Corrigé du devoir surveillé n°1

Exercice 1.

On considère la fonction $f(x) = \frac{1}{x(x+1)}$.

- 1. Déterminer deux réels a et b tels que, pour tout $x \in [1, 2]$, on $a : f(x) = \frac{a}{x} + \frac{b}{x+1}$.
- 2. Déduire de la question précédente la valeur de l'intégrale $J=\int_1^2 \frac{1}{x(x+1)}\,\mathrm{d}x.$
- 3. Calculer l'intégrale $I = \int_1^2 \frac{\ln(1+t)}{t^2} dt$.

Correction

1. Soit $x \in [1, 2]$. On a

$$\frac{a}{x} + \frac{b}{x+1} = \frac{(a+b)x + a}{x(x+1)}.$$

Ainsi, on a

$$f(x) = \frac{a}{x} + \frac{b}{x+1}, \quad \text{pour tout } x \in [1,2]$$

$$\iff \frac{1}{x(x+1)} = \frac{(a+b)x+a}{x(x+1)}, \quad \text{pour tout } x \in [1,2]$$

$$\iff 1 = (a+b)x+a, \quad \text{pour tout } x \in [1,2]$$

$$\iff a = 1 \quad \text{et} \quad a+b=0$$

$$\iff a = 1 \quad \text{et} \quad b = -1.$$

2. On en déduit que l'on a

$$J = \int_{1}^{2} \frac{1}{x(x+1)} dx = \int_{1}^{2} \left(\frac{1}{x} - \frac{1}{x+1}\right) dx$$
$$= \left[\ln(x)\right]_{1}^{2} - \left[\ln(x+1)\right]_{1}^{2}$$
$$= \ln(2) - (\ln(3) - \ln(2))$$
$$= 2\ln(2) - \ln(3).$$

3. Par la méthode d'intégration par parties, on a

$$\begin{split} I &= \int_{1}^{2} \frac{\ln(1+t)}{t^{2}} \mathrm{d}t = \int_{1}^{2} \underbrace{\frac{1}{t^{2}}}_{u'(t)} \underbrace{\ln(1+t)}_{v(t)} \mathrm{d}t \quad \text{avec } u(t) = -\frac{1}{t} \\ &= \left[u(t)v(t) \right]_{1}^{2} - \int_{1}^{2} u(t)v'(t) \mathrm{d}t \\ &= \left[-\frac{\ln(1+t)}{t} \right]_{1}^{2} + \int_{1}^{2} \frac{1}{t(1+t)} \mathrm{d}t \\ &= -\frac{\ln(3)}{2} + \ln(2) + J \\ &= 3\ln(2) - \frac{3\ln(3)}{2}. \end{split}$$

Exercice 2.

On considère la fonction $f: x \mapsto \arctan(x)$.

- 1. (a) Donner le développement limité en 0 de $x\mapsto \frac{1}{1+x^2}$ à l'ordre 4.
 - (b) En déduire le développement limité en 0 de f à l'ordre 5
 - (c) Calculer la limite suivante : $\lim_{x\to 0} \frac{f(x)-x}{\sin(x)-x}$.
- 2. Montrer que f est une fonction concave sur \mathbb{R}_+ et convexe sur \mathbb{R}_-
- 3. En déduire l'inégalité suivante, pour tout $x \in [0,1], \frac{\pi}{4}x \le f(x) \le \frac{3}{4}(x \frac{1}{\sqrt{2}}) + \frac{\pi}{6}$

Correction.

- 1. (a) On a $\frac{1}{1+x^2} = 1 x^2 + x^4 + o(x^4)$ au voisinage de 0.
 - (b) On sait que, pour tout réel $x, f'(x) = \frac{1}{1+x^2}$ donc en intégrant le DL précédent, on obtient, au voisinage de 0 :

$$f(x) - f(0) = \int_0^x \frac{1}{1+t^2} dt = x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5).$$

Sachant que f(0) = 0, on a donc :

$$f(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5).$$

(c) pour x au voisinage de 0, d'après ce qui précède, on a $f(x)-x=-\frac{x^3}{3}+o(x^3)$ et on sait que $\sin(x)-x=-\frac{x^3}{6}+o(x^3)$.

2

Ainsi:

$$\frac{f(x) - x}{\sin(x) - x} \sim_{x \to 0} \frac{-\frac{x^3}{3}}{-\frac{x^3}{6}} = 2.$$

Il en résulte que $\lim_{x\to 0} \frac{f(x)-x}{\sin(x)-x} = \frac{1}{2}$.

2. La fonction f est C^{∞} sur \mathbb{R} et pour tout $x \in \mathbb{R}$, on a :

$$f''(x) = -\frac{2x}{(1+x^2)^2}.$$

Donc f'' est positive sur \mathbb{R}_- et négative sur \mathbb{R}_+ , d'où le résultat.

3. Comme f est concave sur \mathbb{R}_+ , son graphe est au dessus de ses cordes et en dessous de ses tangentes.

En particulier, il est au dessus de la corde entre les points d'abscisses 0 et $\pi/4$ qui est d'équation $\frac{\pi}{4}x$ (car f(0)=0 et $f(1)=\pi/4$); et il est en dessous de sa tangente en $\frac{1}{\sqrt{3}}$ qui est d'équation

$$y = \frac{3}{4}(x - \frac{1}{\sqrt{3}}) + \frac{\pi}{6}$$

car $f'(\frac{1}{\sqrt{3}}) = 3/4$ et $f(\frac{1}{\sqrt{3}}) = \pi/6$.

Exercice 3.

Montrer que, pour tous $n \in \mathbb{N}^*$ et $a_1, ..., a_n \in \mathbb{R}_+^*$, $\sqrt{\sum_{i=1}^n a_i} \ge \frac{1}{\sqrt{n}} \sum_{i=1}^n \sqrt{a_i}$.

Correction

La fonction $f: x \mapsto \sqrt{x}$ sur \mathbb{R}_+^* est concave car elle est deux fois dérivable sur cet intervalle et pour tout $x \in \mathbb{R}_+^*$, $f''(x) = -\frac{1}{4x\sqrt{x}} \le 0$. Ainsi, d'après l'inégalité de Jensen, on a, pour $n \in \mathbb{N}^*$, $a_1, ..., a_n \in \mathbb{R}_+^*$ et $\lambda_1 = ... = \lambda_n = \frac{1}{n}$ (et donc de somme égale à 1):

$$f\left(\sum_{i=1}^{n} \lambda_i a_i\right) \ge \sum_{i=1}^{n} \lambda_i f(a_i).$$

Or,

$$f\left(\sum_{i=1}^{n} \lambda_i a_i\right) = \sqrt{\sum_{i=1}^{n} \frac{1}{n} a_i} = \frac{1}{\sqrt{n}} \sqrt{\sum_{i=1}^{n} a_i},$$

 et

$$\sum_{i=1}^{n} \lambda_i f(a_i) = \sum_{i=1}^{n} \frac{1}{n} \sqrt{a_i} = \frac{1}{n} \sum_{i=1}^{n} \sqrt{a_i}.$$

Ainsi, en multipliant l'inégalité par $\sqrt{n} \ge 0$, on obtient le résultat, à savoir :

$$\sqrt{\sum_{i=1}^{n} a_i} \ge \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sqrt{a_i}.$$

Problème 1. Propriété de la série harmonique alternée

Pour tout entier naturel n non nul, on pose :

$$A_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^{n+1}}{n}$$

L'objectif de ce problème est d'obtenir des informations sur la suite $(A_n)_{n\geqslant 1}$. Plus précisément, nous allons calculer la limite de cette suite puis nous en déterminerons un développement asymptotique à deux termes.

Aucun prérequis sur les séries numériques n'est nécessaire.

On introduit la suite d'intégrales $(I_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \quad I_n = \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x$$

Première partie : étude de la suite $(I_n)_{n\in\mathbb{N}}$

- 1. Calculer les intégrales I_0, I_1 et I_2 .
- 2. (a) Étudier les variations de la suite $(I_n)_{n\in\mathbb{N}}$.
 - (b) Justifier que la suite $(I_n)_{n\in\mathbb{N}}$ est convergente.
- 3. Montrer que:

$$\forall n \in \mathbb{N}, \quad I_n + I_{n+1} = \frac{1}{n+1}$$

Quelle est la limite de $(I_n)_{n\in\mathbb{N}}$?

4. En utilisant ce qui précède, montrer que : $I_n \sim \frac{1}{n \to +\infty} \frac{1}{2n}$

Deuxième partie : étude de la suite $(A_n)_{n\geqslant 1}$

- 5. (a) Montrer que : $\forall n \in \mathbb{N}^*$, $A_n = \ln(2) + (-1)^{n+1}I_n$ Indication : on pourra éventuellement procéder par récurrence.
 - (b) Conclure quant à la limite de la suite $(A_n)_{n\geq 1}$.

Dans la suite du problème, on veut préciser cette convergence en calculant un développement asymptotique de la suite.

6. En utilisant une intégration par parties, montrer que :

$$\forall n \in \mathbb{N}, \quad I_n = \frac{1}{2n+2} + \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{(1+x)^2} dx$$

Pour tout $n \in \mathbb{N}$, on pose $J_n = \int_0^1 \frac{x^{n+1}}{(1+x)^2} dx$.

7. En utilisant un encadrement judicieux de la fonction dans l'intégrale, montrer que :

$$\forall n \in \mathbb{N}, \quad 0 \leqslant J_n \leqslant \frac{1}{n+2}$$

8. Montrer que:

$$\frac{1}{2n+2} \underset{n \to +\infty}{=} \frac{1}{2n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

9. Conclure que:

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \underset{n \to +\infty}{=} \ln(2) + \frac{(-1)^{n+1}}{2n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Correction.

Première partie : étude de la suite $(I_n)_{n\in\mathbb{N}}$

1. On a:

$$I_0 = \int_0^1 \frac{\mathrm{d}x}{1+x} = [\ln(1+x)]_0^1 = \ln(2)$$

et:

$$I_1 = \int_0^1 \frac{x}{1+x} \, dx = \int_0^1 \left(1 - \frac{1}{1+x}\right) dx = \left[x - \ln(1+x)\right]_0^1 = 1 - \ln(2)$$

De plus 1 :

$$\frac{X^2}{X+1} = \frac{X(X+1) - (X+1) + 1}{X+1} = X - 1 + \frac{1}{X+1}$$

Ainsi:

$$I_2 = \left[\frac{x^2}{2} - x + \ln(1+x)\right]_0^1 = \ln(2) - \frac{1}{2}$$

2. (a) Soit $n \in \mathbb{N}$. Par linéarité de l'intégrale, on a :

$$I_{n+1} - I_n = \int_0^1 \left(\frac{x^{n+1}}{1+x} - \frac{x^n}{1+x} \right) dx = \int_0^1 \frac{x^n(x-1)}{1+x} dx$$

Pour tout $x \in [0,1]$, on a $\frac{x^n}{1+x} \geqslant 0$ et $x-1 \leqslant 0$ donc $\frac{x^n(x-1)}{1+x} \leqslant 0$. Par positivité de l'intégrale, on a donc $I_{n+1} - I_n \leqslant 0$. Ainsi :

la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante

(b) Pour tout $n \in \mathbb{N},$ on a $I_n \geqslant 0$ par positivité de l'intégrale car :

$$\forall x \in [0, 1], \quad \frac{x^n}{1+x} \geqslant 0$$

La suite $(I_n)_{n\in\mathbb{N}}$ est donc décroissante et minorée par 0; le théorème de la limite monotone nous permet donc de conclure que :

la suite $(I_n)_{n\in\mathbb{N}}$ est convergente

3. Soit $n \in \mathbb{N}$. On a :

$$I_n + I_{n+1} = \int_0^1 \left(\frac{x^n}{1+x} + \frac{x^{n+1}}{1+x} \right) dx = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1} \right]_0^1$$

donc:

$$\forall n \in \mathbb{N}, \quad I_n + I_{n+1} = \frac{1}{n+1}$$

On sait que la suite $(I_n)_{n\in\mathbb{N}}$ est convergente. Notons $\ell\in\mathbb{R}$ sa limite. Alors $I_{n+1}\xrightarrow[n\to+\infty]{}\ell$. De plus $\frac{1}{n+1}\xrightarrow[n\to+\infty]{}0$. En faisant tendre n vers $+\infty$ dans la relation de récurrence précédemment obtenue, on obtient $2\ell=0$, c'est-à-dire $\ell=0$. Ainsi :

$$\lim_{n \to +\infty} I_n = 0$$

4. Soit $n \in \mathbb{N}^*$. La suite $(I_\ell)_{\ell \in \mathbb{N}}$ est décroissante donc $I_{n+1} \leqslant I_n \leqslant I_{n-1}$ donc :

$$I_n + I_{n+1} \leqslant 2I_n$$
 et $I_{n-1} + I_n \geqslant 2I_n$

En utilisant l'égalité obtenue à la question 2., ces deux inégalités se réécrivent :

$$\frac{1}{n+1} \leqslant 2I_n \leqslant \frac{1}{(n-1)+1}$$
 c'est-à-dire $\frac{1}{2n+2} \leqslant I_n \leqslant \frac{1}{2n}$

Comme $\frac{1}{2n+2} \underset{n \to +\infty}{\sim} \frac{1}{2n}$, on déduit du théorème des gendarmes pour les équivalents que :

$$I_n \underset{n \to +\infty}{\sim} \frac{1}{2n}$$

Deuxième partie : étude de la suite $(A_n)_{n\geq 1}$

- 5. (a) On utilise un raisonnement par récurrence.
- \star On a $A_1 = 1$ et (en utilisant la question 1.) :

$$ln(2) + (-1)^2 I_1 = ln(2) + (1 - ln(2)) = 1 = A_1$$

L'égalité est donc vérifiée pour n=1.

* Soit $n \in \mathbb{N}^*$. On suppose que $A_n = \ln(2) + (-1)^{n+1}I_n$. Montrons que :

$$A_{n+1} = \ln(2) + (-1)^{n+2} I_{n+1}$$

On a (en utilisant la relation de Chasles pour les sommes et l'hypothèse de récurrence) :

$$A_{n+1} = \sum_{k=1}^{n+1} \frac{(-1)^{k+1}}{k} = \underbrace{\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}}_{=A_{n}} + \underbrace{\frac{(-1)^{n+2}}{n+1}}_{=A_{n}} = \ln(2) + (-1)^{n+1}I_{n} + \underbrace{\frac{(-1)^{n+2}}{n+1}}_{=A_{n}}$$

D'après la question 3., on a $I_n = \frac{1}{n+1} - I_{n+1}$ donc :

$$A_{n+1} = \ln(2) + (-1)^{n+1} \left(\frac{1}{n+1} - I_{n+1} \right) - \frac{(-1)^{n+1}}{n+1}$$
$$= \ln(2) - (-1)^{n+1} I_{n+1}$$
$$= \ln(2) + (-1)^{n+2} I_{n+1}$$

L'égalité est donc vérifiée au rang n+1.

Par principe de récurrence simple, on peut conclure que :

$$\forall n \in \mathbb{N}^*, \quad A_n = \ln(2) + (-1)^{n+1} I_n$$

(b) La suite $(I_n)_{n\in\mathbb{N}}$ converge vers 0 et la suite $((-1)^n)_{n\in\mathbb{N}}$ est bornée donc $(-1)^{n+1}I_n \xrightarrow[n\to+\infty]{}$. La relation obtenue à la question précédente entraı̂ne que : la suite $(A_n)_{n\geqslant 1}$ est convergente de limite $\ln(2)$ 6. Soit $n\in\mathbb{N}.$ Posons :

$$u'(x) = x^n$$
 $v(x) = \frac{1}{1+x}$ $u(x) = \frac{x^{n+1}}{n+1}$ $v'(x) = -\frac{1}{(1+x)^2}$

Les fonctions u et v sont de classe \mathscr{C}^1 sur [0,1] donc, par intégration par parties, on a :

$$I_n = \left[\frac{x^{n+1}}{(n+1)(1+x)}\right]_0^1 - \int_0^1 -\frac{x^{n+1}}{(n+1)(1+x)^2} dx$$
$$= \frac{1}{2(n+1)} + \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{(1+x)^2} dx$$

Ainsi:

$$\forall n \in \mathbb{N}, \quad I_n = \frac{1}{2n+2} + \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{(1+x)^2} dx$$

7. Soient $n \in \mathbb{N}$ et $x \in [0,1]$. Il est clair que $(1+x)^2 \geqslant 1$ donc (par décroissance de la fonction inverse sur \mathbb{R}_+^* , on a $0 \leqslant \frac{1}{(1+x)^2} \leqslant 1$. Comme $x^{n+1} \geqslant 0$, on obtient $0 \leqslant \frac{x^{n+1}}{(1+x)^2} \leqslant x^{n+1}$. Par (positivité et) croissance de l'intégrale, on obtient :

$$0 \leqslant \int_0^1 \frac{x^{n+1}}{(1+x)^2} \, \mathrm{d}x \leqslant \int_0^1 x^{n+1} \, \mathrm{d}x \quad \text{ où } \quad \int_0^1 x^{n+1} \, \mathrm{d}x = \left[\frac{x^{n+2}}{n+2}\right]_0^1 = \frac{1}{n+2}$$

On a donc bien:

$$\forall n \in \mathbb{N}, \quad 0 \leqslant J_n \leqslant \frac{1}{n+2}$$

8. Soit $n \in \mathbb{N}^*$. On a :

$$\left| \frac{1}{2n+2} - \frac{1}{2n} \right| = \left| \frac{2n - (2n+2)}{2n(2n+2)} \right| = \frac{1}{n(2n+2)} \leqslant \frac{1}{n^2}$$

car $n(2n+2) = 2n^2 + 2n \geqslant n^2$. Ainsi :

$$\frac{1}{2n+2} \underset{n \to +\infty}{=} \frac{1}{2n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

9. Soit $n \in \mathbb{N}^*$. On utilisant successivement les questions 5.(a) et 6 ., on a :

$$A_n = \ln(2) + (-1)^{n+1} \left(\frac{1}{2n+2} + \frac{1}{n+1} J_n \right) = \ln(2) + \frac{(-1)^{n+1}}{2n+2} + \frac{(-1)^{n+1}}{n+1} J_n$$

D'après la question 7., on a :

$$\left| \frac{(-1)^{n+1}}{n+1} J_n \right| = \frac{1}{n+1} J_n \leqslant \frac{1}{(n+1)(n+2)} \leqslant \frac{1}{n^2}$$

donc $\frac{(-1)^{n+1}}{n+1}J_n = \mathcal{O}\left(\frac{1}{n^2}\right)$ et, d'après la question 8.

$$\frac{(-1)^{n+1}}{2n+2} \underset{n \to +\infty}{=} \frac{(-1)^{n+1}}{2n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

car la suite $\left((-1)^{n+1}\right)_{n\in\mathbb{N}}$ est bornée. On obtient bien le développement asymptotique annoncé :

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \underset{n \to +\infty}{=} \ln(2) + \frac{(-1)^{n+1}}{2n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

1. Il s'agit de décomposer en éléments simples une fraction rationnelle.