Mathématiques spéciales

Corrigé de la feuille d'exercices n°7

Exercices obligatoires: 1; 2; 3; 4; 8; 9; 10; 14.

Exercices en groupes :

- exo n°5 Groupe 1 : Luca; Constant; Clément; Sébastien;
- exo n°6 Groupe 2 : Adrien; Daniel; Ernest; Malarvijy;
- exo n°12 Groupe 3 : Maxence; Thibault; Tredy; Rayan;
- exo n°7 Groupe 4 : Lucas; Raphaël; Camil; Michèle;
- exo n°13 Groupe 5 : Augustin; Ambroise; Ingrid; Maxime;

1. Algèbres / Polynômes annulateurs

a. Exercices basiques

Exercice 1.

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On note $C = \{M \in \mathcal{M}_n(\mathbb{R}); AM = MA\}$. Montrer que C est une algèbre.

Correction.

Il suffit de démontrer que C est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire à la fois un sous-anneau et un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$. Remarquons que la matrice nulle 0 et I_n sont membres de C. De plus, pour tous $M, N \in A$ et tout $\lambda \in \mathbb{R}$, alors on vérifie facilement que

- 1. $MN \in A$;
- 2. $\lambda M \in A$;
- 3. $M N \in A$.

C'est bien que A est une algèbre.

Exercice 2.

Pour $a, b, c \in \mathbb{R}$, on note

$$M(a,b,c) = \left(\begin{array}{ccc} a & b & c \\ c & a & b \\ b & c & a \end{array}\right)$$

et $E = \{M(a,b,c); a,b,c \in \mathbb{R}\}$. Démontrer que E une algèbre, et en donner une base en tant qu'espace vectoriel.

Correction.

On va prouver que E est une sous-algèbre de $\mathcal{M}_3(\mathbb{R})$. Pour cela, notons

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right) \text{ et } B = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

Alors il est clair que $E = \text{vect}(I_3, A, B)$ et que la famille (I_3, A, B) est libre. On en déduit que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ de dimension 3. De plus, un calcul rapide montre que

$$M(a, b, c)M(a', b', c') = M(aa + bc + cb, ab + ab + cc, ac + ac + bb).$$

E est stable par produit matriciel, et c'est une sous-algèbre de $\mathcal{M}_3(\mathbb{R})$.

Exercice 3.

Soit
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 4 & 3 & -2 \\ 2 & 1 & 0 \end{pmatrix}$$

- 1. Calculer A^2-5A puis en déduire un polynôme annulateur de A. Est-ce le polynôme minimal de A?
- 2. Montrer que A est inversible en exhibant son inverse.
- 3. Calculer A^n pour $n \in \mathbb{N}^*$.

Correction.

- 1. On a $A^2 5A = -4I_3$ donc $P = X^2 5X + 4 = (X 1)(X 4)$ est annulateur de A. Comme π_A divise P et que X 1 et X 4 ne sont pas annulateur, on a bien $\pi_A = P$.
- 2. De l'égalité précédente, on obtient

$$A\left(\frac{-1}{4}(A-5I_3)\right) = I_3,$$

donc A est inversible et $A^{-1} = \frac{-1}{4}(A - 5I_3)$.

3. La division euclidienne de X^n par π_A nous s'écrit :

$$X^n = \pi_A Q + R$$
 où $\deg(R) < \deg(\pi_A) = 2$.

Donc R = aX + b et $A^n = aA + b$ car $\pi_A(A) = 0_3$.

De plus, 1 et 4 sont racines de π_A , donc :

$$1 = 1^n = a + b$$
 et $4^n = 4a + b$

d'où
$$a = \frac{4^n - 1}{3}$$
 et $b = -4\frac{4^{n-1} - 1}{3}$.

Il en resulte que

$$A^{n} = \frac{1}{3} \left((4^{n} - 1)A - 4(4^{n-1} - 1) \right)$$

Exercice 4.

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que, pour $(x, y) \in \mathbb{R}^2$, f(x, y) = (3x + y, x + 3y).

- 1. Calculer f^2-6f puis en déduire un polynôme annulateur de f. Est-ce le polynôme minimal de f?
- 2. Montrer que f est bijective en exhibant son inverse.

Correction.

- 1. On a $f^2 6f = -8$ Id donc $P = X^2 6X + 8 = (X 2)(X 4)$. Il s'agit bien du polynôme minimal car ni X 2, ni X 4 ne sont annulateur.
- 2. D'après l'expression précédente, on a $f \circ \left(\frac{-1}{8}(f-6\mathrm{Id})\right) = \mathrm{Id}$. Par suite, f est inversible, d'inverse $f^{-1} = \frac{-1}{8}(f-6\mathrm{Id})$.

b. Exercices d'entraînement

Exercice 5.

Soit $J \in \mathcal{M}_n(\mathbb{R})$ la matrice ne comportant que des 1. Déterminer un polynôme annulateur pour J. En déduire la valeur de J^k pour $k \geq 2$.

Correction.

On vérifie facilement que $J^2 = nJ$ et donc que $P(X) = X^2 - nX$ est un polynôme annulateur pour J. Effectuons ensuite la division euclidienne de X^k par P. Puisque P est de degré 2, il existe $Q \in \mathbb{R}[X]$ et $a, b \in \mathbb{R}$ tels que

$$X^k = P(X)Q(X) + aX + b.$$

On évalue cette égalité en les racines de P, à savoir 0 et n. L'évaluation en 0 donne b=0 et l'évaluation en n donne $a=n^{k-1}$. On a donc $X^k=P(X)Q(X)+n^{k-1}X$. On en déduit que $J^k=n^{k-1}J$, relation que l'on aurait tout aussi bien pu prouver assez simplement par récurrence!

Exercice 6.

Soit M une matrice triangulaire par blocs $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ avec $A \in \mathcal{M}_p(\mathbb{K})$ et $B \in \mathcal{M}_q(\mathbb{K})$. On suppose que P est un polynôme annulateur de A et que Q est un polynôme annulateur de B. Déterminer un polynôme annulateur de M.

Correction.

On commence par remarque que, pour tout $n \ge 1$, M^n a la forme suivante :

$$\left(\begin{array}{cc} A^n & * \\ 0 & B^n \end{array}\right).$$

3

Donc, pour tout polynôme R, on a

$$R(M) = \left(\begin{array}{cc} R(A) & * \\ 0 & R(B) \end{array} \right).$$

En particulier, on a

$$P(M) = \left(\begin{array}{cc} 0 & * \\ 0 & * \end{array}\right) \text{ et } Q(M) = \left(\begin{array}{cc} * & * \\ 0 & 0 \end{array}\right).$$

On vérifie alors aisément que PQ(M) = P(M)Q(M) = 0.

c. Exercices d'approfondissement

Exercice 7.

Soit A une algèbre commutative intègre de dimension finie $n \geq 2$ sur \mathbb{R} . On identifie \mathbb{R} avec $\mathbb{R}.1$, où 1 est l'élément neutre de A pour la multiplication.

- 1. Démontrer que tout $a \in A$ non-nul est inversible.
- 2. Soit $a \in A$ et non dans $\mathbb{R} = \text{vect}(1)$. Prouver que la famille (1, a) est libre, tandis que la famille $(1, a, a^2)$ est liée.
- 3. En déduire l'existence de $i \in \text{vect}(1, a)$ tel que $i^2 = -1$.
- 4. En déduire que $\dim(A) = 2$.
- 5. En déduire que A est isomorphe à \mathbb{C} .

Correction

- 1. Soit $a \in A \setminus \{0\}$. Alors $\phi : A \to A$, $x \mapsto ax$ est une application linéaire si l'on voit A comme un \mathbb{R} -espace vectoriel. Elle est injective, car A est intègre et donc son noyau est réduit à $\{0\}$. Comme A est de dimension finie, l'application est bijective. Il existe $x \in A$ tel que ax = 1, ce qui prouve que a est inversible.
- 2. 1 et a sont non-nuls et $a \notin \text{vect}(1)$. Donc (1,a) est libre. Maintenant, puisque A est de dimension finie n, la famille $(1,a,a^2,\ldots,a^n)$ qui est constituée par n+1 vecteurs est liée. Il existe un polynôme $P \in \mathbb{R}_n[X]$ tel que P(a) = 0. On factorise P en produit d'irréductibles, $P = P_1 \cdots P_r$. Alors

$$P_1(a)\cdots P_r(a)=0.$$

Puisque A est intègre, il existe un k tel que $P_k(a) = 0$. Mais P_k est de degré au plus 2, et il ne peut pas être de degré 1 puisque (1, a) est libre. Donc P_k est de degré 2 et $(1, a, a^2)$ est liée.

3. Soient α,β tels $a^2+\alpha a+\beta=0$, avec $\Delta=\alpha^2-4\beta<0$ (conséquence de la question précédente). On a alors

$$\left(a + \frac{\alpha}{2}\right)^2 = \frac{\alpha^2 - 4\beta}{4}$$

ce qui entraîne

$$\left(\frac{2a+\alpha}{\sqrt{4\beta-\alpha^2}}\right)^2 = -1.$$

On a trouvé notre i!

4. Si $\dim(A) > 2$, on pourrait trouver b tel que la famille (1, a, b) soit libre. Comme à la question précédente, on trouverait $j \in \text{vect}(1, b)$ tel que $j^2 = -1$. Mais alors,

$$(i-j)(i+j) = 0$$

et par intégrité de A, un des deux facteurs doit être nul. Dans un cas comme dans l'autre, cela implique $j \in \text{vect}(1, a)$ et donc $b \in \text{vect}(1, a)$, puisque qu'on peut aussi dire que $b \in \text{vect}(1, j)$. C'est une contradiction, et donc la dimension de A est deux.

5. L'isomorphisme est donné par $1_A \mapsto 1_{\mathbb{C}}$ et $i_A \mapsto i_{\mathbb{C}}$, dont on vérifie facilement que c'est un morphisme d'algèbre.

2. Topologie

Exercice 8.

Déterminer si les ensembles suivants sont des ouverts. Pour ce faire, on s'efforcera d'utiliser seulement la définition d'un ouvert dans un espace vectoriel normé - même si d'autres méthodes pourraient permettre de conclure.

- 1. $A = \{(x, y) \in \mathbb{R}^2 \mid y > 4\} \text{ dans } (\mathbb{R}^2, \|\cdot\|_2).$
- 2. $B = \{(x, y) \in \mathbb{R}^2 \mid x^2 \le y\} \text{ dans } (\mathbb{R}^2, \|\cdot\|_2).$
- 3. $C = \{(x, y) \in \mathbb{R}^2 \mid y < x\} \text{ dans } (\mathbb{R}^2, \|\cdot\|_1).$
- 4. $D = \{ f \in C([0,1], \mathbb{R}) \mid \forall x \in [0,1], \ f(x) > 0 \}$ dans $(C([0,1], \mathbb{R}), \| \cdot \|_{\infty}).$
- 5. $E = \{ f \in C(\mathbb{R}, \mathbb{R}) \mid \forall x \in \mathbb{R}, f(x) > 0 \}$ dans $(C(\mathbb{R}, \mathbb{R}), \| \cdot \|_{\infty})$.
- 6. $F = \{u \in \mathbb{R}^{\mathbb{N}} \mid u \text{ converge }\}$ dans $(\ell^{\infty}, \|\cdot\|_{\infty})$ où ℓ^{∞} est l'ensemble des suites à valeurs réelles bornées.

Correction.

1. Soit $(x_0, y_0) \in A$. Posons $r = \frac{y_0 - 4}{33}$. Comme $(x_0, y_0) \in A$, on a $y_0 > 4$ d'où r > 0 et $r < y_0 - 4$.

Montrons que $B_f((x_0, y_0), r) \subset A$. Soit $(x, y) \in B_f((x_0, y_0), r)$. On cherche à montrer que $(x, y) \in A$ i.e. y > 4.

On a:

$$|y_0 - y| \le |y - y_0| \le ||(x, y) - (x_0, y_0)||_2 \le r$$

donc

$$y \ge y_0 - r > y_0 - (y_0 - 4) = 4.$$

Par suite, $(x, y) \in A$. Ainsi, $B_f((x_0, y_0), r) \subset A$. Il en résulte que A est un ouvert de $(\mathbb{R}^2, \|\cdot\|_2)$.

2. On considère le point $(0,0) \in B$. Soit r > 0. Alors le point (0,-r) appartient à $B_f((0,0),r)$ car :

$$\|(0,0) - (0,-r)\|_2 = \|(0,r)\|_2 = r \le r.$$

Or on a $0^2 = 0 > -r$, donc $B_f((0,0),r)$ n'est pas inclus dans B et ce, quelque soit r > 0. Par suite, B n'est pas un ouvert de $(\mathbb{R}^2, \|\cdot\|_2)$. 3. Soit $(x_0, y_0) \in C$. Posons $r = \frac{x_0 - y_0}{33}$. Comme $(x_0, y_0) \in C$, on a $x_0 > y_0$ d'où r > 0 et $r < x_0 - y_0.$

Montrons que $B_f((x_0,y_0),r)\subset C$. Soit $(x,y)\in B_f((x_0,y_0),r)$. On cherche à montrer que $(x,y) \in C$ i.e. y < x.

On a:

$$(y-x) + (x_0 - y_0) = x_0 - x + y - y_0 \le |x - x_0| + |y - y_0| = ||(x, y) - (x_0, y_0)||_1 \le r$$

donc

$$x - y \ge (x_0 - y_0) - r > 0.$$

Par suite, $(x,y) \in C$. Ainsi, $B_f((x_0,y_0),r) \subset C$. Il en résulte que C est un ouvert de $(\mathbb{R}^2, \|\cdot\|_1)$.

4. Soit $f \in D$. La fonction f est continue sur le segment [0,1] donc elle y est bornée et y atteint ses bornes. Notons m son minimum sur [0,1].

Alors $B_f(f, \frac{m}{2}) \subset D$. En effet, si $g \in B_f(f, \frac{m}{2})$, alors, pour tout $x \in [0, 1]$,

$$f(x) - g(x) \le |g(x) - f(x)| \le ||f - g||_{\infty} \le \frac{m}{2}.$$

Ainsi, on a:

$$g(x) \ge f(x) - \frac{m}{2} > f(x) - m \ge 0.$$

Donc g est strictement positive sur [0,1].

Il en résulte que D est un ouvert de $C([0,1],\mathbb{R})$ muni de la norme infinie.

5. Considérons $f: t \mapsto e^{-t^2}$. Comme f tend vers 0 en $\pm \infty$, pour tout t > 0, on pourra trouver une fonction dans $B_f(f,r)$ dont le graphe passe en dessous de l'axe des abscisses pour |t|assez grand; E n'est donc pas un ouvert.

Plus précisément, étant donné r > 0, exhibons une fonction $g \in B_f(f,r)$ qui n'est pas dans

On note
$$M = \begin{cases} \sqrt{-\ln(r)} & \text{si } r \le 1\\ 0 & \text{si } r > 1 \end{cases}$$

Alors, pour |t| > M, par stricte décroissance de la fonction f sur \mathbb{R}_+ :

$$f(t) - r = f(|t|) - r < f(M) - r = e^{-M^2} - r = \begin{cases} 0 \le 0 & \text{si } r \le 1\\ 1 - r \le 0 & \text{si } r > 1 \end{cases}.$$

Donc la fonction $g: \mathbb{R} \to \mathbb{R}$, définie, pour $t \in \mathbb{R}$, par g(t) = f(t) - r appartient à la boule $B_f(f,r)$ car $||f-g||_{\infty}=r$ et n'est pas strictement positive car, d'après ce qui précéde, pour tout |t| > M, g(t) < 0. D'où $g \notin E$.

6. Soit $u = (u_n)_{n \in \mathbb{N}} \in F$. Alors il existe $\ell \in \mathbb{R}$ tel que u converge vers ℓ .

Soit r > 0. Par convergence de u vers ℓ , comme $\frac{r}{2} > 0$, il existe un rang $N \in \mathbb{N}$ tel que pour tout $n \ge N$, $|u_n - \ell| \le \frac{r}{2}$. On définit la suite $v = (v_n)_{n \in \mathbb{N}}$, pour $n \in \mathbb{N}$, par :

$$v_n = \begin{cases} u_n & \text{si } n < N \\ \ell + (-1)^n \frac{r}{2} & \text{si } n \ge N. \end{cases}$$

Alors $v \notin F$ car v admet deux valeurs d'adhérence distinctes $(\ell \pm \frac{r}{2})$ et on a, pour $n \in \mathbb{N}$:

$$v_n - u_n = \begin{cases} 0 & \text{si } n < N \\ \ell - u_n + (-1)^n \frac{r}{2} & \text{si } n \ge N; \end{cases}$$

ainsi, pour $n \geq N$, on a :

$$|v_n - u_n| \le \underbrace{|u_n - \ell|}_{\le \frac{r}{2}} + \frac{r}{2} \le r,$$

inégalité également vraie pour n < N.

Par suite, on a $||u-v||_{\infty} \le r$ et donc $v \in B_f(u,r)$.

Il en résulte que F n'est pas un ouvert.

On pourra faire l'exercice suivant : si un sous-espace vectoriel d'un espace vectoriel normé contient un ouvert, alors il est égal à l'espace vectoriel lui-même. On aurait donc pu obtenir que F n'est pas un ouvert de ℓ^{∞} en remarquant que F est un sous-espace propre de ℓ^{∞} .

Exercice 9.

Montrer que les ensembles suivants sont des ouverts :

- 1. $A =]-1,1[^n \text{ dans } (\mathbb{R}^n, \|\cdot\|_{\infty}) \text{ avec } n \in \mathbb{N}^*.$
- 2. $B =]-1, 2[\times]6, 22[\text{ dans } (\mathbb{R}^2, \|\cdot\|_{\infty}).$
- 3. $C = \{ f \in C([0,1], \mathbb{R}) \mid \mathcal{G}_f \subset \mathbb{R} \times] 1, 1[\}$ dans $(C([0,1], \mathbb{R}), \| \cdot \|_{\infty})$ où $\mathcal{G}_f = \{ (x, f(x)) \mid x \in \mathbb{R} \}$ désigne le graphe de f.

Correction.

1. On remarque que $A=B(0_{\mathbb{R}^n},1)$ i.e. A est la boule unité ouverte. En effet, pour $x=(x_1,...,x_n)\in\mathbb{R}^n,$

$$||x||_{\infty} < 1$$

$$\Leftrightarrow \max(|x_1|, ..., |x_n|) < 1$$

$$\Leftrightarrow |x_i| < 1, \ \forall i \in [1, n]$$

$$\Leftrightarrow x_i \in]-1, 1[, \ \forall i \in [1, n]]$$

$$\Leftrightarrow x \in]-1, 1[^n.$$

Il en résulte qua A est un ouvert de $(\mathbb{R}^n, \|\cdot\|_{\infty})$ car toute boule ouverte d'un espace vectoriel normé est un ouvert de cet espace.

2.] -1,2[et]6,22[sont des ouverts de $\mathbb R$ muni de $|\cdot|$ donc $B=]-1,2[\times]6,22[$ est un ouvert de $\mathbb R^2=\mathbb R\times\mathbb R$ muni de la norme produit comme produit cartésien d'ouverts. Or la norme produit sur $\mathbb R\times\mathbb R$ chacun muni de la valeur absolue correspond à la norme infini. D'où le résultat.

- 3. Soit $f \in C([0,1],\mathbb{R})$. On remarque que $\mathcal{G}_f \in \mathbb{R} \times]-1,1[$ si, et seulement si, pour tout $x \in \mathbb{R}$, |f(x)| < 1. Montrons que cela équivaut à $||f||_{\infty} < 1$. L'implication $||f||_{\infty} < 1 \Rightarrow$ pour tout $x \in \mathbb{R}$, |f(x)| < 1 est immédiate.
 - Supposons "pour tout $x \in \mathbb{R}$, |f(x)| < 1". Alors $||f||_{\infty} \le 1$ mais nous voulons une inégalité stricte!

Comme |f| est continue sur le segment [0,1], elle est bornée et atteint ses bornes, donc il existe $x_0 \in [0,1]$ tel que $||f||_{\infty} = |f(x_0)| < 1$.

Par suite, $f \in C$ si, et seulement si, $||f||_{\infty} < 1$. Et donc C est la boule unité ouverte de $(C([0,1],\mathbb{R}),\|\cdot\|_{\infty})$ qui est un ouvert de $(C([0,1],\mathbb{R}),\|\cdot\|_{\infty})$.

Exercice 10.

Dans cet exercice, on s'efforcera d'essayer d'utiliser les propriétés relatives aux unions et réunions d'ouverts/fermés pour conclure. On pourra utiliser le fait que les boules ouvertes sont des ouverts et les boules fermées sont des fermés.

- 1. Montrer que les ensembles suivants sont des ouverts :
 - (a) $A =]-1, 1[\times \mathbb{R} \text{ dans } (\mathbb{R}^2, \|\cdot\|_2).$
 - (b) $B = \{ f \in C([0,1], \mathbb{R}) \mid 1 < \int_0^1 |f(t)| \, dt < 2 \} \text{ dans } (C([0,1], \mathbb{R}), \|\cdot\|_1).$
- 2. Montrer que les ensembles suivants sont des fermés :
 - (a) $A = \{Re^{i\theta} \mid \theta \in \mathbb{R}\} \text{ dans } (\mathbb{C}, |\cdot|) \text{ où } R \geq 0.$
 - (b) $B = \{x = (x_1, ..., x_n) \mid R \leq |x_i| \leq R', \ \forall i \in [1, n] \}$ dans $(\mathbb{R}^n, \| \cdot \|_{\infty})$ où $n \in \mathbb{N}^*$ et R' > R > 0.

Correction.

1. (a) Montrons que:

$$A = \bigcup_{y \in \mathbb{R}} B((0, y), 1)$$

où, pour $(a,b) \in \mathbb{R}^2$, B((a,b),1) est la boule ouverte pour la norme $\|\cdot\|_2$ de centre (a,b) et de rayon 1.

On procède par double inclusion :

Soit $(x, y) \in \mathbb{R}^2$.

- $\underline{\subset}: \text{ On suppose } (x,y) \in A. \text{ Alors } \|(x,y)-(0,y)\|_2 = \|(x,0)\|_2 = |x| < 1 \text{ car } x \in]-1,1[.$ Par suite, $(x,y) \in B((0,y),1) \subset \bigcup_{y' \in \mathbb{R}} B((0,y'),1).$
- \supseteq : On suppose $(x,y) \in \bigcup_{y' \in \mathbb{R}} B((0,y'),1)$. Alors il existe $y' \in \mathbb{R}$ tel que $(x,y) \in B((0,y'),1)$. Par suite, on a :

$$|x| = \sqrt{x^2} \le \sqrt{x^2 + (y - y')^2} = ||(x, y) - (0, y')||_2 < 1$$

d'où $x \in]-1,1[$ et donc $(x,y) \in A$.

D'où l'égalité annoncée.

Ainsi, A est un ouvert de $(\mathbb{R}^2, \|\cdot\|_2)$ comme union d'ouverts (les boules ouvertes sont des ouverts) de $(\mathbb{R}^2, \|\cdot\|_2)$.

(b) On remarque que:

$$B = B(\mathbf{0}, 2) \setminus B_f(\mathbf{0}, 1) = B(\mathbf{0}, 2) \cap B_f(\mathbf{0}, 1)^c$$

où $B(\mathbf{0}, 2)$ est la boule ouverte de centre la fonction nulle et de rayon 2 et $B_f(\mathbf{0}, 1)$ est la boule fermée de centre la fonction nulle et de rayon 1, toutes deux pour la norme $\|\cdot\|_1$ de $C([0, 1], \mathbb{R})$.

Or $B(\mathbf{0}, 2)$ est un ouvert de $(C([0, 1], \mathbb{R}), \|\cdot\|_1)$ comme boule ouverte et $B_f(\mathbf{0}, 1)^c$ est un ouvert de $(C([0, 1], \mathbb{R}), \|\cdot\|_1)$ comme complémentaire d'un fermé de $(C([0, 1], \mathbb{R}), \|\cdot\|_1)$ (une boule fermée est un fermé).

Il en résulte que B est un ouvert de de $(C([0,1],\mathbb{R}),\|\cdot\|_1)$ comme intersection **finie** d'ouverts de de $(C([0,1],\mathbb{R}),\|\cdot\|_1)$.

2. (a) On remarque que

$$A = \{z \in \mathbb{C} \mid |z| = R\} = B_f(0, R)$$

i.e. A est la sphère pour le module de centre 0 et de rayon R. Par suite, A est un fermé de $(\mathbb{C}, |\cdot|)$ car une sphère est un fermé (il s'agit de l'intersection d'un boule fermée et du complémentaire de la boule ouverte de même centre et même rayon).

(b) On remarque que, pour $r \ge 0$:

$$B_f(0_{\mathbb{R}^n}, r) = [-r, r]^n = \{x = (x_1, ..., x_n) \mid |x_i| \le r, \ \forall i \in [1, n]\}$$

où $B_f(0_{\mathbb{R}^n}, r)$ est la boule fermée pour la norme infinie de centre (0, ..., 0) et de rayon r.

En effet, pour $x = (x_1, ..., x_n) \in \mathbb{R}^n$,

$$||x||_{\infty} \le r$$

$$\Leftrightarrow \max(|x_1|, ..., |x_n|) \le r$$

$$\Leftrightarrow |x_i| \le r, \ \forall i \in [1, n]$$

$$\Leftrightarrow x_i \in [-r, r], \ \forall i \in [1, n]$$

$$\Leftrightarrow x \in [-r, r]^n.$$

et par un raisonnement analogue :

$$B(0_{\mathbb{R}^n}, r) =]-r, r|^n = \{x = (x_1, ..., x_n) \mid |x_i| < r, \ \forall i \in [1, n]\}.$$

où $B(0_{\mathbb{R}^n},r)$ est la boule ouverte pour la norme infinie de centre (0,...,0) et de rayon r.

Ainsi, on a:

$$B = B_f(0_{\mathbb{R}^n}, R') \setminus B(0_{\mathbb{R}^n}, R) = B_f(0_{\mathbb{R}^n}, R') \cap B(0_{\mathbb{R}^n}, R)^c$$

donc B est un fermé de $(\mathbb{R}^n, \|\cdot\|_{\infty})$ comme intersection de fermés de $(\mathbb{R}^n, \|\cdot\|_{\infty})$ (une boule fermé est un fermé, une boule ouverte est un ouvert et le complémentaire d'un ouvert est un fermé).

Exercice 11.

Soit E un espace vectoriel normé. Montrer que l'adhérence d'une boule ouverte est la boule fermée de même centre et même rayon.

Correction.

Soit B=B(x,R) une telle boule ouverte, et $y\in \bar{B}$. Pour tout $\varepsilon>0$, il existe z dans B avec $\|z-y\|\leq \varepsilon$. On en déduit par l'inégalité triangulaire que :

$$||y - x|| \le R + \varepsilon,$$

et donc puisque ceci est vérifié pour tout $\varepsilon > 0$, $||y-x|| \le R$, ce qui montre une inclusion. D'autre part, si y est dans la boule fermée de centre x et de rayon R, il suffit de se restreindre à y sur la sphère, et si ε est un réel positif, on considère :

$$z = x + (R - \varepsilon) \frac{y - x}{R}.$$

Alors, on a $||z-x|| \le R - \varepsilon \implies z \in B$ et $||z-y|| \le \varepsilon$. Ceci montre que $y \in \bar{B}$. Bien sûr, on aurait pu faire toute la preuve avec la caractérisation séquentielle, en remplaçant ε par 1/n avec $n \to +\infty$.

Exercice 12.

Soit E un espace vectoriel normé et F un sous-espace vectoriel de E. On suppose que F est ouvert. Démontrer que F=E.

Correction.

Si F est ouvert, alors puisque $0 \in F$, il existe r > 0 tel que $B(0,r) \subset F$. Mais alors, prenons $x \in E$, $x \neq 0$. Alors $y = \frac{rx}{2\|x\|}$ a pour norme r/2, c'est donc un élément de F. Puisque F est stable par multiplication par un scalaire, $x = \frac{2\|x\|}{r}y$ est élément de F et donc F = E.

Exercice 13.

Soit E un espace vectoriel normé et A, B deux parties de E. On suppose que $\inf_{x \in A, y \in B} ||x-y|| > 0$. Démontrer qu'il existe deux ouverts U et V de E tels que $A \subset U$, $B \subset V$ et $U \cap V = \emptyset$.

Correction.

Posons $\delta = \inf_{x \in A, y \in B} \|x - y\| > 0$ et soit $U = \bigcup_{a \in A} B(a, \delta/3), \ V = \bigcup_{b \in B} B(b, \delta/3)$. Alors U et V sont deux ouverts comme réunion (quelconque) d'ouverts. De plus, il est clair que $A \subset U$ et que $B \subset V$. Enfin, si $x \in U$ et $y \in V$, alors il existe $a \in A$ et $b \in B$ avec $\|x - a\| < \delta/3$ et $\|y - b\| < \delta/3$. De plus, on sait que $\|a - b\| \ge \delta$. Il vient en utilisant l'inégalité triangulaire :

$$||x - y|| \ge ||a - b|| - ||a - x|| - ||b - y|| \ge \delta - \frac{\delta}{3} - \frac{\delta}{3} = \frac{\delta}{3} > 0.$$

Ainsi, on a bien $x \neq y$ et $U \cap V = \emptyset$.

Exercice 14.

Soit $E = \mathcal{C}([0,1], \mathbb{R})$. On pose

$$O = \{ f \in E : \ f(1) > 0 \} \text{ et } F = \left\{ f \in E : \ \int_0^{1/2} f(t) dt \le 0 \right\}.$$

- 1. Est-ce que O est un ouvert de $(E, \|\cdot\|_{\infty})$? de $(E, \|\cdot\|_{1})$?
- 2. Est-ce que F est un fermé de $(E, \|\cdot\|_{\infty})$? de $(E, \|\cdot\|_{1})$?

Correction.

1. On va commencer par prouver que O est un ouvert de $(E, \|\cdot\|_{\infty})$. Soit $f \in E$ et posons r = f(1). Alors $B_{\infty}(f, r) \subset O$. En effet, si $g \in B_{\infty}(f, r)$, alors

$$g(1) \ge f(1) + g(1) - f(1) \ge f(1) - ||f - g||_{\infty} > f(1) - f(1) = 0.$$

En revanche, O n'est pas un ouvert de $(E, \|\cdot\|_1)$. En effet, considérons $f \in O$ et r > 0 quelconque. Pour $n \ge 1$, posons $g_n = f - f(1)x^n$. Alors $\|g_n - f\|_1 = f(1)\int_0^1 x^n dx = \frac{f(1)}{n+1} \to 0$. Ainsi, pour n assez grand, $g_n \in B_1(f,r)$. En revanche, g_n n'est jamais élément de O. En effet, on a $g_n(1) = f(1) - f(1) = 0$.

2. On prouve que $E \setminus F = \{ f \in E : \int_0^{1/2} f(t) dt > 0 \}$ est ouvert pour $\| \cdot \|_{\infty}$ et aussi pour $\| \cdot \|_1$. Soit $f \in E \setminus F$ et commençons par traiter le cas de la norme infinie. Soit $r = \int_0^{1/2} f(t) dt > 0$ et $g \in B_{\infty}(f, r)$. Alors

$$\int_{0}^{1/2} g(t)dt = \int_{0}^{1/2} f(t)dt + \int_{0}^{1/2} g(t) - f(t)$$

$$\geq \int_{0}^{1/2} f(t)dt - \int_{0}^{1/2} |g(t) - f(t)|dt$$

$$\geq \int_{0}^{1/2} f(t)dt - \int_{0}^{1/2} ||g - f||_{\infty} dt$$

$$\geq \int_{0}^{1/2} f(t)dt - \int_{0}^{1/2} rdt$$

$$\geq r - \frac{r}{2} > 0$$

Ainsi $B_{\infty}(f,r) \subset E \setminus F$ et F est bien un fermé de $(E, \|\cdot\|_{\infty})$. Passons à la norme 1. On va

prouver qu'on a toujours $B_1(f,r) \subset E \setminus F$. En effet, si $g \in B_1(f,r)$, alors

$$\begin{split} \int_0^{1/2} g(t)dt &= \int_0^{1/2} f(t)dt + \int_0^{1/2} g(t) - f(t) \\ &\geq \int_0^{1/2} f(t)dt - \int_0^{1/2} |g(t) - f(t)|dt \\ &\geq \int_0^{1/2} f(t)dt - \int_0^1 |g(t) - f(t)|dt \\ &\geq r - r = 0 \end{split}$$

Nous verrons plus tard qu'on aurait pu conclure que O est un ouvert pour $(E, \|\cdot\|_{\infty})$ et que F est un fermé pour $(E, \|\cdot\|_{\infty})$ et $(E, \|\cdot\|_{1})$ en remarquant que ce sont respectivement l'image réciproque d'un ouvert ou d'un fermé de \mathbb{R} par une forme linéaire continue.

Exercice 15.

Soit E l'espace vectoriel des fonctions bornées de \mathbb{R} dans \mathbb{R} et $F = \mathcal{C}([0,1],\mathbb{R})$.

- 1. On pose $A_1 = \{ f \in E : \forall x \in \mathbb{R}, \ f(x) \geq 0 \}$. Est-ce que A_1 est une partie fermée de $(E, \|\cdot\|_{\infty})$?
- 2. On pose $A_2 = \{ f \in E : \forall x \in \mathbb{R}, \ f(x) > 0 \}$. Est-ce que A_2 est une partie ouverte de $(E, \|\cdot\|_{\infty})$?
- 3. On pose $A_3 = \{ f \in F : \forall x \in [0,1], f(x) > 0 \}$. Est-ce que A_3 est une partie ouverte de $(F, \|\cdot\|_{\infty})$?
- 4. Est-ce que A_3 est une partie ouverte de $(F, \|\cdot\|_1)$?

Correction

1. A_1 est fermé. Pour cela, on peut utiliser la caractérisation séquentielle. En effet, prenons une suite (f_n) de A_1 qui converge vers $f \in E$, et prouvons que $f \in A_1$. Soit $x \in \mathbb{R}$. Alors on sait que $f_n(x) \geq 0$ pour tout $n \in \mathbb{N}$. De plus, on sait que

$$|f_n(x) - f(x)| \le ||f_n - f||_{\infty}$$

et donc que $f_n(x) \to f(x)$. On en déduit par passage à la limite que $f(x) \ge 0$, et comme c'est vrai pour tout $x \in \mathbb{R}$, on a $f \in A_1$.

- 2. On va prouver que A_2 n'est pas ouvert. En effet, on va trouver une fonction $f \in A_2$ telle que, pour tout $\varepsilon > 0$, $B(f,\varepsilon)$ n'est pas contenu dans A_2 . Prenons par exemple la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{1+x^2}$. Alors f est dans A_2 . Soit $\varepsilon > 0$ et considérons g définie par $g(x) = f(x) \varepsilon/2$. Il est clair que $g \in B(f,\varepsilon)$. Mais si x_0 est tel que $f(x_0) < \varepsilon/2$ (ce qui est possible si x_0 est assez grand puisque $\lim_{+\infty} f = 0$), alors $g(x_0) < 0$ et donc $g \notin A_2$. Ainsi, A_2 n'est pas ouvert.
- 3. On va prouver cette fois que A_3 est ouvert dans $(F, \|\cdot\|_{\infty})$. Fixons en effet $f \in A_3$. Par rapport à la question précédente, on a des informations supplémentaires : f est continue et on ne s'intéresse qu'au segment [0,1]. Sur ce segment, f atteint son minimum : il existe $x_0 \in [0,1]$ tel que, pour tout $x \in [0,1]$, on a $f(x) \geq f(x_0)$. Remarquons que $f(x_0) > 0$ et posons $\varepsilon = f(x_0)/2$. Alors, pour tout $g \in B_{\infty}(f,\varepsilon)$, on a $g \in A_3$. En effet, pour tout

 $x \in [0, 1]$, on a

$$g(x) \ge f(x) - \varepsilon \ge f(x_0) - \varepsilon \ge \varepsilon/2 > 0.$$

Ainsi, A_3 est ouvert dans $(F, \|\cdot\|_{\infty})$.

4. On va vérifier qu'en changeant de norme, on peut passer d'un ensemble ouvert à un ensemble qui ne l'est plus. Prenons f la fonction identiquement égale à 1, qui est bien sûr élément de A_3 . On va prouver que, pour tout $\varepsilon > 0$, la boule $B_1(f,\varepsilon)$ n'est pas contenue dans A_3 . Pour cela, il suffit de trouver une suite (f_n) de F telle que, pour n assez grand, $||f_n - f||_1 < \varepsilon$ et $f_n \notin A_3$. Posons pour $n \ge 1$ $f_n(x) = 1 - x^n$. Alors $f_n(1) = 0$ et donc $f_n \notin A_3$. De plus,

$$||f_n - f||_1 = \int_0^1 x^n dx = \frac{1}{n+1} \to 0.$$

Donc pour n assez grand, $f_n \in B_1(f, \varepsilon)$. Ainsi, on a bien prouvé que A_3 n'est pas un ouvert de $(F, \|\cdot\|_1)$.