Feuille d'exercices n°3

N'oubliez pas de regarder la fin du TD 2 sur l'intégration des relations de comparaison.

Exercices obligatoires : 2, 3, 4, 9, 14, 17.

Exercices en groupes:

- exo n°15 Groupe 1 : Raphaël; Ambroise; Ingrid; Maxime;
- exo n°10 Groupe 2 : Lucas; Sébastien; Adrien; Tredy;
- exo n°6 Groupe 3 : Ernest; Daniel; Camil; Malarvijy;
- exo n°5 Groupe 4: Maxence; Thibault; Constant; Rayan;
- exo n°11 Groupe 5 : Luca; Michèle; Clément; Augustin;

a. Exercices basiques

Exercice 1.

Sur \mathbb{R}^2 , on considère l'application $N:(x,y)\mapsto |x|+\max(|x|,|y|)$. Montrer que N est une norme sur \mathbb{R}^2

Exercice 2.

Sur \mathbb{R}^2 , on considère l'application $N:(x,y)\mapsto 2|x|+|y|$. Montrer que N est une norme sur \mathbb{R}^2 et dessiner sa sphère unité.

Exercice 3.

On considère l'espace vectoriel $E = C_b(\mathbb{R}_+, \mathbb{R})$ des fonctions continues bornées de \mathbb{R}_+ dans \mathbb{R} qui tendent vers 0 en $+\infty$ et, pour $f \in E$, on considère :

$$||f|| = \int_0^{+\infty} |f(t)|e^{-t^2} dt.$$

Montrer que l'application $f \mapsto ||f||$ est une norme sur E.

Exercice 4.

Sur $E = \mathbb{R}[X]$, on définit N_1 et N_2 par

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{t \in [-1,1]} |P(t)|.$$

Démontrer que N_1 et N_2 sont deux normes sur E.

Exercice 5.

Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$. On définit

$$N(f) = |f(0)| + ||f'||_{\infty}, \ N'(f) = ||f||_{\infty} + ||f'||_{\infty}.$$

Démontrer que N et N' sont deux normes sur E.

Exercice 6.

Soit E l'espace vectoriel des suites à valeurs dans $\mathbb K$ convergentes. On considère l'application $\|\cdot\|$ définit par :

pour
$$u = (u_n) \in E$$
, $||u|| = \lim_{n \to \infty} |u_n|$.

- 1. Montrer que $\|\cdot\|$ est une semi-norme sur E i.e. $\|.\|$ vérifie tous les axiomes d'une norme excepté l'axiome de séparation.
- 2. Donner un exemple de suite qui ne satisfait pas à l'axiome de séparation.

Exercice 7.

Dites si les propositions suivantes sont vraies ou fausses :

- 1. Si (E, N) est un espace vectoriel normé, $x \in E$, r > 0 et B(x, r) est la boule de centre x et de rayon r > 0, alors pour tout $\lambda > 0$, $\lambda B(x, r) = B(x, \lambda r)$.
- 2. $N:(x,y)\mapsto |5x+3y|$ est une norme sur \mathbb{R}^2 .
- 3. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, et x, y deux vecteurs de E tels que $\|x + y\| = \|x\| + \|y\|$. Alors $x \in \text{vect}(y)$.
- 4. Soit $E = \mathbb{R}_1[X]$. Alors $N: P \mapsto |P(0)| + |P(1)|$ est une norme sur E.

Exercice 8.

Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

1. Démontrer que, pour tous $x, y \in E$, on a

$$||x|| + ||y|| \le ||x + y|| + ||x - y||.$$

En déduire que

$$||x|| + ||y|| \le 2 \max(||x + y||, ||x - y||).$$

La constante 2 peut elle être améliorée?

2. On suppose désormais que la norme est issue d'un produit scalaire. Démontrer que, pour tous $x, y \in E$, on a

$$(\|x\| + \|y\|)^2 \le \|x + y\|^2 + \|x - y\|^2.$$

En déduire que

$$||x|| + ||y|| \le \sqrt{2} \max(||x + y||, ||x - y||).$$

La constante $\sqrt{2}$ peut elle être améliorée?

Exercice 9.

Soient a_1, \ldots, a_n des réels et $N : \mathbb{R}^n \to \mathbb{R}$ définie par

$$N(x_1,...,x_n) = a_1|x_1| + \cdots + a_n|x_n|.$$

Donner une condition nécessaire et suffisante portant sur les a_k pour que N soit une norme sur \mathbb{R}^n .

Exercice 10.

Soient N_1 et N_2 deux normes sur un espace vectoriel E. On pose $N = \max(N_1, N_2)$. Démontrer que N est une norme sur E.

Exercice 11.

On définit une application sur $\mathcal{M}_n(\mathbb{R})$ en posant

$$N(A) = n \max_{i,j} |a_{i,j}| \text{ si } A = (a_{i,j}).$$

Vérifier que l'on définit bien une norme sur $\mathcal{M}_n(\mathbb{R})$, puis qu'il s'agit d'une norme d'algèbre, c'est-à-dire que

$$N(AB) \leq N(A)N(B)$$
 pour toutes matrices $A, B \in \mathcal{M}_n(\mathbb{R})$.

Exercice 12.

Soit a, b > 0. On pose, pour tout $(x, y) \in \mathbb{R}^2$, $N(x, y) = \sqrt{a^2x^2 + b^2y^2}$.

- 1. Prouver que N est une norme.
- 2. Dessiner la boule de centre 0 et de rayon 1.
- 3. Déterminer le plus petit nombre p>0 tel que $N\leq p\|.\|_2$ et le plus grand nombre q tel que $q\|.\|_2\leq N.$

Exercice 13.

Sur $E = \mathbb{R}[X]$, on définit N_1 et N_2 par

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{t \in [-1,1]} |P(t)|.$$

- 1. Démontrer que N_1 et N_2 sont deux normes sur E.
- 2. Étudier pour chacune des deux normes la convergence de la suite (P_n) définie par $P_n = \frac{1}{n}X^n$.

Exercice 14.

Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$. Pour $f \in E$, on pose

$$N(f) = \left(f^2(0) + \int_0^1 (f'(t))^2 dt\right)^{1/2}.$$

- 1. Démontrer que N est une norme sur E.
- 2. Démontrer que, pour tout $f \in E$, $||f||_{\infty} \leq \sqrt{2}N(f)$.

b. Exercices d'entraînement

Exercice 15.

Pour tout $x = (a, b) \in \mathbb{R}^2$, on définit

$$N(x) = \sqrt{a^2 + 2ab + 5b^2}.$$

Démontrer que N est une norme sur \mathbb{R}^2 .

Exercice 16.

Pour $A, B \in \mathcal{M}_n(\mathbb{R})$, on définit

$$\langle A, B \rangle = \operatorname{tr}(A^T B).$$

- 1. Démontrer que cette formule définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. On notera N la norme associée.
- 2. Démontrer que, pour tous $A, B \in \mathcal{M}_n(\mathbb{R})$, on a $N(AB) \leq N(A)N(B)$.

c. Exercices d'approfondissement

Exercice 17. (*) Les normes p sur \mathbb{R}^n , pour 1

Soit $n \in \mathbb{N}^*$ et $p, q \in]1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1.$

1. Montrer que pour tous $x_1,...,x_n \in \mathbb{R}_+$ et tous $\lambda_1,...,\lambda_n \in \mathbb{R}_+^*$, on a :

$$\sum_{i=1}^{n} \lambda_i x_i \le \left(\sum_{i=1}^{n} \lambda_i x_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} \lambda_i\right)^{\frac{1}{q}}.$$

2. En déduire que, pour tous $a_1,...,a_n \in \mathbb{R}_+$ et $b_1,...,b_n \in \mathbb{R}_+^*$, on a :

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{q}};$$

puis montrer que cette dernière inégalité est toujours vraie quand $b_1,...,b_n \in \mathbb{R}_+$.

Cette inégalité est connue sous le nom de Inégalité de Hölder.

3. En utilisant l'inégalité de Hölder, démontrer l'**inégalité de Minkowski**, i.e. pour tous $x_1,...,x_n\in\mathbb{R}_+$ et $y_1,...,y_n\in\mathbb{R}_+$:

$$\left(\sum_{i=1}^{n} (x_i + y_i)^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} y_i^p\right)^{\frac{1}{p}}$$

4. On considère l'espace vectoriel \mathbb{R}^n et l'application de $\|\cdot\|_p:\mathbb{R}^n\to\mathbb{R}_+$ définie par :

pour
$$x = (x_1, ..., x_n) \in \mathbb{R}^n$$
, $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$.

Montrer que $\|\cdot\|_p$ est une norme sur \mathbb{R}^n .

Exercice 18.

Soit A une partie non vide de \mathbb{R} . Pour tout polynôme $P \in \mathbb{R}[X]$, on pose

$$||P||_A = \sup_{x \in A} |P(x)|.$$

Quelles conditions A doit-elle satisfaire pour que l'on obtienne une norme sur $\mathbb{R}[X]$?