Devoir maison nº1

Parties notées: parties 1 à 3

Partie libre et non notée : partie 4.

Problème.

Étude d'une fonction définie par une intégrale de Dirichlet paramétrée.

Dans ce problème, on déterminera, dans un premier temps, les domaines de définition de deux fonctions D et d définies par des intégrales paramétrées puis, dans un second temps, les limites de D aux bornes de son domaine.

Puis, pour finir, dans une partie indépendante, on calculera la valeur de l'intégrale de Dirichlet.

Notations

Pour $x \in \mathbb{R}$, on note, lorsque cela à un sens (c'est donc l'objet du problème!) :

$$D(x) = \int_0^{+\infty} \frac{\sin(t)}{t^x} dt \quad \text{et} \quad d(x) = \int_0^{+\infty} \frac{|\sin(t)|}{t^x} dt.$$

On pose \mathcal{D}_D (respectivement, \mathcal{D}_d) le domaine réel de définition de D (respectivement, de d) i.e.

 $\mathcal{D}_D = \{x \in \mathbb{R} \mid \text{ l'intégrale } D(x) \text{ converge } \} \quad \text{et} \quad \mathcal{D}_d = \{x \in \mathbb{R} \mid \text{ l'intégrale } d(x) \text{ converge } \},$ et, de plus, on pose $\mathcal{D}_D^+ = \mathcal{D}_D \cap \mathbb{R}_+$ et $\mathcal{D}_d^+ = \mathcal{D}_d \cap \mathbb{R}_+$.

1. Une condition suffisante de convergence d'intégrales

1. Soit $\alpha, \beta \in \mathbb{R}$, $a \in \mathbb{R}_+^*$ et $u : [a, +\infty[\to \mathbb{C}$ une fonction dérivable sur $[a, +\infty[$ telle que $u(t) = \underset{t \to +\infty}{O}(t^{\beta})$. On considère l'intégrale généralisée :

$$\int_{a}^{+\infty} \frac{u'(t)}{t^{\alpha}} \, \mathrm{d}t.$$

On suppose $\alpha > \beta$. Montrer que cette intégrale converge.

2. En déduire la convergence des intégrales suivantes :

(a)
$$\int_{1}^{+\infty} \frac{\cos(t)}{t} dt;$$

(b)
$$\int_{1}^{+\infty} \frac{e^{it}}{\sqrt{t}} dt;$$

(c)
$$\int_{1}^{+\infty} e^{it^2} dt;$$

2. Domaines de définition de D et de d.

- A. Étude du domaine de D pour les réels positifs.
 - 3. Montrer que l'intégrale $\int_1^{+\infty} \frac{\sin(t)}{t^x} dt$ diverge si x = 0 et converge si x > 0.
 - 4. Déterminer pour quel $x \in \mathbb{R}$ l'intégrale $\int_0^1 \frac{\sin(t)}{t^x} \, \mathrm{d}t$ converge.
 - 5. En déduire l'ensemble \mathcal{D}_D^+ i.e. l'ensemble de définition de D restreinte aux réels positifs.
- B. Étude du domaine de d pour les réels positifs.
 - 6. Justifier succinctement que l'intégrale $\int_0^1 \frac{|\sin(t)|}{t^x} dt$ converge pour les mêmes valeurs de $x \in \mathbb{R}$ que celles trouvées dans la question 4.
 - 7. Montrer que l'intégrale $\int_{1}^{+\infty} \frac{|\sin(t)|}{t^x} dt$ converge si x > 1.
 - 8. Soit $x \in [0, 1]$.
 - (a) Calculer, pour $k \in \mathbb{N}^*$, $\int_{k\pi}^{(k+1)\pi} |\sin(t)| dt$.
 - (b) Montrer que, pour tout $k \in \mathbb{N}^*$:

$$\frac{2}{(k+1)^x \pi^x} \le \int_{k\pi}^{(k+1)\pi} \frac{|\sin(t)|}{t^x} \, \mathrm{d}t.$$

(c) En déduire que, pour tout entier $n \geq 2$:

$$\frac{2}{\pi^x} \sum_{k=1}^{n-1} \frac{1}{(k+1)^x} \le \int_{\pi}^{n\pi} \frac{|\sin(t)|}{t^x} dt.$$

- (d) Montrer que $\int_1^{+\infty} \frac{|\sin(t)|}{t^x} dt$ diverge.
- 9. Déduire des questions précédentes l'ensemble \mathcal{D}_d^+ i.e. l'ensemble de définition de d restreinte aux réels positifs.

C. Utilisation du critère de Cauchy pour le cas des réels strictement négatifs

- 10. Soit $a \in \mathbb{R}$ et $f \in C_{pm}([a, +\infty[, \mathbb{R}).$
 - (a) Montrer que si $\int_a^{+\infty} f(t) dt$ converge alors, pour toute suite $(u_n)_{n \in \mathbb{N}}$ à valeurs dans $[a, +\infty[$ qui tend vers $+\infty, \int_{u_n}^{+\infty} f(t) dt \xrightarrow[n \to +\infty]{} 0.$
 - (b) En déduire que si $\int_a^{+\infty} f(t) dt$ converge alors, pour toutes suites $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ à valeurs dans $[a, +\infty[$ vérifiant, pour tout $n \in \mathbb{N}$, $u_n < v_n$ et $u_n \xrightarrow[n \to +\infty]{} +\infty$, on a $\int_{u_n}^{v_n} f(t) dt \xrightarrow[n \to +\infty]{} 0$.

2

- 11. Soit x un réel **négatif**.
 - (a) Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\left| \int_{n\pi}^{(n+1)\pi} \frac{\sin(t)}{t^x} \, \mathrm{d}t \right| \ge 2.$$

(b) En déduire que
$$\int_0^{+\infty} \frac{\sin(t)}{t^x} dt$$
 diverge.

Remarque : dans la question 10, nous avons prouvé prouvé et utilisé un cas particulier de l'implication directe (qui se démontre de manière relativement similaire) du *critère de Cauchy* pour les intégrales généralisées (dans le cas $b=+\infty$) et qui s'énonce de la façon suivante :

Soit $a \in \mathbb{R}$, $b \in \mathbb{R} \cup \{+\infty\}$ avec a < b et $f \in C_{pm}([a,b[,\mathbb{C}).$ L'intégrale $\int_a^b f(t) \, \mathrm{d}t$ converge si, et seulement si, pour tout $\varepsilon > 0$, il existe $A \in [a,b[$ tel que, pour tous $u,v \in [A,b[$ vérifiant u < v, on a :

$$\left| \int_{u}^{v} f(t) \, \mathrm{d}t \right| < \varepsilon.$$

L'implication réciproque se démontre en utilisant la convergence des suites de Cauchy à valeurs dans l'espace complet \mathbb{R} , notions qui ne sont pas au programme.

- D. Conclusion.
 - 12. Déterminer les domaines de définition \mathcal{D}_D et \mathcal{D}_d des fonctions D et d.
- 3. Limites de D aux bornes de son domaine de définition
- A. Signe de D et calcul de sa limite en 2-

On pose
$$g: t \mapsto \begin{cases} \frac{1-\cos(t)}{t^2} & \text{si } t \in \mathbb{R}^* \\ \frac{1}{2} & \text{si } t \neq 0 \end{cases}$$
.

- 12. Montrer que la fonction g est continue, positive sur \mathbb{R} et qu'elle admet un minimum strictement positif sur l'intervalle $[0,\pi]$.
- 13. Montrer que, pour tout $x \in]0,2[$, l'intégrale $\int_0^{+\infty} \frac{g(t)}{t^{x-1}} dt$ converge et que :

$$D(x) = x \int_0^{+\infty} \frac{g(t)}{t^{x-1}} dt.$$

- 14. En déduire le signe de D sur]0,2[.
- 15. Montrer que, pour tout $x \in]0,2[$, on a, en notant m la valeur minimale prise par g sur $[0,\pi]$:

3

$$D(x) \ge mx \frac{\pi^{2-x}}{2-x};$$

puis en déduire la limite de D(x) quand x tend vers 2^- .

B. Calcul de la limite de D en 0+

16. Calcul de la limite de $x \mapsto \int_0^{\frac{\pi}{2}} \frac{\sin(t)}{t^x} dt$ en 0^+ .

Dans cette question, on note $h: t \mapsto \begin{cases} \frac{1}{t} - 1 & \text{si } t \in]0, 1] \\ \ln(t) & \text{si } t \in]1, \frac{\pi}{2}]. \end{cases}$

- (a) Montrer que h est continue positive sur $]0,\frac{\pi}{2}]$ et que l'intégrale $\int_0^{\frac{\pi}{2}} h(t)\sin(t)\,dt$ converge.
- (b) Pour $t \in]0, \frac{\pi}{2}[$, on considère, sur [0,1], la fonction $\varphi_t : x \mapsto \left| \frac{1}{t^x} 1 \right|$.
 - i. Montrer que, si $t \in]0,1]$, la fonction φ_t est convexe sur [0,1] et que, si $t \in]1,\frac{\pi}{2}]$, φ_t est concave sur [0,1].
 - ii. En déduire que, pour tout $x \in [0,1]$ et tout $t \in]0,\frac{\pi}{2}[$:

$$\left| \frac{1}{t^x} - 1 \right| = \varphi_t(x) \le h(t).x$$

(c) Montrer que :

$$\left| \int_0^{\frac{\pi}{2}} \frac{\sin(t)}{t^x} dt - \int_0^{\frac{\pi}{2}} \sin(t) dt \right| \xrightarrow[x \to 0^+]{} 0,$$

puis en déduire que $x\mapsto \int_0^{\frac{\pi}{2}}\frac{\sin(t)}{t^x}\,\mathrm{d}t$ admet une limite finie à déterminer quand $x\to 0^+$.

- 16bis Question pour les 5/2 ou à faire par la suite après avoir vu le théorème de convergence dominée. Pouvait-on obtenir cette limite par application du théorème de convergence dominée (version continue)?
 - 17. Calcul de la limite de $x \mapsto \int_{\frac{\pi}{2}}^{+\infty} \frac{\sin(t)}{t^x} dt$ en 0^+ .
 - (a) En effectuant une double intégration par parties justifiée, montrer que, pour tout réel x>0 :

$$\int_{\frac{\pi}{2}}^{+\infty} \frac{\sin(t)}{t^x} dt = x \left(\frac{2}{\pi}\right)^{x+1} - x(x+1) \int_{\frac{\pi}{2}}^{+\infty} \frac{\sin(t)}{t^{x+2}} dt.$$

- (b) Pour un réel x > 0, calculer $\int_{\frac{\pi}{2}}^{+\infty} \frac{1}{t^{x+2}} dt$. En déduire la limite de $\int_{\frac{\pi}{2}}^{+\infty} \frac{\sin(t)}{t^x} dt$ quand x tend vers 0^+ .
- 17bis Question pour les 5/2 ou à faire par la suite après avoir vu le théorème de convergence dominée. Pouvait-on obtenir cette limite par application du théorème de convergence dominée (version continue)?

4

18. Conclusion. Déduire des questions 16 et 17 la limite de la fonction D en 0^+ .

4. Valeur de l'intégrale de Dirichlet

Le but de cette partie est de déterminer la valeur de $D(1) = \int_0^{+\infty} \frac{\sin(t)}{t} dt$, connue sous le nom d'intégrale de Dirichlet.

A. Un cas particulier du lemme de Riemann-Lebesgue

Soit $f:[0,\frac{\pi}{2}]\to\mathbb{R}$ une fonction de classe C^1 sur $[0,\frac{\pi}{2}]$.

19. (a) Montrer que, pour tout $n \in \mathbb{N}$, on a :

$$\int_0^{\frac{\pi}{2}} f(t)\sin((2n+1)t) dt = \frac{f(0)}{2n+1} + \frac{1}{2n+1} \int_0^{\frac{\pi}{2}} f'(t)\cos((2n+1)t) dt.$$

(b) En déduire que :

$$\int_0^{\frac{\pi}{2}} f(t) \sin((2n+1)t) dt \xrightarrow[n \to +\infty]{} 0.$$

Remarque: dans la question 19b, nous avons prouvé un cas particulier du lemme de Riemann-Lebesgue qui s'énonce de la façon suivante :

Soit I un intervalle de \mathbb{R} et $f \in C_{pm}(I,\mathbb{C})$. Si f est intégrable sur I, alors :

$$\int_I f(t)e^{i\xi t} dt \xrightarrow[\xi \to \pm \infty]{} 0.$$

Ce qui implique par exemple que la transformée de Fourier (on en parlera succinctement au chapitre concernant les intégrales à paramètre) d'une fonction intégrable sur $\mathbb R$ admet des limites nulles en $\pm \infty$.

Dans toute la suite du problème, on note :

$$--\text{ sur }]0,\tfrac{\pi}{2}],\,F:t\mapsto\frac{1}{\sin(t)}-\frac{1}{t}.$$

— pour
$$n \in \mathbb{N}$$
, sous réserve d'existence, $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{\sin(t)} dt$.

B. Une expression de l'intégrale partielle de Dirichlet

- 20. (a) Montrer que, pour tout $n \in \mathbb{N}$, l'intégrale I_n converge.
 - (b) Calculer I_0 , puis, pour $n \in \mathbb{N}^*$, déterminer la valeur de $I_n I_{n-1}$. Indication: on pourra penser à utiliser la formule $\sin(a) - \sin(b) = \dots$
 - (c) En déduire, pour tout $n \in \mathbb{N}$, la valeur de I_n .
- 21. (a) Montrer que F est continue sur $]0, \frac{\pi}{2}]$ et qu'elle est prolongeable par continuité en 0 par une valeur $c \in \mathbb{R}$ à déterminer.

5

Dans la suite du problème, on notera encore F la fonction ainsi prolongée sur $[0, \frac{\pi}{2}]$ par F(0) = c.

(b) Montrer que, pour tout $n \in \mathbb{N}$, on a :

$$\int_0^{\frac{\pi}{2}} F(t) \sin((2n+1)t) dt = \frac{\pi}{2} - \int_0^{(2n+1)\frac{\pi}{2}} \frac{\sin(u)}{u} du.$$

C. Calcul de l'intégrale de Dirichlet

- 22. Montrer que le fonction F est de classe C^1 sur $\left[0,\frac{\pi}{2}\right]$ (prolongée par F(0)=c).
- 23. En déduire que l'intégrale de Dirichlet vaut $\frac{\pi}{2}$ i.e.

$$D(1) = \int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}.$$