Feuille d'exercices n°8

Exercices obligatoires: 1, 2, 3, 4, 6, 10, 11, 14, 19.

1. Exercices basiques

a. Continuité des applications linéaires

Exercice 1.

Déterminer si l'application linéaire $T:(E,N_1)\to (F,N_2)$ est continue dans les cas suivants :

- 1. $E = \mathcal{C}([0,1], \mathbb{R})$ muni de $||f||_1 = \int_0^1 |f(t)| dt$ et $T : (E, ||.||_1) \to (E, ||.||_1)$, $f \mapsto fg$ où $g \in E$ est fixé.
- 2. $E = \mathbb{R}[X]$ muni de $\|\sum_{k \geq 0} a_k X^k\| = \sum_{k \geq 0} |a_k|$ et $T : (E, \|.\|) \to (E, \|.\|), P \mapsto P'.$
- 3. $E = \mathbb{R}_n[X]$ muni de $\|\sum_{k=0}^n a_k X^k\| = \sum_{k=0}^n |a_k|$ et $T: (E, \|.\|) \to (E, \|.\|), P \mapsto P'$.
- 4. $E = \mathbb{R}[X]$ muni de $\|\sum_{k>0} a_k X^k\| = \sum_{k>0} k! |a_k|$ et $T: (E, \|.\|) \to (E, \|.\|), P \mapsto P'$.
- 5. $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $||f||_2 = \left(\int_0^1 |f(t)|^2 dt\right)^{1/2}$, $F = \mathcal{C}([0,1],\mathbb{R})$ muni de $||f||_1 = \int_0^1 |f(t)| dt$ et $T: (E, ||.||_2) \to (F, ||.||_1)$, $f \mapsto fg$ où $g \in E$ est fixé.

Exercice 2.

Soit $E = \mathcal{C}([0,1],\mathbb{R})$. Pour $f \in E$, on pose

$$||f||_1 = \int_0^1 |f(t)|dt,$$

dont on admettra qu'il s'agit d'une norme sur E. Soit ϕ l'endomorphisme de E défini par

$$\phi(f)(x) = \int_0^x f(t)dt.$$

- 1. Justifier la terminologie : " ϕ est un endomorphisme de E."
- 2. Démontrer que ϕ est continue.
- 3. Pour $n \geq 0$, on considère f_n l'élément de E défini par $f_n(x) = ne^{-nx}$, $x \in [0,1]$. Calculer $||f_n||_1$ et $||\phi(f_n)||_1$.
- 4. On pose $|\|\phi|\|=\sup_{f\neq 0_E}\frac{\|\phi(f)\|_1}{\|f\|_1}.$ Déterminer $|\|\phi|\|.$

Exercice 3.

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $\|\cdot\|_{\infty}$. On pose

$$A = \left\{ f \in E; \ f(0) = 0 \text{ et } \int_0^1 f(t)dt \ge 1 \right\}.$$

Démontrer que A est une partie fermée de E.

Exercice 4.

Soit E un espace préhilbertien muni de la norme associée au produit scalaire. Démontrer que l'orthogonal de toute partie A de E est un fermé de E.

Exercice 5.

Soit N_1 et N_2 deux normes sur l'espace vectoriel E. Montrer que N_1 et N_2 sont équivalentes si et seulement si $Id: (E, N_1) \to (E, N_2)$ et $Id: (E, N_2) \to (E, N_1)$ sont continues.

b. Norme subordonnée

Exercice 6.

Soit $E = \mathcal{M}_n(\mathbb{R})$ muni de la norme $\|\cdot\|$ définie, pour tout $A = (a_{i,j})_{1 \leq i,j \leq n} \in E$, par :

$$||A|| = \sup_{i \in [1,n]} \left(\sum_{j=1}^{n} |a_{i,j}| \right).$$

Démontrer que l'application trace $\text{Tr}: E \to \mathbb{R}$ est continue, et calculer sa norme subordonnée.

Exercice 7.

Soit $E = \mathcal{C}([0,1])$ muni de $\|\cdot\|_{\infty}$ et $F = \mathcal{C}^1([0,1])$ muni de $\|f\|_F = \|f\|_{\infty} + \|f'\|_{\infty}$. Soit $T : E \to F$ défini par $Tf(x) = \int_0^x f(t)dt$. Démontrer que T est continue et calculer sa norme subordonnée.

Exercice 8.

On munit $\mathbb{R}[X]$ de la norme suivante :

$$\|\sum_{k=0}^{n} a_k X^k\| = \sup\{|a_k|; \ 0 \le k \le n\}.$$

Pour $c \in \mathbb{R}$, on définit la forme linéaire $\phi_c : (\mathbb{R}[X], \|\cdot\|) \to (\mathbb{R}, |\cdot|), P \mapsto P(c)$. Pour quelles valeurs de c la forme linéaire ϕ_c est-elle continue? Dans ce cas, déterminer la norme subordonnée de ϕ_c .

c. Compacité

Exercice 9.

Les propositions suivantes sont-elles vraies ou fausses?

1. L'image réciproque d'un compact par une application continue est un compact.

Exercice 10.

Déterminer si les ensembles suivants sont, ou ne sont pas, compacts :

$$\begin{array}{ll} A = \{(x,y) \in \mathbb{R}^2, \ x^2 + y^4 = 1\} & B = \{(x,y) \in \mathbb{R}^2, \ x^2 + y^5 = 2\} \\ C = \{(x,y) \in \mathbb{R}^2, \ x^2 + xy + y^2 \leq 1\} & D = \{(x,y) \in \mathbb{R}^2, \ x^2 + 8xy + y^2 \leq 1\} \\ E = \{(x,y) \in \mathbb{R}^2, \ y^2 = x(1-2x)\}. \end{array}$$

Exercice 11.

Soit $E = \mathcal{C}([0, 2\pi])$ muni de la norme $\|\cdot\|_2$. Pour $n \in \mathbb{N}$, on pose $f_n(x) = e^{inx}$.

- 1. Calculer $||f_n f_p||_2$ pour $p, n \in \mathbb{N}$.
- 2. En déduire que $\bar{B}(0,1)$ n'est pas compacte.

Exercice 12.

Soit K une partie compacte d'un espace vectoriel normé E contenu dans la boule unité ouverte. Démontrer qu'il existe r < 1 tel que K soit contenu dans $\bar{B}(0,r)$.

Exercice 13.

Soient K, L deux compacts disjoints d'un espace vectoriel normé E. Démontrer que $d(K, L) = \inf_{x \in K, y \in L} \|y - x\| > 0$.

Exercice 14.

Soit F un fermé, et C un compact de \mathbb{R}^n . On note $G=F+C=\{x+y;\ x\in F \ \text{et} \ y\in C\}$. Montrer que G est fermé.

Exercice 15.

Soit $C = \{(x_1, \dots, x_n) \in \mathbb{R}^n; \ x_1 + \dots + x_n = 1, \ x_1 \geq 0, \dots, x_n \geq 0\}$. Soit également $f : C \to \mathbb{R}^+$ une fonction continue telle que f(x) > 0 pour tout $x \in C$. Démontrer que $\inf_{x \in C} f(x) > 0$.

3

Exercice 16.

Soit $f: \mathbb{R}^d \to \mathbb{R}$ une fonction continue telle que $\lim_{\|x\| \to \infty} f(x) = +\infty$. Montrer que f admet un minimum.

Exercice 17.

Soit A une partie compacte d'un espace vectoriel normé, $f:A\to\mathbb{R}$. On suppose que f est localement bornée : pour tout $x\in A$, il existe r>0 et M>0 tels que, pour tout $y\in B(x,r)\cap A$, $|f(y)|\leq M$. Démontrer que f est bornée sur A tout entier.

2. Exercices d'entraînement

a. Continuité des applications linéaires

Exercice 18.

Soit $E = \mathbb{R}[X]$, muni de la norme $\|\sum_i a_i X^i\| = \sum_i |a_i|$.

- 1. Est-ce que l'application linéaire $\phi:(E,\|.\|)\to (E,\|.\|),\ P(X)\mapsto P(X+1)$ est continue sur E ?
- 2. Est-ce que l'application linéaire $\psi:(E,\|.\|)\to (E,\|.\|), P(X)\mapsto AP$, où A est un élément fixé de E, est continue sur E?

Exercice 19.

Soit E l'espace vectoriel des suites $(a_n)_{n\geq 1}$ de nombres complexes telle que $\sum_{n\geq 1} |a_n|$ converge. On pose, pour $a=(a_n)\in E$,

$$||a|| = \sum_{n=1}^{+\infty} |a_n|.$$

- 1. Démontrer que $\|\cdot\|$ définit une norme sur E.
- 2. On pose $F = \{a \in E; \ \sum_{n \geq 1} a_n = 1\}$. F est-il ouvert ? fermé ? borné ?

Exercice 20.

Soit E un espace vectoriel normé et $\mathcal{L}_c(E)$ l'ensemble des applications linéaires continues sur E. Pour $u \in \mathcal{L}_c(E)$, on pose

$$||u|| = \sup\{||u(x)||; ||x|| \le 1\}.$$

- 1. Démontrer que ceci définit une norme sur $\mathcal{L}_c(E)$.
- 2. Démontrer que, pour tout $x \in E$ et tout $u \in \mathcal{L}_c(E)$, on a

$$||u(x)|| \le ||u|| \times ||x||.$$

En déduire que, pour tous $u, v \in \mathcal{L}_c(E)$, alors $||u \circ v|| \le ||u|| \times ||v||$.

Exercice 21.

Soit E un espace vectoriel normé et $u \in \mathcal{L}(E)$. Démontrer que u est continue si et seulement si $\{x \in E; \|u(x)\| = 1\}$ est fermé.

Exercice 22.

Soit E un espace vectoriel normé et u un endomorphisme de E vérifiant, pour tout $x \in E$, $||u(x)|| \le ||x||$. Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{1}{n+1} \sum_{k=0}^n u^k.$$

- 1. Simplifier $v_n \circ (u Id)$.
- 2. Montrer que $ker(u Id) \cap Im(u Id) = \{0\}.$
- 3. On suppose désormais que E est de dimension finie. Démontrer que

$$\ker(u - Id) \oplus \operatorname{Im}(u - Id) = E.$$

4. Soit p la projection sur $\ker(u-Id)$ parallèlement à $\operatorname{Im}(u-Id)$. Démontrer que, pour tout $x \in E, v_n(x) \to p(x)$.

Exercice 23.

Soit E un espace vectoriel normé (sur \mathbb{R}) et soit $\phi : E \to \mathbb{R}$ une forme linéaire non identiquement nulle. Le but de l'exercice est de démontrer que ϕ est continue si et seulement si le noyau de ϕ est fermé.

- 1. Démontrer le sens direct.
- 2. Réciproquement, on suppose que le noyau de ϕ , noté H, est fermé. On fixe $y \in E$ tel que $\phi(y) = 1$.
 - (a) Démontrer que $\phi^{-1}(\{1\})$ est fermé.
 - (b) En déduire qu'il existe r > 0 tel que $B(0,r) \cap \phi^{-1}(\{1\}) = \emptyset$.
 - (c) Démontrer que $x \in B(0,r) \implies |\phi(x)| \le 1$.
 - (d) Conclure.

b. Compacité

Exercice 24.

Soient K, L deux parties compactes d'un espace vectoriel normé E. On pose $K + L = \{x + y; x \in K, y \in L\}$. Démontrer que K + L est une partie compacte de E.

Exercice 25.

Soit E un espace vectoriel normé de dimension n. Si F est un sous-ensemble quelconque de E, on appelle enveloppe convexe de F, et on note $\operatorname{Conv}(F)$, le plus petit sous-ensemble convexe (au sens de l'inclusion) contenant F. On note \mathcal{H} l'ensemble des $(\lambda_1, \ldots, \lambda_{n+1}) \in (\mathbb{R}_+)^{n+1}$ et on admet que $\operatorname{Conv}(F)$ est l'ensemble des combinaisons linéaires de la forme $\sum_{i=1}^{n+1} \lambda_i x_i$, où $x_1, \ldots, x_{n+1} \in F$ et $(\lambda_1, \ldots, \lambda_{n+1}) \in \mathcal{H}$. Le but de l'exercice est de démontrer que si K est une partie compacte de E, alors $\operatorname{Conv}(K)$ est aussi une partie compacte de E.

- 1. Démontrer que \mathcal{H} est une partie compacte de \mathbb{R}^{n+1} .
- 2. Définir une application continue $\phi: \mathbb{R}^{n+1} \times E^{n+1} \to E$ telle que $\operatorname{Conv}(K) = \phi(\mathcal{H} \times K^{n+1})$.
- 3. Conclure.

Exercice 26.

Soit $E = \mathbb{R}^d$ muni d'une norme $\|\cdot\|$, et A une partie non vide de E. On définit la distance d'un élément x_0 de E à une partie A de E, notée $d(x_0, A)$, par la formule

$$d(x_0, A) = \inf_{x \in A} ||x - x_0||.$$

- 1. Supposons A compact. Montrer que pour tout $x_0 \in E$ il existe $y \in A$ tel que $d(x_0, A) = \|y x_0\|$.
- 2. Montrer que le résultat est encore vrai si on suppose seulement que A est fermé. (On remarquera que pour toute partie B de A on a $d(x_0, B) \ge d(x_0, A)$.)
- 3. Montrer que l'application qui à x_0 associe $d(x_0, A)$ est continue sur E (sans aucune hypothèse sur A).
- 4. En déduire que si A est un fermé de E et B un compact de E tels que A et B sont disjoints, alors il existe une constante $\delta > 0$ telle que

$$||a - b|| \ge \delta \quad \forall (a, b) \in A \times B.$$

5. Montrer par un contre-exemple que le résultat est faux si on suppose seulement que A et B sont deux fermés disjoints.

Exercice 27.

Soit E un espace vectoriel normé et (K_n) une suite de parties compactes de E telle que, pour chaque entier n, on $K_{n+1} \subset K_n$. On pose $K = \bigcap_{n>1} K_n$.

- 1. Démontrer que $K \neq \emptyset$.
- 2. Soit U un ouvert contenant K. Démontrer qu'il existe un entier n tel que $K_n \subset U$.

Exercice 28.

Soit Ω un ouvert de \mathbb{R}^n . Démontrer qu'il existe toujours une suite exhaustive de compacts $(K_j)_{j\geq 1}$ qui vérifie

- 1. $\forall j \geq 1, K_j \subset \Omega$
- 2. $\forall j \geq 1, K_j \subset K_{j+1}$

3. $\Omega = \bigcup_{j \geq 1} K_j$.

Exercice 29.

Soit $f:\mathbb{R}^n \to \mathbb{R}$ une fonction continue. Montrer que les trois conditions suivantes sont équivalentes :

- 1. $\forall M > 0$, $\exists R > 0$ tel que $||x|| > R \implies |f(x)| > M$.
- 2. Pour toute partie bornée B de \mathbb{R} , $f^{-1}(B)$ est une partie bornée de \mathbb{R}^n .
- 3. Pour toute partie compacte K de \mathbb{R} , $f^{-1}(K)$ est une partie compacte de \mathbb{R}^n .

Exercice 30.

Une fonction f définie sur une partie $A \subset \mathbb{R}^n$ à valeurs dans \mathbb{R}^n est dite localement lipschitzienne si, pour tout $x \in A$, il existe un voisinage V_x de x et une constante C > 0 telle que :

$$\forall (y, z) \in A \cap V_x, \|f(y) - f(z)\| \le C\|y - z\|.$$

Montrer qu'une fonction localement lipschitzienne sur une partie compacte K de \mathbb{R}^n est en fait lipschitzienne.

Exercice 31.

Soient A, B deux parties d'un espace vectoriel normé $E, f: A \to B$ une application et $G = \{(x, f(x)); x \in A\}$ son graphe.

- 1. On suppose que f est continue. Démontrer que son graphe est fermé.
- 2. On suppose de plus que B est compact et que le graphe de f est fermé. Démontrer que f est continue (on pourra utiliser le théorème suivant : une suite d'éléments d'une partie compacte converge si et seulement si elle admet une unique valeur d'adhérence.)

3. Exercices d'approfondissement

a. Continuité des applications linéaires

Exercice 32.

Soit $E = \mathcal{C}^{\infty}([0,1],\mathbb{R})$. On considère l'opérateur de dérivation $D: E \to E, f \mapsto f'$. Montrer que, quelle que soit la norme N dont on munit E, D n'est jamais une application linéaire continue de (E,N) dans (E,N).

b. Norme subordonnée

Exercice 33.

Soit I = [a, b] un intervalle de \mathbb{R} . On munit $\mathcal{C}(I)$ de la norme $\|.\|_{\infty}$. On dit qu'une forme linéaire $u : \mathcal{C}(I) \to \mathbb{R}$ est positive si $u(f) \ge 0$ pour tout $f \in C(I)$ vérifiant $f(x) \ge 0$ si $x \in I$.

- 1. Démontrer que, pour toute forme linéaire $u: \mathcal{C}(I) \to \mathbb{R}$ positive, $|u(f)| \le u(|f|)$.
- 2. Soit e la fonction définie par e(x) = 1 pour tout $x \in I$. Déduire de la question précédente que toute forme linéaire positive est continue, et calculer |||u||| en fonction de u(e).

c. Compacité

Exercice 34.

Soit E un espace vectoriel normé, B la boule unité fermée de E et S la sphère unité. Démontrer que B est compact si et seulement si S est compact.

Exercice 35.

Soit E un espace vectoriel de dimension finie et K une partie compacte de E. Pour tout r > 0, on pose $K_r = \bigcup_{x \in K} \bar{B}(x, r)$. Démontrer que K_r est une partie compacte de E.

Exercice 36.

Soit (u_n) une suite de \mathbb{R}^d . Pour $n \geq 1$, on pose $A_n = \{u_p; p \geq n\}$. Démontrer que l'ensemble des valeurs d'adhérence de (u_n) est :

$$V = \bigcap_{n \ge 1} \overline{A_n}.$$

En déduire que si la suite est bornée, V (l'ensemble des valeurs d'adhérence) est compact.

Exercice 37.

Soit $(E, \|.\|)$ un espace vectoriel normé. Soit (x_n) une suite convergente de E et soit x sa limite. Montrer que l'ensemble :

$$A = \{x\} \cup \{x_n, \ n \in \mathbb{N}\}\$$

est compact.

Exercice 38.

Soit E une partie compacte d'un espace vectoriel normé, et $f:E\to E$ une fonction continue vérifiant :

$$\forall (x,y) \in E^2, \ x \neq y \implies ||f(x) - f(y)|| < ||x - y||.$$

- 1. Montrer que f admet un unique point fixe (que l'on notera α).
- 2. Ces résultats subsistent-ils si on suppose simplement E fermé?

Exercice 39.

Soit A une partie compacte d'un espace vectoriel normé, et $f:A\to A$ vérifiant $\|f(x)-f(y)\|\geq \|x-y\|$ pour tous $x,y\in A$. Le but de l'exercice est de démontrer que f est une isométrie surjective.

- 1. Soit $a,b \in A$, et (a_n) , (b_n) les suites de A définies par $a_0 = a$, $b_0 = b$, $a_{n+1} = f(a_n)$ et $b_{n+1} = f(b_n)$. Démontrer que, pour tout $\varepsilon > 0$ et tout $p \ge 1$, il existe $k \ge p$ tel que $\|a a_k\| < \varepsilon$ et $\|b b_k\| < \varepsilon$. En déduire que f est à image dense.
- 2. On pose $u_n = ||a_n b_n||$. Montrer que (u_n) est une suite stationnaire.
- 3. En déduire que f est une isométrie.
- 4. Démontrer que f est surjective.