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Dans ce chapitre, K désigne le corps R ou le corps C et (an)n∈N, (bn)n∈N désignent, sauf mention
contraire, des suites à valeurs dans K.

Définitions et généralités sur les séries entières
Partie APartie A

1. Séries entières

Définition 1.Définition 1. gSérie entièreSérie entière

Soit (an)n∈N une suite à valeurs dans K. On appelle série entière associée à la suite (an)n∈N,
la série de fonction

∑
fn où, pour n ∈ N, la fonction fn : C → C est définie par :

fn : z 7→ anz
n.

On notera (abusivement)
∑

anz
n la série entière associée à la suite (an)n∈N.

Exemple 1.Exemple 1.

On connaît déjà plusieurs séries entières :
— la série géométrique

∑
zn ;

— la série de somme exponentielle
∑ zn

n!
.

Exercice 1.Exercice 1.

Soit (an)n∈N une suite de nombres complexes. Montrer que
∑

anz
2n est une série entière.

Correction.

Attention ! Il y a un piège !
∑

anz
2n est bien une série entière : il s’agit de la série entière

∑
bnz

n

où, pour n ∈ N, {
bn = an/2 si n est pair
bn = 0 si n est impair

Définition 2.Définition 2. gSomme et domaine de convergenceSomme et domaine de convergence

Soit
∑

anz
n une série entière.

— On note D et DR et on appelle respectivement domaine de convergence et domaine
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réel de convergence de la série entière
∑

anz
n les ensembles :

D = {z ∈ C |
∑

anz
n converge } et DR = {x ∈ R |

∑
anx

n converge }.

— On appelle somme de la série entière
∑

anz
n la fonction somme S : D → C de la

série, i.e.

S : z 7→
+∞∑
n=0

anz
n.

Remarque 1.Remarque 1.

Par définition, le domaine de convergence d’une série entière
∑

anz
n coïncide avec le domaine

de définition de sa somme S. Ainsi, comme on l’a vu dans le Chapitre séries de fonctions, le
domaine de convergence de la série entière

∑
anz

n est le plus grand ensemble sur lequel la série
de fonctions

∑
anz

n converge simplement.

Question 1.Question 1.

Que dire de la somme d’une série entière associée à une suite stationnaire en 0 ?

Réponse.

Réponse : Soit (an)n∈N est une suite stationnaire en 0 ; on note N = minn∈N(an = 0) et
P =

∑N−1
n=0 anX

n ∈ C[X]. Alors la série
∑

anz
n converge pour tout z ∈ C. En effet, la suite

des sommes partielles est stationnaire en
∑N−1

n=0 anz
n = P (z). De plus, pour la même raison, la

somme S de la série entière est :
S : z 7→ P (z).

On peut donc conclure que la somme d’une série entière associée à une suite stationnaire en 0 est
une fonction polynomiale !

2. Rayon de convergence

a. Lemme d’Abel

Théorème 1.Théorème 1. gLemme d’AbelLemme d’Abel

Soit (an)n∈N une suite à valeurs dans K et z0 ∈ C∗. Si la suite (anz
n
0 )n∈N est bornée, alors, pour

tout z ∈ C tel que |z| < |z0|, la série
∑

anz
n est absolument convergente.
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Démonstration.

On suppose que suite (anz
n
0 )n∈N est bornée. Alors il existe M > 0 tel que |anzn0 | ≤ M .

Soit z ∈ C tel que |z| < |z0|. Alors, pour tout n ∈ N, on a :

|anzn| = |anzn0 |.
(

z

z0

)n

≤ M

(
z

z0

)n

,

qui est le terme général d’une série géométrique de raison strictement inférieure à 1 car |z| < |z0|.
Par suite,

∑
|anzn| est convergente.

b. Définition et propriétés du rayon de convergence

Lemme 1.Lemme 1.

Soit (an)n∈N une suite à valeurs dans K. L’ensemble {r ∈ R+ | (|an|rn)n∈N est bornée} est un
intervalle non vide de R.

Démonstration.

On note I = {r ∈ R+ | (|an|rn)n∈N est bornée}. Alors I contient 0 car (|an|0n)n∈N est bornée.
De plus, si r ∈ I, alors, pour tout s ∈ [0, r], s ∈ I car, pour tout n ∈ N, |an|sn ≤ |an|rn ; donc
(|an|sn)n∈N est bornée.
Il en résulte que I est un intervalle de la forme [0, a).

Ce lemme justifie la définition suivante :

Définition 3.Définition 3. gRayon de convergenceRayon de convergence

Soit
∑

anz
n une série entière.

i) On appelle rayon de convergence et on note R la borne supérieure de l’intervalle
I = {r ∈ R+ | (|an|rn)n∈N est bornée} i.e.

R = sup{r ∈ R+ | (|an|rn)n∈N est bornée}.

on convient que R = +∞ si l’intervalle I n’est pas majoré.
ii) On appelle disque ouvert de convergence de la série entière

∑
anz

n l’ensemble
D(0, R) = {z ∈ C | |z| < R}.

iii) Si (an)n∈N est à valeurs dans R, On appelle intervalle ouvert de convergence de la
série entière

∑
anx

n l’intervalle ]−R,R[.

Proposition 1.Proposition 1.

Soit
∑

anz
n une série entière, R son rayon de convergence et z ∈ C.

— Si |z| < R, alors la série numérique
∑

anz
n converge absolument.

— Si |z| > R, alors la série numérique
∑

anz
n diverge grossièrement.

4



Démonstration.

— On suppose |z| < R. Comme R = sup{r ∈ R+ | (|an|rn)n∈N est bornée}, alors il existe
r0 ∈ {r ∈ R+ | (|an|rn)n∈N est bornée} tel que |z| < r0 < R.
Par conséquent, la suite (anr

n
0 )n∈N étant bornée, d’après le lemme d’Abel, la série

∑
anz

n

est absolument convergente.
— On suppose |z| > R. Alors la suite (anz

n)n∈N n’est pas bornée et donc ne converge pas
vers 0. Ainsi, la série

∑
anz

n diverge grossièrement.

Remarque 2.Remarque 2.

Si |z| = R, on ne peut, a priori, rien dire ! Il faut étudier la série dans ce cas.

Proposition 2.Proposition 2.

Soit
∑

anz
n une série entière, R son rayon de convergence et D son domaine de convergence.

Alors on a :

D(0, R) = {z ∈ C | |z| < R} ⊂ D ⊂ D(0, R) = {z ∈ C | |z| ≤ R}.

Démonstration.

• Si z ∈ D(0, R) alors |z| < R. Par suite, d’après la proposition précédente,
∑

anz
n converge

absolument et donc converge. D’où z ∈ D.
Il en résulte que D(0, R) ⊂ D.

• Si z /∈ D(0, R) alors |z| > R. Par suite, d’après la proposition précédente,
∑

anz
n diverge

grossièrement. D’où z /∈ D.
Ainsi D(0, R)c ⊂ Dc et donc D ⊂ D(0, R).

Exemple 2.Exemple 2.

— Pour la série entière
∑

zn, le rayon de convergence est 1 et son domaine de convergence
est D = D(0, 1).

On a
{r ∈ R+ | (rn)n∈N est bornée} = [0, 1].

Donc le rayon de convergence R de
∑

zn est :

R = sup[0, 1] = 1.

De plus, si |z| = 1, |zn| = |z|n = 1 ↛
n→+∞

0, donc
∑

zn diverge grossièrement.

Il en résulte que D = D(0, 1).
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— Pour la série entière
∑

n≥1

1

n2
zn, le rayon de convergence est 1 et son domaine de conver-

gence est D = D(0, 1).

On a
{r ∈ R+ | ( 1

n2
rn)n∈N est bornée} = [0, 1].

Donc le rayon de convergence R de
∑

n≥1

1

n2
zn est :

R = sup[0, 1] = 1.

De plus, si |z| = 1, | 1
n2 z

n| = 1
n2 donc, d’après le critère de Riemann,

∑
zn

n2 converge
absolument.
Il en résulte que D = D(0, 1).

Exercice 2.Exercice 2.

Déterminer le rayon de convergence et le domaine de convergence des séries entières
∑ zn

n!
et∑

n!zn.

Correction.

1. On a
{r ∈ R+ | ( 1

n!
rn)n∈N est bornée} = [0,+∞[.

car, pour tout r ∈ R, 1
n!r

n est le terme général d’une série convergente - donc converge vers
0 et donc est une suite bornée.
Ainsi le rayon de convergence R de

∑ 1

n!
zn est :

R = +∞.

Il en résulte que D = C.

2. On a
{r ∈ R+ | (n!rn)n∈N est bornée} = {0}.

En effet, pour 0 < r < 1, à partir du rang N = E(r) + 1, il existe C > 0 tel que pour tout
n ≥ N , n!rn ≥ Cn −−−−−→

n→+∞
+∞ (on peut prendre C = (N − 1)!rN )) donc pour tout r > 0,

la suite (n!rn)n∈N n’est pas bornée (le cas r ≥ 1 est immédiat - le faire quand même pour
vérifier que c’est bien immédiat !).
Donc le rayon de convergence R de

∑
n!zn est :

R = sup{0} = 0.

Il en résulte que D = {0}.
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3. Calcul du rayon de convergence d’une série entière

a. Caractérisation du rayon de convergence

Proposition 3.Proposition 3.

Soit
∑

anz
n une série entière et R son rayon de convergence. Alors on a les égalités suivantes :

— R = sup { |z| | (anzn)n∈N est bornée} ;
— R = sup { |z| | (anzn)n∈N converge} ;

— R = sup
{
|z| |

∑
anz

n converge
}

;

— R = sup
{
|z| |

∑
anz

n converge absolument
}

.

Démonstration.

On considère les ensembles suivants :
— I1 = { |z| | (anzn)n∈N est bornée} ;
— I2 = { |z| | (anzn)n∈N converge} ;

— I3 =
{
|z| |

∑
anz

n converge
}

;

— I4 =
{
|z| |

∑
anz

n converge absolument
}

.
Pour toute suite (un)n∈N ∈ Cn, on a :∑

un converge absolument ⇒
∑

un converge ⇒ (un)n∈N converge ⇒ (un)n∈N est bornée.

Par suite, on a la chaîne d’inclusion :

I4 ⊂ I3 ⊂ I2 ⊂ I1.

De plus, on remarque que I1 = {r ∈ R+ | (|an|rn)n∈N est bornée}, donc, d’après le lemme 1,
I1 est un intervalle non vide de R+ qui contient 0 et par définition du rayon de convergence,
R = sup I1 (potentiellement = +∞). Ainsi, on a I1 = [0, R[ ou I1 = [0, R].
Comme 0 ∈ I4, I4 est une partie non vide de R+ et donc il possède une borne supérieure R′

(potentiellement +∞ si I4 n’est pas majorée). Ainsi, comme I4 ⊂ I1, on a R′ ≤ R.
Réciproquement : soit r ∈ [0, R[. Alors, d’après la proposition 1, la série

∑
anr

n converge absolu-
ment, donc r appartient à I4 et donc r ≤ R′. Par suite, R′ est un majorant de [0, R[ d’où R ≤ R′.
Il en résulte que R′ = R.
Remarque : les inégalités précédentes ne pas rigoureuses dans le cas R = +∞, mais la preuve
reste analogue dans ce cas.
Ainsi, en utilisant la chaîne d’inclusion précédente, on obtient :

R = sup I4 ≤ sup I3 ≤ sup I2 ≤ sup I1 = R.

d’où les égalités annoncées.
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Méthode : Minoration et majoration du rayon de convergence

Étant donné une série entière
∑

anz
n de rayon de convergence R et z0 ∈ C, on a :

• la minoration R ≥ |z0|, si on est dans l’un des cas suivants :
i) la suite (anz

n
0 )n∈N est bornée ;

ii) la suite (anz
n
0 )n∈N converge ;

iii) la série
∑

anz
n
0 converge ;

iv) la série
∑

anz
n
0 converge absolument ;

• la majoration R ≤ |z0|, si on est dans l’un des cas suivants :
i) la suite (anz

n
0 )n∈N n’est pas bornée ;

ii) la série
∑

anz
n
0 diverge ;

iii) la série
∑

|anzn0 | diverge.

Exercice 3.Exercice 3.

1. Déterminer le rayon de convergence de
∑

nzn.

2. Déterminer le rayon de convergence de la série entière
∑

anz
2n en fonction de celui de∑

anz
n.

Correction.

1. On remarque tout d’abord que la suite (n1n)n∈N n’est pas bornée. Donc, comme R =
sup { |z| | (nzn)n∈N est bornée}, on a R ≤ 1.
Soit z ∈ C∗. Si |z| < 1, la suite (n|z|n)n∈N converge vers 0 par croissances comparées donc
comme R = sup { |z′| | (nz′n)n∈N converge}, on a R ≥ |z|.
Ceci étant vrai pour tout z tel que |z| < 1, on peut faire tendre |z| vers 1 dans l’inégalité
précédente, ce qui donne R ≥ 1.
Il en résulte que R = 1.

2. Notons R le rayon de convergence de la série entière
∑

anz
2n et R′ celui de

∑
anz

n.
Soit z ∈ C∗. On suppose |z| < R. Alors la suite (anz

n)n∈N est bornée et donc la suite
(|an|(

√
|z|)2n)n∈N l’est aussi. Or, on a R′ = sup

{
|z′| | (anz′2n)n∈N est bornée

}
, donc R′ ≥√

|z|. Ceci étant vrai pour tout z tel que |z| < R, on fait tendre |z| vers R et ainsi, par
continuité de la fonction racine :

R′ ≥
√
R.

Soit z ∈ C∗. On suppose |z| < R′. Alors la suite (anz
2n)n∈N est bornée et donc la suite

(an(z
2)n)n∈N l’est aussi. Or, on a R = sup { |z′| | (anz′n)n∈N est bornée}, donc R ≥ |z2| =

|z|2. Ceci étant vrai pour tout z tel que |z| < R′, on fait tendre |z| vers R′ et ainsi, par
continuité de la fonction carrée :

R ≥ R′2.

Il en résulte que R′ =
√
R.
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b. Comparaison

Proposition 4.Proposition 4. gComparaison des rayons de convergenceComparaison des rayons de convergence

Soit
∑

anz
n et

∑
bnz

n des séries entières et Ra, Rb leurs rayons de convergence respectifs. Alors
si, à partir d’un certain rang N ∈ N, on a, pour tout n ≥ N :

i) |an| ≤ |bn|, alors Ra ≥ Rb ;
ii) an = O(bn), alors Ra ≥ Rb ;
iii) an = o(bn), alors Ra ≥ Rb ;
iv) |an| ∼

n→+∞
|bn| alors Ra = Rb.

Démonstration.

i) Soit z ∈ C∗. On suppose |z| < Rb. Alors la suite (bnz
n)n∈N est bornée. Comme pour tout

n ≥ N , |an| ≤ |bn|, on a |anzn| ≤ |bnzn| donc la suite (anz
n)n∈N est bornée. Or, on a

Ra = sup { |z′| | (anz′n)n∈N est bornée}, donc Ra ≥ |z|. Ceci étant vrai pour tout z tel
que |z| < Rb, on fait tendre |z| vers Rb et ainsi :

Ra ≥ Rb.

ii) On suppose an = O(bn). Alors il existe M ≥ 0 tel que pour tout n ∈ N, |an| ≤ M |bn|. On
adpate alors la preuve précédente en remarquant que, pour un certain z ∈ C, si (bnzn)n∈N
est bornée, alors (Mbnz

n)n∈N l’est aussi.
iii) Si an = o(bn), alors an = O(bn) d’où Ra ≥ Rb ;
iv) On remarque que |an| ∼

n→+∞
|bn| implique an = O(bn) et bn = O(an). En effet, par

définition, |an| ∼
n→+∞

|bn| ⇔ an = bn + o(bn) = O(bn) +O(bn) = O(bn).

Exercice 4.Exercice 4.

1. Déterminer les rayons de convergence de
∑ 2n(1 + 5nn2)

10n(n+
√
3n+ 1)

zn et de
∑ sin( n

3n )

n+ 1
zn.

2. Déterminer le rayon de convergence de
∑

n≥1 d(n)z
n où, pour n ∈ N∗, d(n) = #{d ∈J1, nK | d|n}.

Correction.

1. On a :
2n(1 + 5nn2)

10n(n+
√
3n+ 1)

∼
n→+∞

n

Or on a prouvé précédemment que
∑

nzn a pour rayon de convergence 1 donc, par com-

paraison, le rayon de convergence de
∑ 2n(1 + 5nn2)

10n(n+
√
3n+ 1)

zn est égal à 1.
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Comme sin(x) ∼
x→0

x, on a :
sin( n

3n )

n+ 1
∼

n→+∞

1

3n

Or le rayon de convergence de
∑

1
3n z

n est égal à 3 : en effet, pour z ∈ C, la suite (( z3 )
n)n∈N

est bornée si, et seulement si |z| ≤ 3. Ainsi, par comparaison, le rayon de convergence de∑ sin( n
3n )

n+ 1
zn est égal à 3.

2. Pour n ∈ N∗, on remarque que 1 ≤ d(n) ≤ n. Or les rayons de convergence de
∑

zn et de∑
nzn sont tous deux égaux à 1, d’où, si on note R le rayon de convergence de

∑
n≥1 d(n)z

n,
on obtient 1 ≥ R ≥ 1 et ainsi R = 1

c. Utilisation de la règle de D’Alembert

Théorème 2.Théorème 2. gRègle de D’Alembert pour les séries entièresRègle de D’Alembert pour les séries entières

Soit
∑

anz
n une série entière de rayon de convergence R telle que, à partir d’un certain rang

N ∈ N, pour tout n ≥ N , an 6= 0. S’il existe ℓ ∈ [0,+∞[∪{+∞} tel que :∣∣∣∣an+1

an

∣∣∣∣ −−−−−→n→+∞
ℓ,

alors on a :

R =
1

ℓ
=


+∞ si ℓ = 0;
1
ℓ si ℓ ∈ ]0,+∞[;

0 si ℓ = +∞.

Démonstration.

Soit z ∈ C. On applique le critère de D’Alembert à la série de terme général un = |anzn|. Alors
on a, pour tout n ≥ N ,

un+1

un
=

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ = ∣∣∣∣an+1

an

∣∣∣∣ .|z|.
Par suite, si

∣∣∣∣an+1

an

∣∣∣∣ −−−−−→n→+∞
ℓ où :

— ℓ ∈ R∗
+, alors un+1

un
−−−−−→
n→+∞

ℓ|z|. Ainsi, d’après le critère de D’Alembert, si |z| < 1
ℓ ,

∑
un

converge et si |z| > 1
ℓ ,

∑
un diverge. Par suite, R = 1

ℓ .
— ℓ = +∞, alors un+1

un
−−−−−→
n→+∞

+∞. Ainsi, d’après le critère de D’Alembert, pour tout
z ∈ C∗,

∑
un diverge donc R = 0.

— ℓ = 0, alors un+1

un
−−−−−→
n→+∞

0. Ainsi, d’après le critère de D’Alembert, pour tout z ∈ C∗,∑
un converge. Par suite, R = +∞.
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Remarque 3.Remarque 3.

Attention le critère précédent n’est valable que si (an)n∈N est différente de 0 à partir d’un certain
rang !
Ainsi, pour une série entière du type

∑
anz

φ(n) avec φ : N → N strictement croissante, on
appliquera directement la règle de D’Alembert sur la série (tout court)

∑
anz

φ(n) i.e. on étudie
la limite de ∣∣∣∣an+1z

φ(n+1)

anzφ(n)

∣∣∣∣ = ∣∣∣∣an+1

an

∣∣∣∣ .|zφ(n+1)−φ(n)|,

en fonction des valeurs de z ∈ C∗ afin de majorer et minorer le rayon de convergence de la série
entière.

Exercice 5.Exercice 5.

1. Déterminer les rayons de convergence des séries entières

∑
n≥1

nαzn où α ∈ R;
∑ nn

n!
zn;

∑(
4n

2n+ 1

)
zn;

∑
n≥n0

P (n)

Q(n)
zn où P,Q ∈ K[X].

2. Déterminer les rayons de convergence des séries entières :∑
n!z2n

∑
n!zn

2 ∑
nnz(

3n
n ).

Correction.

1. Pour cette question, on remarque que les séries entières ne sont pas lacunaires et que les
suites (an)n∈N associées sont non nuls (à partir d’un certain rang). On peut donc appliquer
le critère de D’Alembert pour les séries entières :
— Ici, an = nα pour n ≥ 1 et a0 = 0. Ainsi, à partir du rang 1, on a, par continuité de la

fonction x 7→ xα en 1 : ∣∣∣∣an+1

an

∣∣∣∣ = (
n+ 1

n

)α

−−−−−→
n→+∞

1α = 1

Ainsi, le rayon de convergence R de
∑

n≥1 n
αzn est R = 1

1 = 1.

— Ici, an = nn

n! pour n ≥ 0. Ainsi, comme pour tout x ∈ R, (1 + x
n )

n −−−−−→
n→+∞

ex, on a :∣∣∣∣an+1

an

∣∣∣∣ = (
n+ 1

n

)n

−−−−−→
n→+∞

e1 = e

Ainsi, le rayon de convergence R de
∑

nn

n! z
n est R = 1

e .

— Ici, an =

(
4n

2n+ 1

)
pour n ≥ 0. Ainsi, on a :∣∣∣∣an+1

an

∣∣∣∣ = (4n+ 4)(4n+ 3)(4n+ 2)(4n+ 1)

(2n+ 3)(2n+ 2)(2n+ 1)(2n)
∼

n→+∞

44n4n4

24n4
= 24 −−−−−→

n→+∞
24 = 16
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Ainsi, le rayon de convergence R de
∑(

4n

2n+ 1

)
zn est R = 1

16 .

— On suppose que P,Q sont des polynômes non nuls. Ici, an = P (n)
Q(n) pour n ≥ n0 où

n0 = E(max{x ∈ R+ | Q(x) = 0}) + 1 si Q admet des racines réelles positives et n0 = 0
sinon (pour s’assurer qu’on ne divise par par 0 ; dans le cas où Q possède des racines
positives, ce ”max” existe bien car Q étant un polynôme non nul, l’ensemble de ses
racines est fini) et an = 0 pour tout n < n0.
On va cette fois utiliser une comparaison avec la première série entière de la question
pour déterminer le rayon de convergence :
Comme P,Q sont non nuls, il existe p, q ∈ N et des coefficients αi, βi ∈ K tels que
P =

∑p
i=0 αiX

i et Q =
∑p

i=0 βiX
i avec αp 6= 0 et βq 6= 0. Par suite, on a, pour tout

n ≥ n0 :
P (n)

Q(n)
∼

n→+∞

αpn
p

βqnq
=

αp

βq
np−q

Or, pour α = p − q ∈ R, la série entière
∑

n≥1 n
αzn possède un rayon de convergence

égal à 1, donc, par comparaison, le rayon de convergence de
∑

n≥n0

P (n)
Q(n)z

n est égal à 1.

2. Les séries entières de cette question sont lacunaires, on ne peut donc pas appliquer le critère
de D’Alembert pour les séries entières. On se rabat donc sur le critère de D’Alembert... tout
court !
— Soit z ∈ C∗. On pose, pour n ∈ N, un = |n!z2n| = n!|z|2n > 0. On peut donc appliquer

la règle de D’Alembert à la suite (un)n∈N. On a :

un+1

un
= (n+ 1)|z|2 −−−−−→

n→+∞
+∞” > 1”

Ainsi, d’après la règle de D’Alembert,
∑

un diverge.
Par suite, pour tout z ∈ C∗,

∑
n!zn ne converge pas absolument. Or le rayon R de la

série entière vérifie R = sup{|z| |
∑

n!zn converge absolument}, donc R = 0.

— Soit z ∈ C∗. On pose, pour n ∈ N, un = |n!zn2 | = n!|z|n2

> 0. On peut donc appliquer
la règle de D’Alembert à la suite (un)n∈N. On a :

un+1

un
= (n+ 1)|z|2n+1 −−−−−→

n→+∞

{
+∞” > 1” si |z| ≥ 1

0 < 1 si |z| < 1

Donc, d’après la règle de D’Alembert, la série numérique
∑

n!zn
2 converge absolument

si, et seulement si, |z| < 1.
Il en résulte que R = 1 car R = sup{|z| |

∑
n!zn

2 converge absolument}.

— Soit z ∈ C∗. On pose, pour n ∈ N, un = |nnz(
3n
n )| = nn|z|(

3n
n ) > 0. On peut donc

appliquer la règle de D’Alembert à la suite (un)n∈N. On remarque que, comme n ≤
E( 3n2 ), on a

(
3n
1

)
≤

(
3n
n

)
et donc :

(
3n+ 3

n+ 1

)
−
(
3n

n

)
=

(
3n

n

)3
(3n+ 2)(3n+ 1)

(2n+ 2)(2n+ 1)︸ ︷︷ ︸
≥1

−1

 ≥
(
3n

1

)
× 2 = 6n −−−−−→

n→+∞
+∞
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et ainsi,

un+1

un
= (n+ 1)

(
n+ 1

n

)n

|z|(
3n+3
n+1 )−(

3n
n ) −−−−−→

n→+∞

{
+∞” > 1” si |z| ≥ 1

0 < 1 si |z| < 1

Donc, d’après la règle de D’Alembert, la série numérique
∑

nnz(
3n
n ) converge absolument

si, et seulement si, |z| < 1.
Il en résulte que R = 1 car R = sup{|z| |

∑
nnz(

3n
n ) converge absolument}.

Exercice 6.Exercice 6. gApparté : Transformée d’AbelApparté : Transformée d’Abel

Soit (an)n∈N et (bn)n∈N deux suites à valeurs dans K. On considère les séries
∑

anbn et
∑

an.
On note (Sn)n∈N la suite de ses sommes partielles de

∑
anbn et (An)n∈N celle de

∑
an.

1. Montrer que, pour tout N ∈ N,

SN = ANbN −
N−1∑
n=0

An(bn+1 − bn).

Cette identité est appelée transformée d’Abel des sommes partielles de la série
∑

anbn.

2. En déduire le critère d’Abel : si
• (An)n∈N est bornée ;
• bn −−−−−→

n→+∞
0 et

•
∑

(bn+1 − bn) est absolument convergente,
alors la série

∑
anbn converge.

3. Montrer le critère des séries alternées en utilisant le critère d’Abel.

Correction.

1. On pose S−1 = 0 et A−1 = 0. Soit N ∈ N On remarque que, pour tout n ∈ N, an =

13



An −An−1, d’où on obtient :

SN =

N∑
n=0

anbn

=

N∑
n=0

Anbn −
N∑

n=0

An−1bn

=

N∑
n=0

Anbn −
N−1∑
n=−1

Anbn+1

= ANbN +

N−1∑
n=0

An(bn − bn+1)−A−1b0

= ANbN −
N−1∑
n=0

An(bn+1 − bn).

Remarque : la transformation d’Abel est l’analogue pour les suites de l’intégration par parties
pour les fonctions de la variable réelle ; en effet,
— prendre la somme partielle de la série associée à une suite est l’analogue de la primiti-

vation pour une fonction,
— prendre la différence de deux termes successifs d’une suite est l’analogue de la dérivation

pour une fonction.
2. Supposons les hypothèses vérifiées. Comme (An)n∈N est bornée, il existe M ∈ R+ tel que,

pour tout n ∈ N, |An| ≤ M . Ainsi, pour tout n ∈ N :
— |Anbn| ≤ M |bn| −−−−−→

n→+∞
0 ; donc la suite (ANbN )N∈N converge (vers 0) ;

— |An(bn+1 − bn)| ≤ M |bn+1 − bn| qui est le terme général d’une série convergente donc,
par comparaison,

∑
An(bn+1−bn) converge absolument et donc converge. Ainsi, la suite

(
∑N−1

n=0 An(bn+1 − bn))N∈N des sommes partielles de cette série converge.
Par suite, par transformation d’Abel des sommes partielles SN pour N ∈ N (question 1), la
suite (SN )N∈N s’écrit comme combinaison linéaire de suites convergentes et donc converge.
Il en résulte que la série

∑
anbn = (SN )N∈N converge.

3. Soit (un)n∈N une suite décroissante de réels positifs qui converge vers 0. Montrons que la
série

∑
(−1)nun converge.

On pose, pour n ∈ N, an = (−1)n, bn = un et An =
∑n

k=0 ak. Alors :
• On a, pour n ∈ N,

An =

n∑
k=0

(−1)k =
1− (−1)n+1

2
=

{
1 si n est pair
0 si n est impair

donc (An)n∈N est bornée par 1.
• bn = un −−−−−→

n→+∞
0.

• Pour n ∈ N, |bn+1 − bn| = un − un+1 car la suite (un)n∈N est décroissante. Par suite, la
série

∑
|bn+1 − bn| =

∑
(un − un+1) est télescopique et donc convergente car de même

nature que la suite convergente (un)n∈N. Ainsi,
∑

(bn+1 − bn) converge absolument.
Par suite, d’après le critère d’Abel, la série

∑
(−1)nun =

∑
anbn converge.

Nous avons donc (re)démontré le critère des séries alternées.
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Exercice 7.Exercice 7. gÉtude d’une série entière sur la frontière du disqueÉtude d’une série entière sur la frontière du disque

On considère la série entière
∑
n≥1

zn

n
.

1. Montrer que son rayon de convergence est 1. Que dire de la convergence en z = 1 ?

2. Soit z0 ∈ U∖{1}. En utilisant le critère d’Abel (exercice 6), montrer que
∑
n≥1

zn0
n

converge.

3. En déduire le domaine de convergence de
∑
n≥1

zn

n
.

Correction.

1. On note R le rayon de convergence de
∑
n≥1

zn

n
. Pour n ∈ N∗, on pose an = 1

n > 0. Alors

∣∣∣∣an+1

an

∣∣∣∣ = n

n+ 1
−−−−−→
n→+∞

1,

donc R = 1
1 = 1 d’après la règle de D’Alembert pour les séries entières.

Évaluer en z = 1, on obtient la série harmonique
∑
n≥1

1

n
qui est divergente.

2. On reprend les notations de l’exercice 6. Pour n ∈ N∗, on pose an = zn0 , bn = 1
n et

An =
∑n

k=0 ak. Alors :
• Comme |z0| = 1, on a, pour n ∈ N∗,

|An| =

∣∣∣∣∣
n∑

k=0

zk0

∣∣∣∣∣ = |1− zn+1
0 |

|1− z0|
≤ 1 + |z0|n+1

|1− z0|
=

2

|1− z0|

donc (An)n∈N est bornée par 2
|1−z0| .

• bn = 1
n −−−−−→

n→+∞
0.

• Pour n ∈ N∗, |bn+1 − bn| = 1
n − 1

n+1 . Par suite, la série
∑

n≥1 |bn+1 − bn| =
∑

n≥1(
1
n −

1
n+1 ) est télescopique et donc convergente car de même nature que la suite convergente
( 1n )n∈N∗ . Ainsi,

∑
n≥1(bn+1 − bn) converge absolument.

Par suite, d’après le critère d’Abel (exercice 6 question 2.), la série
∑
n≥1

zn0
n

converge.

3. On note D le domaine de convergence de la série entière. Comme R = 1, on a

D(0, 1) ⊂ D ⊂ D(0, 1)

De plus, pour z ∈ U, on a, d’après les questions 1 et 2, z ∈ D si, et seulement si, z 6= 1.
Par suite, D = D(0, 1)∖ {1}.
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Propriétés des séries entières
Partie BPartie B

1. Opérations sur les séries entières

a. Combinaisons linéaires

Proposition 5.Proposition 5. gProduit par un scalaireProduit par un scalaire

Soit
∑

anz
n une série entière et λ ∈ C∗. Alors

∑
λanz

n et
∑

anz
n ont le même rayon de

convergence.

Démonstration.

Soit z ∈ C. Comme λ 6= 0, la suite (λanz
n)n∈N est bornée si, et seulement si, (anz

n)n∈N est
bornée.
Il en résulte que

∑
λanz

n et
∑

anz
n ont même rayon de convergence.

Proposition 6.Proposition 6. gSommeSomme

Soit
∑

anz
n et

∑
bnz

n des séries entières et Ra, Rb leurs rayons de convergence respectifs. Alors
le rayon de convergence R de la série entière

∑
(an + bn)z

n vérifie :
— si Ra 6= Rb, R = min(Ra, Rb)

— si Ra = Rb, R ≥ Ra(= Rb).

Démonstration.

Soit z ∈ C. Si (anzn)n∈N et (bnzn)n∈N sont des suites bornées, alors la suite ((an + bn)z
n)n∈N est

bornée, donc |z| ≤ R. Ceci étant vrai pour tout z ∈ C tel que |z| < min(Ra, Rb), on obtient :

R ≥ min(Ra, Rb).

Supposons que Ra 6= Rb. Quitte à échanger Ra et Rb, on suppose que Ra < Rb.
Soit z ∈ C tel que Ra < |z| < Rb. Alors la suite ((an + bn)z

n)n∈N n’est pas bornée car (anz
n)n∈N

n’est pas bornée et (bnz
n)n∈N est bornée.

Remarque : pour démontrer le fait précédent, on peut utiliser la contraposée de l’assertion :
”si (un)n∈N et (vn)n∈N sont bornées, alors (un + vn)n∈N est bornée.

Ainsi, on a |z| ≥ R. Ceci étant vrai pour tout z ∈ C avec Ra < |z| < Rb, on obtient min(Ra, Rb) =
Ra ≥ R.
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Il en résulte que, si Ra 6= Rb,
R = min(Ra, Rb).

Proposition 7.Proposition 7. gSomme d’une combinaison linéaire de séries entièresSomme d’une combinaison linéaire de séries entières

Soit
∑

anz
n et

∑
bnz

n des séries entières de rayon de convergence respectifs Ra, Rb et λ, µ ∈ C.
On pose R = min(Ra, Rb). Alors, pour tout z ∈ C tel que |z| < R, on a :

+∞∑
n=0

(λan + µbn)z
n = λ

+∞∑
n=0

anz
n + µ

+∞∑
n=0

bnz
n.

Démonstration.

Les séries entières
∑

λanz
n et

∑
µbnz

n sont de rayons de convergences supérieurs à respective-
ment Ra et Rb (égaux si λ, µ 6= 0 (proposition 5) et +∞ sinon) donc, d’après la proposition 6,
la série entière

∑
(λan + µbn)z

n est de rayon de convergence supérieur à R = min(Ra, Rb). Par
suite, pour tout ω ∈ C tel que |ω| < R, ω appartient au disque ouvert de convergence de la série
entière

∑
(λan+µbn)z

n et donc, d’après la proposition 1,
∑

(λan+µbn)ω
n converge absolument

et donc converge ; de plus, comme |ω| < R ≤ Ra, et |ω| < R ≤ Rb, par un raisonnement similaire,
les séries numériques

∑
anω

n et
∑

bnω
n convergent.

Ainsi, par linéarité de la somme d’une série, on obtient, pour tout ω ∈ C avec |ω| < R :

+∞∑
n=0

(λan + µbn)ω
n = λ

+∞∑
n=0

anω
n + µ

+∞∑
n=0

bnω
n.

Exercice 8.Exercice 8.

Déterminer les rayons de convergence et la somme dans le disque ouvert de convergence des
séries entières suivantes : ∑

ch(n)zn
∑

sin(nθ)zn (où θ ∈ R).

Correction.

1. On a, par définition, pour tout x ∈ R, ch(x) = ex+e−x

2 .
La série entière

∑
enzn a pour rayon de convergence 1

e et la série entière
∑

e−nzn a pour
rayon de convergence e donc la série entière

∑
ch(n)zn a pour rayon de convergence R =

min( 1e , e) =
1
e et on a, pour tout z ∈ C tel que |z| < 1

e :

+∞∑
n=0

ch(n)zn =
1

2

+∞∑
n=0

enzn +
1

2

+∞∑
n=0

e−nzn =
1

2

1

1− ez
+

1

2

1

1− z
e

.
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2. On a, par définition, pour tout x ∈ R, sin(x) = eix−e−ix

2i .
Les séries entières

∑
einθzn et

∑
e−inθzn ont pour rayons de convergence 1 donc la série

entière
∑

sin(nθ)zn a pour rayon de convergence R ≥ 1 et on a, pour tout z ∈ C tel que
|z| < 1 :

+∞∑
n=0

sin(nθ)zn =
1

2i

+∞∑
n=0

einθzn − 1

2i

+∞∑
n=0

e−inθzn

=
1

2i

1

1− eiθz
− 1

2i

1

1− e−iθz
+∞∑
n=0

sin(nθ)zn =
sin(θ)z

1− 2 cos(θ)z + z2
.

Maintenant, déterminons exactement le rayon de convergence R de
∑

sin(nθ)zn.
Si θ ∈ 2πZ, alors sin(nθ) = 0 pout tout n ∈ N. Donc dans ce cas, R = +∞.
Supposons θ /∈ 2πZ. Comme la suite (sin(nθ))n∈N ne tend pas vers 0 alors la suite
(sin(nθ)1n)n∈N n’est pas le terme général d’une série convergente et donc R ≤ 1.
Il en résulte que R = 1.
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