Feuille d'exercices n°2

Exercices obligatoires

- Pour la semaine du 15 Septembre : 1, 4, 8, 10, 17, 20.
- Pour la semaine du 22 Septembre : 24, 25.

Exercices en groupes :

- exo n°3 Groupe 1 : Maxence; Thibault; Clément; Maxime;
- exo n°11 Groupe 2 : Augustin; Michèle; Camil; Rayan;
- exo n°14 Groupe 3 : Raphaël; Ambroise; Tredy; Malarvijy;
- exo n°23 Groupe 4 : Lucas; Luca; Daniel; Ingrid;
- exo n°12 (1 et 2) Groupe 5 : Adrien; Ernest; Constant; Sébastien;

1. Convexité

Exercice 1.

Soit C_1 et C_2 deux ensembles convexes de \mathbb{R}^n et $C_1 + C_2 = \{x + y; x \in C_1, y \in C_2\}$. Démontrer que $C_1 + C_2$ est convexe.

Exercice 2.

Soit $\mathscr{E} = \left\{ (x,y) \in \mathbb{R}^2 / \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1 \right\}$. Montrer que \mathscr{E} est un convexe de \mathbb{R}^2 (on utilisera la convexité de la fonction $x \mapsto x^2$).

Exercice 3.

Soit C_1 , C_2 deux parties convexes d'un espace vectoriel réel E et soit $s \in [0,1]$. On pose $C = sC_1 + (1-s)C_2 = \{sx + (1-s)y; \ x \in C_1, \ y \in C_2\}$. Démontrer que C est convexe.

Exercice 4.

- 1) $O_n(\mathbb{R})$ est-il un convexe de $\mathscr{M}_n(\mathbb{R})$?
- $\textbf{2)} \ \text{Montrer que l'ensemble des matrices stochastiques } \\ (\text{matrices } (\alpha_{i,j})_{1\leqslant i,j\leqslant n} \in \mathscr{M}_n(\mathbb{R}) \ \text{telles que } \\ \forall (i,j) \in [\![1,n]\!]^2, \\ \alpha_{i,j}\geqslant 0 \\ \text{et } \forall i\in [\![1,n]\!], \\ \sum_{i=1}^n \alpha_{i,j}=1) \ \text{est un convexe de } \mathscr{M}_n(\mathbb{R}).$

Exercice 5.

Pour tout $E \subset \mathbb{R}^n$, on appelle enveloppe convexe de E l'ensemble

$$K(E) = \bigcap_{A \in \mathcal{E}(E)} A$$

où $\mathcal{E}(E)$ désigne l'ensemble des convexes de \mathbb{R}^n contenant E.

- 1. Démontrer que K(E) est convexe.
- 2. Déterminer K(E) lorsque E est la courbe de la fonction $y = \tan x$ pour $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Exercice 6.

Soit I un intervalle ouvert de \mathbb{R} et $f:I\to\mathbb{R}$ convexe. Démontrer que f est continue sur I. Le résultat subsiste-t-il si I n'est plus supposé ouvert?

Exercice 7.

Soit E un espace vectoriel réel et A une partie de E

- 1. Montrer que l'intersection de deux parties convexes de E est convexe. Que dire d'une intersection quelconque de parties convexes? Que dire d'une réunion de convexes?
- 2. Montrer qu'il existe un plus petit convexe, au sens de l'inclusion, contenant A. On appelle cet ensemble enveloppe convexe de a et on le note Conv(A).
- 3. Montrer que Conv(A) est égal à l'ensemble des barycentres à coefficients positifs de toute famille finies de points de A.

2. Intégrales généralisée

Exercice 8.

Les intégrales généralisées suivantes sont-elles convergentes?

$$1. \int_{1}^{+\infty} \ln t dt$$

$$2. \int_{-t}^{+\infty} e^{-t^2} dt.$$

1.
$$\int_{1}^{1+\infty} \frac{dt}{e^{t}}$$

1.
$$\int_{1}^{+\infty} \ln t dt$$
 2. $\int_{0}^{+\infty} e^{-t^{2}} dt$.
1. $\int_{1}^{+\infty} \frac{dt}{e^{t} - 1}$ 2. $\int_{0}^{+\infty} \frac{t e^{-\sqrt{t}}}{1 + t^{2}} dt$

Exercice 9.

Quelle est la nature de l'intégrale suivante

$$\int_{1}^{+\infty} e^{-\sqrt{\ln t}} dt$$

2

Exercice 10.

Les intégrales généralisées suivantes sont-elles convergentes?

1.
$$\int_0^1 \ln t dt$$

2.
$$\int_{0}^{+\infty} e^{-t^2} dt$$

3.
$$\int_{0}^{\infty}$$

$$\int_{0}^{+\infty} x \sin x e^{-x} dx$$

4.
$$\int_{0}^{+\infty} \ln t e^{-t} dt$$

1.
$$\int_{0}^{1} \ln t dt$$
2.
$$\int_{0}^{+\infty} e^{-t^{2}} dt$$
3.
$$\int_{0}^{+\infty} x \sin x e^{-x} dx$$
4.
$$\int_{0}^{+\infty} \ln t e^{-t} dt$$
5.
$$\int_{0}^{1} \frac{dt}{(1-t)\sqrt{t}}$$

Exercice 11.

Les intégrales généralisées suivantes sont-elles convergentes?

1.
$$\int_{0}^{+\infty} \frac{dt}{e^{t} - 1}$$
 2.
$$\int_{0}^{+\infty} \frac{te^{-\sqrt{t}}}{1 + t^{2}} dt$$
 3.
$$\int_{0}^{1} \cos^{2}\left(\frac{1}{t}\right) dt$$

2.
$$\int_0^{+\infty} \frac{te^{-\sqrt{t}}}{1+t^2} dt$$

Exercice 12.

Les intégrales généralisées suivantes sont-elles convergentes?

$$1. \int_{0}^{+\infty} \frac{\ln t}{t^2 + 1} dt$$

1.
$$\int_{0}^{+\infty} \frac{\ln t}{t^2 + 1} dt$$
 2.
$$\int_{1}^{+\infty} \frac{\sqrt{\ln x}}{(x - 1)\sqrt{x}} dx$$
3.
$$\int_{1}^{+\infty} e^{-\sqrt{\ln t}} dt$$

$$3. \int_1^{\infty} e^{-\sqrt{\ln t}} dt$$

Exercice 13.

Pour $\alpha, \beta \in \mathbb{R}$, on souhaite déterminer la nature de

$$\int_{e}^{+\infty} \frac{dx}{x^{\alpha} (\ln x)^{\beta}}.$$

- 1. On suppose $\alpha > 1$. En comparant avec une intégrale de Riemann, démontrer que l'intégrale étudiée est convergente.
- 2. On suppose $\alpha=1.$ Calculer, pour $X>e,\,\int_e^X \frac{dx}{x(\ln x)^\beta}.$ En déduire les valeurs de β pour lesquelles l'intégrale converge.
- 3. On suppose $\alpha < 1$. En comparant à 1/t, démontrer que l'intégrale étudiée diverge.

Exercice 14.

1. Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction continue. On suppose que $\int_0^{+\infty} f(t)dt$ converge, et soit (x_n) et (y_n) deux suites tendant vers $+\infty$. Démontrer que $\int_{x_n}^{y_n} f(t)dt$ tend vers 0.

3

2. En déduire que l'intégrale $\int_0^{+\infty} e^{-t \sin t} dt$ diverge.

Exercice 15.

Discuter, suivant la valeur de $\alpha \in \mathbb{R}$, la convergence des intégrales suivantes :

$$1. \int_0^{+\infty} \frac{t \ln t}{(1+t^2)^{\alpha}} dt$$

1.
$$\int_0^{+\infty} \frac{t \ln t}{(1+t^2)^{\alpha}} dt$$
 2.
$$\int_0^{+\infty} x^{\alpha} \ln (x + e^{\alpha x}) dx$$

Exercice 16.

Les intégrales généralisées suivantes sont-elles convergentes?

1.
$$\int_{0}^{1} \frac{dt}{1 - \sqrt{t}}$$

1.
$$\int_{0}^{1} \frac{dt}{1 - \sqrt{t}}$$
 2. $\int_{0}^{+\infty} \left(1 + t \ln \left(\frac{t}{t+1} \right) \right) dt$ 3. $\int_{2}^{+\infty} \left(\sqrt{x^4 + x^2 + 1} - x \sqrt[3]{x^3 + ax} \right) dx$, $a \in \mathbb{R}$. 4. $\int_{0}^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt$.

$$2. \int_0^{+\infty} \left(1 + t \ln \left(\frac{t}{t+1}\right)\right) dt$$

4.
$$\int_0^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt$$

Exercice 17.

Après en avoir justifié l'existence, calculer par récurrence la valeur de $I_n = \int_0^1 (\ln x)^n dx$.

Exercice 18.

Soit f une fonction continue bornée sur $[0, +\infty[$.

- 1. Démontrer que les intégrales $\int_0^{+\infty} \frac{f(x)}{1+x^2} dx$ et $\int_0^{+\infty} \frac{f(1/x)}{1+x^2} dx$ sont convergentes.
- 2. Démontrer qu'elles sont égales.
- 3. Application : pour $n \ge 0$, calcular $\int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^n)}$ et $\int_0^{+\infty} \frac{x^n}{(1+x^2)(1+x^n)} dx$.

4

Exercice 19.

- 1. Démontrer la convergence de $\int_0^{+\infty} \left(\arctan(x+1) \arctan(x)\right) dx$.
- 2. Démontrer que $\lim_{X\to +\infty} \int_X^{X+1} \arctan(x) dx = \frac{\pi}{2}.$
- 3. Calculer $\int_0^1 \arctan(x) dx$.
- 4. Calculer $\int_0^{+\infty} (\arctan(x+1) \arctan(x)) dx$

Exercice 20.

Justifier la convergence et calculer la valeur des intégrales suivantes :

1.
$$\int_0^1 \frac{\ln t}{\sqrt{1-t}} dt$$
 2.
$$\int_0^{+\infty} t e^{-\sqrt{t}} dt$$
 3.
$$\int_0^{+\infty} \sin(t) e^{-at} dt, \ a > 0.$$

$$2. \int_0^{+\infty} t e^{-\sqrt{t}} dt$$

Exercice 21.

Le but de cet exercice est de calculer la valeur de $I = \int_0^{+\infty} \frac{\sin t}{t} dt$. Pour chaque entier n, on note

$$I_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin t} dt \text{ et } J_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{t} dt.$$

- 1. Justifier que, pour tout $n \ge 0$, I_n et J_n sont bien définis.
- 2. Montrer que, pour tout $n \geq 1,$ $I_n I_{n-1} = 0.$ En déduire la valeur de $I_n.$
- 3. Soit $\phi:[0,\pi/2]\to\mathbb{R}$ de classe C^1 . Montrer, à l'aide d'une intégration par parties, que $\int_0^{\pi/2} \phi(t) \sin((2n+1)t) dt \text{ tend vers } 0.$
- 4. Démontrer que la fonction $t\mapsto \frac{1}{t}-\frac{1}{\sin t}$ se prolonge en une fonction de classe C^1 sur
- 5. En déduire que $J_n I_n \to 0$.
- 6. Démontrer, en utilisant un changement de variables, que $J_n \to I$.
- 7. En déduire la valeur de I.

Exercice 22.

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction continue, et b>a>0 deux réels.

1. On suppose que f(0) = 0. Démontrer que

$$\lim_{x \to 0^+} \int_{ax}^{bx} \frac{f(t)}{t} dt = 0.$$

5

2. Déterminer $\lim_{x\to 0^+} \int_{ax}^{bx} \frac{f(t)}{t} dt$ si on ne suppose plus que f(0)=0.

Exercice 23.

Déterminer la limite, lorsque $x \to 0^+$, de $\int_x^{2x} \frac{\sin t}{t^2} dt$.

Exercice 24.

Donner un équivalent de $\int_1^x \frac{\arctan t}{t} dt$ lorsque x tend vers $+\infty$.

Exercice 25.

Déterminer un équivalent simple en $+\infty$ de $\int_x^{+\infty} \frac{e^{-t}}{t} dt$.