} 0 & \dots & \dots & 0 & a_0 \\ 1 & \ddots & & \vdots & a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & a_{n-1} \end{pmatrix}.$$

Calculer $\det(A - xI_n)$.

Exercice 36.

Soient a,b,c des réels et Δ_n le déterminant de la matrice $n\times n$ suivant :

$$\Delta_n = \begin{vmatrix} a & b & 0 & \dots & 0 \\ c & a & b & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & b \\ 0 & \dots & 0 & c & a \end{vmatrix}.$$

- 1. Démontrer que, pour tout $n \ge 1$, on a $\Delta_{n+2} = a\Delta_{n+1} bc\Delta_n$.
- 2. On suppose que $a^2=4bc$. Démontrer que, pour tout $n\geq 1$, on a $\Delta_n=\frac{(n+1)a^n}{2^n}$.

8

2. Exercices d'entraînement

Exercice 37.

Soit $x \in \mathbb{R}$. Calculer

$$\begin{vmatrix} 1+x^2 & -x & 0 & \dots & 0 \\ -x & 1+x^2 & -x & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -x & 1+x^2 & -x \\ 0 & \dots & 0 & -x & 1+x^2 \end{vmatrix} .$$

Exercice 38.

Soient, dans \mathbb{R}^3 , P le plan d'équation z = x - y et D la droite d'équation x = -y = z. Trouver la matrice dans la base canonique de \mathbb{R}^3 de la projection p de \mathbb{R}^3 sur P parallèlement à D.

Exercice 39.

Soient $A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ et f l'application de $M_2(\mathbb{R})$ dans $M_2(\mathbb{R})$ définie par f(M) = AM.

- 1. Montrer que f est linéaire.
- 2. Déterminer sa matrice dans la base canonique de $M_2(\mathbb{R})$.

Exercice 40.

Soit U la matrice

$$U = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right).$$

- 1. Déterminer une relation simple liant I_4, U et U^2 .
- 2. En déduire, pour $k \geq 0$, la valeur de U^k .

Exercice 41.

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$.

- 1. On suppose que $tr(AA^T) = 0$. Que dire de la matrice A?
- 2. On suppose que, pour tout $X \in \mathcal{M}_n(\mathbb{R})$, on a $\operatorname{tr}(AX) = \operatorname{tr}(BX)$. Démontrer que A = B.

Exercice 42.

Soient (a_n) , (b_n) et (c_n) trois suites réelles telles que $a_0=1$, $b_0=2$, $c_0=7$, et vérifiant les

relations de récurrence :

$$\begin{cases} a_{n+1} = 3a_n + b_n \\ b_{n+1} = 3b_n + c_n \\ c_{n+1} = 3c_n \end{cases}$$

On souhaite exprimer a_n , b_n , et c_n uniquement en fonction de n.

- 1. On considère le vecteur colonne $X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$. Trouver une matrice A telle que $X_{n+1} = AX_n$. En déduire que $X_n = A^nX_0$.
- $AX_n. \text{ En déduire que } X_n = A^n X_0.$ 2. Soit $N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Calculer N^2, N^3 , puis N^p pour $p \ge 3$.
- 3. Montrer que :

$$A^{n} = 3^{n}I + 3^{n-1}nN + 3^{n-2}\frac{n(n-1)}{2}N^{2}.$$

4. En déduire a_n , b_n et c_n en fonction de n.

Exercice 43.

Prouver qu'une matrice A de $M_{n,p}(\mathbb{K})$ de rang r s'écrit comme somme de r matrices de rang 1.

Exercice 44.

Soit E un espace vectoriel de dimension n et $\phi \in \mathcal{L}(E)$. On dit que ϕ est une transvection si

- $--\operatorname{Im}(\phi Id_E) \subset \ker(\phi Id_E);$
- $\ker(\phi Id_E)$ est un sous-espace vectoriel de dimension n-1.

Démontrer qu'il existe une base de E dans laquelle la matrice de ϕ peut s'écrire

$$\begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ \alpha & 1 & 0 & \dots & \vdots \\ 0 & 0 & 1 & \dots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

où α est un réel non nul.

Exercice 45.

Soit $f \in \mathcal{L}(E)$ et soient α, β deux réels distincts.

1. Démontrer que $E = \text{Im}(f - \alpha I d_E) + \text{Im}(f - \beta I d_E)$. On suppose de plus que α et β sont non nuls et que

$$(f - \alpha Id_E) \circ (f - \beta Id_E) = 0.$$

- 2. Démontrer que f est inversible, et calculer f^{-1} .
- 3. Démontrer que $E = \ker(f \alpha I d_E) \oplus \ker(f \beta I d_E)$.
- 4. Exprimer en fonction de f le projecteur p sur $\ker(f \alpha Id_E)$ parallèlement à $\ker(f \beta Id_E)$.

Exercice 46.

Soit E un \mathbb{R} -espace vectoriel. Soient p et q deux projecteurs de E.

- 1. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. Montrer que, dans ce cas, on a $\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$ et $\ker(p+q) = \ker(p) \oplus \ker(q)$.

Exercice 47.

Soit E l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} , F le sous-espace vectoriel des fonctions périodiques de période 1 et G le sous-espace vectoriel des fonctions f telles que $\lim_{+\infty} f = 0$. Démontrer que $F \cap G = \{0\}$. Est-ce que F et G sont supplémentaires?

Exercice 48.

Soit E l'espace vectoriel des suites réelles,

$$F = \{ u \in E; \ \forall n \in \mathbb{N}, \ u_{2n} = 0 \}$$

$$G = \{ u \in E; \ \forall n \in \mathbb{N}, \ u_{2n} = u_{2n+1} \}.$$

Démontrer que F et G sont supplémentaires.

Exercice 49.

Soit $A \in \mathbb{R}[X]$ un polynôme non-nul et $F = \{P \in \mathbb{R}[X]; A \text{ divise } P\}$. Montrer que F est un sous-espace vectoriel de $\mathbb{R}[X]$ et trouver un supplémentaire à F.

Exercice 50.

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E tels que F+G=E. Soit F' un supplémentaire de $F\cap G$ dans F. Montrer que $F'\oplus G=E$.

Exercice 51.

Soient E un espace vectoriel et F, G, H trois sous-espaces vectoriels de E. Démontrer que F, G et H sont en somme directe si et seulement si $(F \cap G = \{0\})$ et $(F + G) \cap H = \{0\}$.

Exercice 52.

Soient $n\geq 1,\, p\geq 0.$ Calculer le déterminant suivant :

$$\begin{vmatrix} \binom{n}{0} & \binom{n}{1} & \dots & \binom{n}{p} \\ \binom{n+1}{0} & \binom{n+1}{1} & \dots & \binom{n+1}{p} \\ \vdots & \vdots & & \vdots \\ \binom{n+p}{0} & \binom{n+p}{1} & \dots & \binom{n+p}{p} \end{vmatrix} .$$

Exercice 53.

Soit $u \in \mathcal{L}(\mathbb{R}_n[X])$. Calculer $\det(u)$ dans chacun des cas suivants :

- 1. u(P) = P + P';
- 2. u(P) = P(X+1) P(X);
- 3. u(P) = XP' + P(1).

Exercice 54.

Soient a_1, \ldots, a_n des nombres complexes, $\omega = e^{2i\pi/n}$, et A et M les matrices suivantes :

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ a_n & a_1 & a_2 & \dots & a_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_2 & a_3 & \dots & \dots & a_1 \end{pmatrix},$$

$$M = \begin{pmatrix} 1 & 1 & \dots & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{pmatrix}.$$

Calculer det(AM) et en déduire det(A).

Exercice 55.

Soit ϕ l'endomorphisme de $M_n(\mathbb{R})$ défini par $\phi(A) = {}^tA$. Calculer le déterminant de ϕ .

Exercice 56.

Soit $n \geq 2$. Déterminer toutes les matrices $A \in \mathcal{M}_n(\mathbb{K})$ telles que, pour tout $B \in \mathcal{M}_n(\mathbb{K})$, on a $\det(A+B) = \det(A) + \det(B)$.

12

3. Exercices d'approfondissement

Exercice 57.

Soit E un espace vectoriel de dimension n. On souhaite démontrer qu'il existe une base de $\mathcal{L}(E)$ constituée de projecteurs. On fixe une base \mathcal{B} de E. On note $E_{i,j}$ les matrices élémentaires de $\mathcal{M}_n(\mathbb{R})$.

- 1. À quelle condition une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est-elle la matrice dans la base \mathcal{B} d'un projecteur de E.
- 2. En déduire que pour tout $i, j \in \{1, ... n\}$ avec $i \neq j$, les matrices $E_{i,i}$ et $E_{i,i} + E_{i,j}$ sont des matrices de projecteurs.
- 3. Démontrer la propriété annoncée.

Exercice 58.

Soit $A \in M_n(\mathbb{C})$ une matrice à diagonale dominante, c'est-à-dire que pour tout $i \in \{1, \ldots, n\}$, on a $|a_{i,i}| > \sum_{i \neq i} |a_{i,j}|$. Montrer que la matrice A est inversible.

Exercice 59.

Déterminer le centre de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire l'ensemble des matrices $A \in \mathcal{M}_n(\mathbb{R})$ telle que, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, on a AM = MA.

Exercice 60.

Soit $M \in \mathcal{M}_n(\mathbb{C})$.

- 1. Montrer que si rg(M) = 1, il existe deux vecteurs colonnes $X, Y \in \mathbb{C}^n$ tels que $M = XY^t$.
- 2. Montrer que si $\operatorname{rg}(M)=2$, il existe deux couples de vecteurs indépendants (X,Z) et (Y,T) tels que $M=XY^t+ZT^t$.
- 3. Généraliser aux matrices de rang k.

Exercice 61.

Soit $n \geq 3$. On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est magique si, pour tout $j \in \{1, \ldots, n\}$, on a

$$\sum_{i=1}^{n} m_{i,j} = \sum_{i=1}^{n} m_{j,i} = \sum_{i=1}^{n} m_{i,i} = \sum_{i=1}^{n} m_{i,n+1-i}.$$

On note MG(n) l'ensemble des matrices magiques d'ordre n.

- 1. Que signifie être une matrice magique?
- 2. Montrer que MG(n) est un espace vectoriel.
- 3. Montrer que l'application $\phi: MG(n) \to \mathcal{M}_{n-2,n-1}(\mathbb{R}) \times \mathbb{R}^{n-2}$, qui envoie la matrice M

qui s'écrit

$$M = \begin{pmatrix} & & & & & & & & & \\ & M_1 & & & \vdots & & & \\ & & M_{n-2,n} & & & & \\ m_{n-1,1} & \dots & \dots & m_{n-1,n-1} & m_{n-1,n} \\ m_{n,1} & \dots & \dots & m_{n,n-1} & m_{n,n} \end{pmatrix}$$

sur $(M_1, m_{1,n}, m_{n-1,1}, m_{n-1,3}, m_{n-1,4}, \dots, m_{n-1,n-2})$ est un isomorphisme d'espace vectoriel.

4. En déduire la dimension de MG(n).

Exercice 62.

Soit I = [a, b] un intervalle, θ_1 , θ_2 , θ_3 trois fonctions continues sur I, à valeurs réelles, et pour lesquelles on peut trouver des coefficients réels a_1 , a_2 , a_3 non tous nuls tels que la fonction

$$\theta = a_1\theta_1 + a_2\theta_2 + a_3\theta_3$$

admette au moins trois racines distinctes x_1, x_2, x_3 . Prouver qu'il existe des réels $\lambda_1, \lambda_2, \lambda_3$ non tous nuls tels que :

$$\lambda_1 \theta_k(x_1) + \lambda_2 \theta_k(x_2) + \lambda_3 \theta_k(x_3) = 0,$$

pour k = 1, 2 ou 3.

Exercice 63.

Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . On note F le sous-espace vectoriel des fonctions paires (ie f(-x) = f(x) pour tout $x \in \mathbb{R}$) et G le sous-espace vectoriel des fonctions impaires (ie f(-x) = -f(x) pour tout $x \in \mathbb{R}$). Montrer que F et G sont supplémentaires.

Exercice 64.

Soit E un espace vectoriel dans lequel tout sous-espace vectoriel admet un supplémentaire. Soit F un sous-espace vectoriel propre de E (c'est-à-dire que $F \neq \{0\}$ et que $F \neq E$). Démontrer que F admet au moins deux supplémentaires distincts.

Exercice 65.

Soit E l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .

- 1. Soit $a \in \mathbb{R}$. On désigne par F le sous-espace des fonctions constantes et par G_a le sous-espace des fonctions qui s'annulent en a. Montrer que F et G_a sont supplémentaires dans E.
- 2. Plus généralement, soient a_0, \ldots, a_N des éléments distincts de \mathbb{R} et $G = \{f \in E; f(a_0) = \cdots = f(a_N) = 0\}$. Trouver un supplémentaire à G.