
Corrigé du devoir surveillé no4
Mathématiques spéciales le 17 Novembre 2025

Exercice 1.Exercice 1.

Soit A =

 0 2 −1
−1 3 −1
−4 8 −3

.

1. Calculer A2+A puis en déduire un polynôme annulateur de A. Est-ce le polynôme minimal
de A ?

2. Montrer que A est inversible en exhibant son inverse.

3. Calculer An pour n ∈ N∗.

Correction.

1. On a A2+A = 2I3 donc A2+A−2I3 = 03 d’où P = X2+X−2 est un polynôme annulateur
de A. Comme A n’est pas de la forme αI3, aucun polynôme de degré 1 n’annule A d’où
deg(πA) ≥ 2. Or πA|P et πA et P sont unitaire donc πA = P .

2. On pose B = 1
2 (A+ I3). Alors on a :

AB =
1

2
(A2 +A) =

1

2
(2I3) = I3

donc A est inversible et A−1 = B = 1
2 (A+ I3).

3. Soit n ∈ N. On effectue la division euclidienne de Xn par πA = X2+X−2 = (X−1)(X+2) :
il existe Q,R ∈ R[X] tels que deg(R) < deg(πA) = 2. Ainsi, il existe an, bn ∈ R tels que
R = anX + bn.
De plus, on a, en evaluant l’égalité Xn = πAQ+R en 1 et −2 :{

1 = an + bn

(−2)n = −2an + bn
⇔

{
an = 1

3 (1− (−2)n)

bn = 1
3 (2 + (−2)n)

Ainsi, on a :

An = R(A) = anA+ bnI3 =
1

3
((1− (−2)n)A+ (2 + (−2)n)I3) .

Exercice 2.Exercice 2.

Soit E = C([0, 1],R) et φ : E → R définie, pour f ∈ E, par :

φ(f) = f(1).
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Sur E, on considère les normes suivantes :

‖ · ‖∞ : f 7→ ‖f‖∞ = sup
t∈[0,1]

|f(t)| et ‖ · ‖1 : f 7→ ‖f‖1 =

∫ 1

0

|f(t)|dt.

On note F = {f ∈ E | f(1) = 0}.

1. Montrer que φ est une application linéaire.

2. Montrer que F est un sous-espace vectoriel de E.

3. (a) Montrer que la fonction φ est continue sur E muni de ‖ · ‖∞ et calculer sa norme
subordonnée aux normes ‖ · ‖∞ sur E et | · | sur R.

(b) Montrer que F est fermé dans E muni de ‖ · ‖∞.

4. (a) Montrer que la fonction φ n’est pas continue sur E muni de ‖ · ‖1.

(b) Montrer que F n’est pas fermé dans E muni de ‖ · ‖1.

Correction.

1. Soit f, g ∈ E et λ, µ ∈ R. On a :

φ(λf + µg) = (λf + µg)(1) = λf(1) + µg(1) = λφ(f) + µφ(g).

Par suite, φ est une application linéaire.

2. On a F = Ker(φ), donc F est un sous-espace vectoriel de E comme noyau d’une application
linéaire d’espace de départ E.

3. (a) Pour tout f ∈ E, on a :
|φ(f)| = |f(1)| ≤ ‖f‖∞

Donc φ est continue sur E muni de ‖ · ‖∞. Ainsi, |||f ||| existe et on a |||f ||| ≤ 1.
De plus, on remarque que φ(1) = 1 où 1 est la fonction constante en 1 (qui appartient
bien à E) ; et donc |||f ||| = 1.

(b) On a F = Ker(φ) = f−1({0}) donc F est un fermé de E muni de ‖ · ‖∞ comme image
réciproque d’un fermé par une application continue.

4. (a) On considère la suite (fn)n∈N à valeurs dans E telle que, pour n ∈ N, fn : x 7→ xn. On
a :

|φ(fn)
‖fn‖1

=
1
1

n+1

= n+ 1 −−−−−→
n→+∞

+∞

donc φ n’est pas continue sur E muni de la norme ‖ · ‖1.

(b) On considère la suite (gn)n∈N à valeurs dans F telle que, pour n ∈ N, gn : x 7→ 1−xn.
On a :

‖gn − 1‖1 =

∫ 1

0

xndx =
1

n+ 1
−−−−−→
n→+∞

0

Donc la suite (gn)n∈N à valeurs dans F converge vers la fonction constante en 1 qui
n’appartient pas à F . Ainsi, d’après (la contraposée) de la caractérisation séquentielle
des fermés, F n’est pas fermé dans E muni de ‖ · ‖1.
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Problème 1.Problème 1. gE3A 2006E3A 2006

Notations

Soit a, b ∈ R avec a ≤ 0 < b. On note I = [a, b].
C0(I) désigne l’espace vectoriel réel des fonctions continues de I dans R ; C1(I) l’espace vectoriel
réel des fonctions de classe C1 de I et on note, pour f ∈ C0(I) :

‖f‖∞ = sup
x∈I

|f(x)| ‖f‖1 =

∫
I

|f(t)|dt et ‖f‖2 =

√∫
I

|f(t)|2dt.

Partie I

1. Soit f dans C0(I) et c un réel strictement positif. On considère l’équation différentielle :

(E) y′ + cy = f

Résoudre l’équation différentielle homogène associée à (E) puis vérifier que la fonction
notée φ(f), dérivable sur I, définie par :

∀x ∈ I, φ(f)(x) = e−cx

∫ x

0

ectf(t)dt,

est solution de (E) et que φ(f)(0) = 0.
On admettra que φ(f) est l’unique solution de (E) qui s’annule en 0.

2. Exprimer (φ(f))′ en fonction de f et φ(f) et démontrer que φ(f) est de classe C1 sur I.
3. Calculer φ(f) pour :

a. f : t 7→ e−ct.
b. f : t 7→ K où K est un réel.
c. f : t 7→ t on pourra penser à effectuer une intégration par parties.

4. Prouver que l’application φ : f 7→ φ(f) est linéaire sur C0(I).

Partie II

1. Démontrer qu’il existe des réels positifs M1 et M2 tels que :

∀f ∈ C0(I), ‖f‖1 ≤ M1‖f‖2 ≤ M2‖f‖∞.

2. Démontrer qu’il existe un réel positif M0 tel que :

∀f ∈ C0(I), ‖φ(f)‖∞ ≤ M0‖f‖∞.

3. Démontrer qu’il existe un réel A positif tel que :

∀f ∈ C0(I), ∀x ∈ I, |φ(f)(x)| ≤ A‖f‖1.

4. Démontrer qu’il existe un réel B positif tel que :

∀f ∈ C0(I), ∀x ∈ I, |φ(f)(x)| ≤ B‖f‖2.

En déduire :
∃K ∈ R+, ∀f ∈ C0(I), ‖φ(f)‖2 ≤ K‖f‖2.

5. L’application φ de C0([a, b]) dans lui-même est-elle continue
a. lorsque C0([a, b]) est muni de la norme ‖ · ‖∞ ?
b. lorsque C0([a, b]) est muni de la norme ‖ · ‖1 ?
c. lorsque C0([a, b]) est muni de la norme ‖ · ‖2 ?
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Correction.

1. Le problème de Cauchy
{

y′ + cy = f
y(0) = 0

, associé à une équation différentielle linéaire scalaire

d’ordre 1 résolue en y′, à coefficients continus sur I, admet une solution unique sur I qu’on
peut calculer, par exemple, par la méthode de variation de la constante.
On peut aussi remarquer que g : x 7→ φ(f)(x).ecx est dérivable sur I et que
∀x ∈ I, g′(x) = ecx(cφ(f)(x) + φ(f)′(x) = ecxf(x).

Comme g(0) = 0 : ∀x ∈ I, g(x) =

∫ x

0

ectf(t) dt ; ce qui montre la formule annoncée.

2. φ(f)′ = f − cφ(f) est continue, donc φ(f) est de classe C1 sur I.
3. (a) On a, pour tout x ∈ I :

φ(f)(x) = e−cx

∫ x

0

1dt = xe−cx.

(b) On a, pour tout x ∈ I :

φ(f)(x) = e−cx

∫ x

0

Kectdt = e−cxK

c
(ecx − 1) =

K

c
(1− e−cx).

(c) On a, pour tout x ∈ I :

φ(f)(x) = e−cx

∫ x

0

tectdt︸ ︷︷ ︸
=[t ect

c ]x0−
∫ x
0

ect

c dt

= e−cx(x
ecx

c
− 1

c2
(ecx − 1)) =

1

c
(x− 1

c
+

1

c
e−cx)

4. La linéarité découle de la formule du I1 et de la linéarité de l’intégrale. On peut aussi la
démontrer à l’aide du principe de superposition.

Partie II

1. Vu en cours : ∀f ∈ C0(I), ‖f‖1 ≤
√
b− a‖f‖2 et ‖f‖2 ≤

√
b− a‖f‖∞.

2. Soit x ∈ I.
|φ(f)(x)| ≤ e−cx

∫
[0,x]

ect|f(t)| dt ≤ e−cx|
∫ x

0

ect dt|‖f‖∞ =
1

c
|1 − e−cx|‖f‖∞ ≤

max(|1− e−ca|, |1− e−cb|
c

‖f‖∞.

Donc ‖φ(f)‖∞ ≤ max(|1− e−ca|, |1− e−cb|)
c

‖f‖∞.

3. |φ(f)(x)| ≤ e−cx

∫
[0,x]

ect|f(t)| dt ≤ e−ca

∫
[0,x]

ecb|f(t)| dt ≤ ec(b−a)

∫
[a,b]

|f(t)| dt =

ec(b−a)‖f‖1.
Par intégration, on en déduit que ‖φ(f)‖1 ≤ (b− a).ec(b−a)‖f‖1.

4. En combinant les questions II 1 et 4, on obtient |φ(f)(x)| ≤
√
b− a ec(b−a)‖f‖2.

On en déduit que ‖φ(f)‖2 ≤
√
b− a.

√
b− a ec(b−a)‖f‖2.

5. Comme φ est une application linéaire, les inégalités établies aux questions 2, 3 et 4 assurent
que l’application φ de C0([a, b]) dans lui-même est continue lorsque C0([a, b]) est muni de
la norme ‖ · ‖∞, de la norme ‖ · ‖1 ou de la norme ‖ · ‖2.
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Problème 2.Problème 2.

Soit n ∈ N∗ et K = R ou C. On considère l’algèbre E = Mn(K) des matrices carrées d’ordre n
à coefficients dans K qu’on munit de la norme ‖ · ‖∞ où, pour M = (mi,j)1≤i,j≤n ∈ E :

‖M‖∞ = max
1≤i,j≤n

(|mi,j |) .

1. La norme ‖ · ‖∞ est-elle une norme d’algèbre ?

1. Sous-algèbres des matrices triangulaires supérieures
On note T +

n (K) l’ensemble des matrices carrées d’ordre n triangulaires supérieures i.e.

T +
n (K) = {M = (mi,j)1≤i,j≤n ∈ E | ∀i, j ∈ J1, nK, i < j ⇒ mi,j = 0} .

2. Montrer que T +
n (K) est une sous-algèbre de E.

Pour M = (mi,j)1≤i,j≤n ∈ E et i, j ∈ J1, nK, on note :

φi,j(M) = mi,j

3. (a) Montrer que, pour tous i, j ∈ J1, nK, φi,j est une forme linéaire.

(b) Montrer que, pour tous i, j ∈ J1, nK, φi,j est continue de (E, ‖ · ‖∞) dans (K, | · |) et
calculer sa norme subordonnée (pour la norme ‖ · ‖∞ au départ et | · | à l’arrivée).

(c) Montrer que T +
n (K) est un fermé de (E, ‖ · ‖∞). Est-il compact dans (E, ‖ · ‖∞) ?

2. Une application linéaire de E dans E
On considère l’application f : E → E définie, pour M ∈ E, par :

f(M) = M − Tr(M)In.

4. Montrer que f appartient à l’algèbre L(E).

5. Déterminer le polynôme minimal de f .

6. Montrer que f continue de (E, ‖ · ‖∞) dans lui-même et calculer sa norme subordonnée
(pour la norme ‖ · ‖∞ au départ et à l’arrivée).

Correction.

1. Si n = 1, il s’agit d’une norme d’algèbre car ‖ · ‖∞ = | · |.
Si n ≥ 2, non, ce n’est pas une norme d’algèbre car, pour J = (1)1≤i,j≤n, on a ‖J‖∞ = 1
et J2 = nJ ; ainsi :

‖J × J‖∞ = ‖J2‖∞ = n‖J‖∞ > 1 = ‖J‖∞.‖J‖∞.

1. Sous-algèbres des matrices triangulaires supérieures
2. Soit M = (mi,j)1≤i,j≤n, N = (ni,j)1≤i,j≤n ∈ T +

n (K) et λ ∈ K.
— Les matrices 0n et In sont triangulaires supérieures donc appartiennent à T +

n (K).
— On note A = λM +N et ai,j les coefficients de A. On a, pour tous ∀i, j ∈ J1, nK avec

i < j, mi,j = 0 = ni,j car M,N ∈ T +
n (K) et donc :

ai,j = λmi,j + ni,j = 0
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d’où A ∈ T +
n (K).

— On note B = MN et bi,j les coefficients de B. On a, pour tous ∀i, j ∈ J1, nK avec i < j,
mi,j = 0 = ni,j car M,N ∈ T +

n (K) et donc :

bi,j =

n∑
k=1

mi,knk,j

=

i∑
k=1

mi,k nk,j︸︷︷︸
=0 car k≤i<j

+

n∑
k=i+1

mi,k︸︷︷︸
=0 car i<k

nk,j

bi,j = 0 + 0 = 0.

d’où B ∈ T +
n (K).

Il en résulte que T +
n (K) est une sous-algèbre de E.

3. (a) Soit i, j ∈ J1, nK. On a, pour tous M = (mi,j)1≤i,j≤n, N = (ni,j)1≤i,j≤n ∈ E et λ ∈ K :

φi,j(λM +N) = λmi,j + ni,j = λφi,j(M) + φi,j(N).

Par suite, φi,j est une forme linéaire.
(b) Soit i, j ∈ J1, nK. Pour tout M = (mi,j)1≤i,j≤n ∈ E, on a :

|φi,j(M)| = |mi,j | ≤ ‖M‖∞.

Par suite, φi,j est continue de (E, ‖ · ‖∞) dans (K, ‖ · ‖) et on a |||φi,j ||| ≤ 1.
De plus, pour M = (1)1≤i,j≤n, on a :

|φi,j(M)| = 1 = ‖M‖∞.

Il en résulte que |||φi,j ||| = 1.
(c) On a

T +
n (K) =

⋂
1≤i<j≤n

φ−1
i,j ({0})

donc T +
n (K) est fermé dans E muni de la norme infinie comme intersection d’images

réciproques d’un fermé (un singleton) par des applications continues.
De plus, T +

n (K) n’est pas compact dans (E, ‖ · ‖∞) car T +
n (K) n’est pas borné dans

(E, ‖ · ‖∞) : en effet, pour tout entier n, nIn ∈ T +
n (K) et on a

‖nIn‖∞ = n −−−−−→
n→+∞

+∞.

2. Une application linéaire de E dans E

4. Montrons que f est linéaire de E dans E. Soit M = (mi,j)1≤i,j≤n, N = (ni,j)1≤i,j≤n ∈ E
et λ ∈ K. On a, par linéarité de la trace :

f(λM +N) = (λM +N)− Tr(λM +N)In

= λM +N − (λTr(M) + Tr(N))In

= λ(M − Tr(M)In) + (N − Tr(N)In)

f(λM +N) = λf(M) + f(N).

Par suite, f ∈ L(E).
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5. Pour M = (mi,j)1≤i,j≤n ∈ E, on a, par linéarité de f :

f2(M) = f(M − Tr(M)In)

= f(M)− Tr(M)f(In)

= M − Tr(M)In − Tr(M)(In − Tr(In)︸ ︷︷ ︸
=n

In)

= M − (2− n)Tr(M)In

= (2− n)(M − Tr(M)In) + (n− 1)M

f2(M) = (2− n)f(M) + (n− 1)M.

Par suite,
f2 = (2− n)f + (n− 1)IdE

et donc X2+(n− 2)X − (n− 1) = (X − 1)(X +(n− 1)) est un polynôme annulateur de f .

— Si n = 1, f = 0 donc son polynôme minimal est X.

— Supposons n ≥ 2. On a (f − IdE)(In) = −nIn 6= 0n d’où X − 1 n’est pas annulateur
de f et (f + (n − 1)IdE)(E11) = nE11 6= 0n d’où (X + (n − 1)) n’est pas annulateur
de f .
Ainsi, πf = X2 + (n− 2)X − (n− 1) = (X − 1)(X + (n− 1)).

6. Soit M = (mi,j)1≤i,j≤n ∈ E. On note ai,j les coefficients de f(M) = M − Tr(M)In. Alors
on a, pour i, j ∈ J1, nK :

ai,j =


mi,j si i 6= j

−
n∑

k=1
k ̸=i

mk,k si i = j

donc |ai,j | ≤ (n− 1)‖M‖∞.
Par suite, on a :

‖f(M)‖∞ = ‖(ai,j)‖∞ ≤ (n− 1)‖M‖∞.

Ainsi, f est continue de (E, ‖ · ‖∞) dans lui-même et on a |||f ||| ≤ n− 1.
De plus, on a :

‖f(In)‖∞ = ‖(1− n)In‖∞ = n− 1,

donc |||f ||| = n− 1.
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