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Dans ce chapitre, K désigne le corps R ou le corps C et (an)nen, (bn)nen désignent, sauf mention
contraire, des suites a valeurs dans K.

Partie A

Définitions et généralités sur les séries enticres

1. Séries entiéres

Définition 1.| Série entiere

Soit (an)nen une suite a valeurs dans K. On appelle série entiére associée a la suite (an)nen,
la série de fonction Y f,, ou, pour n € N, la fonction f, : C — C est définie par :

fniz—apz™.

On notera (abusivement) Y a,z" la série entiére associée a la suite (ay)nen-

Exemple 1.

On connait déja plusieurs séries entieres :

— la série géométrique > 2™ ;

n

— la série de somme exponentielle E o
n!

Exercice 1.

Soit (an)nen une suite de nombres complexes. Montrer que > a,2z?" est une série entiere.

Attention! Il y a un piege! Y a,, 2" est bien une série entiére : il s’agit de la série entiere > b, 2"
ou, pour n € N,

bp = an/2  sin est pair

b, =0 si n est impair

Définition 2., Somme et domaine de convergence

Soit > a, 2™ une série entiere.
— On note D et Dy et on appelle respectivement domaine de convergence et domaine



réel de convergence de la série entiére > a,2" les ensembles :
D={zeC| Zanz" converge } et D = {z € R | Zanaﬁ" converge }.

— On appelle somme de la série entiére > a,z" la fonction somme S : D — C de la
série, i.e.

“+o0
Sz E a2,
n=0

Remarque 1.

Par définition, le domaine de convergence d’une série entiére > a,z" coincide avec le domaine
de définition de sa somme S. Ainsi, comme on ’a vu dans le Chapitre séries de fonctions, le
domaine de convergence de la série entiere Y a, 2™ est le plus grand ensemble sur lequel la série
de fonctions > a,2™ converge simplement.

Question 1.

Que dire de la somme d’une série entiere associée a une suite stationnaire en 07

Réponse : Soit (an)nen est une suite stationnaire en 0; on note N = min,en(a, = 0) et
P = ZnN;()l ap X" € C[X]. Alors la série > anz™ converge pour tout z € C. En effet, la suite

. . . N— R .
des sommes partielles est stationnaire en anol anz" = P(z). De plus, pour la méme raison, la
somme S de la série entiére est :

Sz P(2).

On peut donc conclure que la somme d’une série entieére associée a une suite stationnaire en 0 est
une fonction polynomiale!

2. Rayon de convergence

a. Lemme d’Abel

Théoréme 1.) Lemme d’Abel

Soit (an)nen une suite a valeurs dans K et zg € C*. Si la suite (an2{)nen est bornée, alors, pour
tout z € C tel que |z| < |zo], la série > a,2™ est absolument convergente.




On suppose que suite (a,z{)nen est bornée. Alors il existe M > 0 tel que |an 2| < M.
Soit z € C tel que |z| < |zo|. Alors, pour tout n € N, on a :

z\" z\"
|anz"| = |anzg | <> <M () ,
20 20

qui est le terme général d’une série géométrique de raison strictement inférieure & 1 car |z| < |zg|.
Par suite, Y |a,2"| est convergente. O

b. Définition et propriétés du rayon de convergence

Soit (an)nen une suite a valeurs dans K. L’ensemble {r € R | (Jan|r™)nen est bornée} est un
intervalle non vide de R.

On note I = {r € Ry | (Jan|r™)nen est bornée}. Alors I contient 0 car (|a,|0™),en est bornée.
De plus, si r € I, alors, pour tout s € [0,7], s € I car, pour tout n € N, |a,|s" < |a,|r™; donc
(lan|s™)nen est bornée.

Il en résulte que I est un intervalle de la forme [0, a). O
Ce lemme justifie la définition suivante :
Définition 3. Rayon de convergence

Soit Y a,z™ une série entiére.
i) On appelle rayon de convergence et on note R la borne supérieure de 'intervalle
I ={r eRy | (Jan|r™)nen est bornée} i.e.

R =sup{r € Ry | (|Jan|r")nen est bornée}.

on convient que R = 400 si l'intervalle I n’est pas majoré.

ii) On appelle disque ouvert de convergence de la série entiere » a,z" 1’ensemble
D(0,R) ={z € C||z| < R}.

iii) Si (an)nen est a valeurs dans R, On appelle intervalle ouvert de convergence de la
série entiere Y a,x™ lintervalle | — R, RJ.

Proposition 1.

Soit Y a, 2™ une série entiere, R son rayon de convergence et z € C.
— Si |z| < R, alors la série numérique »  a, 2" converge absolument.
)

— Si |z| > R, alors la série numérique Y a, 2™ diverge grossiérement.



— On suppose |z| < R. Comme R = sup{r € Ry | (|an|r")nen est bornée}, alors il existe
ro € {r € Ry | (|an|r™)nen est bornée} tel que |z| < rg < R.
Par conséquent, la suite (a,7])nen étant bornée, d’apres le lemme d’Abel, la série Y a, 2™
est absolument convergente.

— On suppose |z| > R. Alors la suite (a,2"),en n'est pas bornée et donc ne converge pas

vers 0. Ainsi, la série Y a,z™ diverge grossiérement.
O

Remarque 2.

Si |z| = R, on ne peut, a priori, rien dire! Il faut étudier la série dans ce cas.

Proposition 2.

Soit Y a,z™ une série entiére, R son rayon de convergence et D son domaine de convergence.
Alors on a :

D(O,R)={z € C||z] <R} c DcD(0,R) = {2 € C | |2| < R}.

e Siz € D(0, R) alors |z| < R. Par suite, d’aprés la proposition précédente, > a,z™ converge
absolument et donc converge. D’ou z € D.
Il en résulte que D(0, R) C D.

e Si 2z ¢ D(0, R) alors |z| > R. Par suite, d’aprés la proposition précédente, > a,z" diverge
grossiérement. D’ou z ¢ D.
Ainsi D(0, R)¢ C D¢ et donc D C D(0, R).

O
Exemple 2.
— Pour la série entiere Y 2™, le rayon de convergence est 1 et son domaine de convergence
est D =D(0,1).
On a

{r € Ry | (r")nen est bornée} = [0, 1].
Donc le rayon de convergence R de > 2™ est :
R =sup|0,1] = 1.
De plus, si |z| =1, [z"] = |z|" =1 i 0, donc Y_ z™ diverge grossiérement.

I en résulte que D =D(0,1).




1
— Pour la série entiere ) ., —2", le rayon de convergence est 1 et son domaine de conver-
=in

2
gence est D = D(0, 1).

On a g
{r € Ry | (57" )nen est bornée} = [0, 1].
n

1
Donc le rayon de convergence R de ), -, —2" est :
“tn

R =sup[0,1] = 1.

. \ N . n
De plus, si |z| =1, |#z”| = # donc, d’apres le critere de Riemann, ) | 25 converge
absolument.

Il en résulte que D = D(0, 1).

Exercice 2.

Z’ﬂ
Déterminer le rayon de convergence et le domaine de convergence des séries entiéres »_ — et
n!

S nlzm.

1. On a "
{reRy| (gr”)neN est bornée} = [0, +-00[.

car, pour tout r € R, %r" est le terme général d’une série convergente - donc converge vers

0 et donc est une suite bornée.

1
Ainsi le rayon de convergence R de 3 —z" est :
n!
R = +o0.

Il en résulte que D = C.

2. On a
{r e Ry | (n!r")nen est bornée} = {0}.

En effet, pour 0 < r < 1, & partir du rang N = E(r) + 1, il existe C' > 0 tel que pour tout
n> N, nlr® > Cn ——— 400 (on peut prendre C' = (N — 1)!7"V)) donc pour tout r > 0,

n—-+oo
la suite (n!r™),ecn n’est pas bornée (le cas r > 1 est immédiat - le faire quand méme pour

vérifier que c’est bien immédiat!).
Donc le rayon de convergence R de Y nlz™ est :

R = sup{0} = 0.

Il en résulte que D = {0}.



3. Calcul du rayon de convergence d’une série entiéere

a. Caractérisation du rayon de convergence

Proposition 3.

Soit > a,z™ une série entiere et R son rayon de convergence. Alors on a les égalités suivantes :
— R=sup{|z| | (anz")nen est bornée} ;

— R=sup{ 2| | (ans")nen converge} ;
— R= sup{ |z] | Zanz" converge} ;

— R= sup{ |z] | Z ap 2" converge absolument}.

On considere les ensembles suivants :
— I ={|z| | (anz™)nen est bornée} ;

— L= { |Z| | (a’nzn)neN Converge};

— I3 = { lz| | Zanz" converge};

— Iy = { |z] | Z anz" converge absolument}.
Pour toute suite (uy,)neny € C™, on a :

> u, converge absolument = Y u, converge = (uy)nen converge = (uy)nen est bornée.

Par suite, on a la chaine d’inclusion :
Iy,CclzClI,ClI.

De plus, on remarque que Iy = {r € Ry | (Jap|r™)nen est bornée}, donc, d’apres le lemme 1,
I; est un intervalle non vide de Ry qui contient 0 et par définition du rayon de convergence,
R = sup I; (potentiellement = +00). Ainsi, on a Iy = [0, R[ ou I; = [0, R].

Comme 0 € I, I; est une partie non vide de R, et donc il posséde une borne supérieure R’
(potentiellement +oo si I, n’est pas majorée). Ainsi, comme Iy C I, on a R’ < R.
Réciproquement : soit 7 € [0, R[. Alors, d’aprées la proposition 1, la série Y a,r™ converge absolu-
ment, donc r appartient & I et donc r < R’. Par suite, R’ est un majorant de [0, R[ d’ou R < R'.
Il en résulte que R’ = R.

Remarque : les inégalités précédentes me pas rigoureuses dans le cas R = 400, mais la preuve
reste analogue dans ce cas.

Ainsi, en utilisant la chaine d’inclusion précédente, on obtient :

R=suply <supls <suply <supl; = R.

d’ot les égalités annoncées. O



Méthode : Minoration et majoration du rayon de convergence

Etant donné une série entiére Y  a,z™ de rayon de convergence R et zp € C, on a :

e la minoration R > |zp|, si on est dans 'un des cas suivants :
i) la suite (an2{)nen est bornée;
ii) la suite (an2{)nen converge;
iii) la série > anz{ converge;
iv) la série > an,z§ converge absolument ;

e la majoration R < |zp|, si on est dans I'un des cas suivants :
i) la suite (anz{)nen n'est pas bornée;
ii) la série Y a, 28 diverge;

iii) la série > |an2{| diverge.

Exercice 3.

1. Déterminer le rayon de convergence de > nz".

2n

2. Déterminer le rayon de convergence de la série entiére > a,z*" en fonction de celui de

dapz™.

1. On remarque tout d’abord que la suite (nl1™),en n’est pas bornée. Donc, comme R =
sup{ |z| | (n2™)nen est bornée}, on a R < 1.
Soit z € C*. Si |z| < 1, la suite (n|z|™),en converge vers 0 par croissances comparées donc
comme R =sup{ |7/| | (nz™)nen converge}, on a R > |z|.
Ceci étant vrai pour tout z tel que |z| < 1, on peut faire tendre |z| vers 1 dans I'inégalité
précédente, ce qui donne R > 1.

Il en résulte que R = 1.

2. Notons R le rayon de convergence de la série entiere > a,2?" et R’ celui de 3 a,,2".
Soit z € C*. On suppose |z| < R. Alors la suite (a,2")nen est bornée et donc la suite
(lan](\/12])*™)nen lest aussi. Or, on a R’ = sup { |2'| | (an2’®")nen est bornée}, donc R’ >
V/|#]. Ceci étant vrai pour tout z tel que |2| < R, on fait tendre |z| vers R et ainsi, par
continuité de la fonction racine :
R > VR.

Soit z € C*. On suppose |z| < R’. Alors la suite (a,2°"),en est bornée et donc la suite
(@n(2%)")nen lest aussi. Or, on a R =sup { |2/| | (@,2"")nen est bornée}, donc R > |2%| =
|z|2. Ceci étant vrai pour tout z tel que |z| < R’, on fait tendre |z| vers R’ et ainsi, par

continuité de la fonction carrée :
R > R

Il en résulte que R’ = v/R.



b. Comparaison

Proposition 4. Comparaison des rayons de convergence

Soit Y anz™ et Y b, z™ des séries entiéres et R,, R leurs rayons de convergence respectifs. Alors
si, & partir d’un certain rang N € N, on a, pour tout n > N :

i) |an| < |bnl, alors R, > Ry ;

ii) a, = O(by,), alors R, > Ry;

iii) a, = o(by), alors R, > Ryp;

iv) |an| N |b,| alors R, = Ry.

i) Soit z € C*. On suppose |z| < Ryp. Alors la suite (b,2")nen est bornée. Comme pour tout
n > N, |ay| < |bnl, on a |a,z™| < |by2"| donc la suite (a,2")nen est bornée. Or, on a
R, = sup{ |Z/| | (anz"™)nen est bornée}, donc R, > |z|. Ceci étant vrai pour tout z tel
que |z| < Ry, on fait tendre |z| vers Ry, et ainsi :

R, > Rp.

ii) On suppose a, = O(by,). Alors il existe M > 0 tel que pour tout n € N, |a,| < M|b,|. On
adpate alors la preuve précédente en remarquant que, pour un certain z € C, si (b,2")nen
est bornée, alors (Mb,2")pen Pest aussi.

iii) Si a, = o(by), alors a,, = O(b,,) d’'out R, > Ry ;
iv) On remarque que |ay,| =~ |b,| implique a, = O(b,) et b, = O(a,). En effet, par
définition, |a,| ~ |bn| < apn, = by, + 0(br) = O(by) + O(by,) = O(by,).
n——+0oo
O

Exercice 4.

27(1 + 5"n?) sin(2)

1. Déterminer les rayons de convergence de z" et de S

Y s Z10"(n+\/3n+1) Z n+1

2. Déterminer le rayon de convergence de > ., d(n)z" ou, pour n € N*, d(n) = #{d €
[1,n] | dln}- B

1. On a:
27(1 + 5™n?)
10°(n + V3n £ 1) novtoo
Or on a prouvé précédemment que » nz" a pour rayon de convergence 1 donc, par com-
27(1 + 5"n?)
10" (n++/3n+ 1)

2" est égal a 1.

paraison, le rayon de convergence de E



Comme sin(z) ~ x,ona:
z—0

sin(z%) 1
n+1 n—too 37
Or le rayon de convergence de Y- 72" est égal & 3 : en effet, pour z € C, la suite ((£)"),en

est bornée si, et seulement si |z| < 3. Ainsi, par comparaison, le rayon de convergence de
sin(37) RN

g —— 322" est égal A 3.
n+1

2. Pour n € N*, on remarque que 1 < d(n) < n. Or les rayons de convergence de Y 2™ et de
> nz" sont tous deux égaux a 1, d’otl, si on note R le rayon de convergence de ), -, d(n)z",
on obtient 1 > R > 1 et ainsi R =1 B

c. Utilisation de la régle de D’Alembert

,(Théoréme 2.) Régle de D’Alembert pour les séries entiéres

Soit > a, 2™ une série entiere de rayon de convergence R telle que, & partir d’un certain rang
N € N, pour tout n > N, a,, # 0. S’il existe £ € [0, +oo[U{+00} tel que :

Gn41 &
an, n—-+4o0o
alors on a :
. 400 sif=0;
R=7= 3 si £ €]0,+o0[;
0 si f = +oo.

Soit z € C. On applique le critére de D’Alembert a la série de terme général u,, = |a,z"|. Alors
on a, pour tout n > N,

n+1
Un+1  |Gp+1R | On+1 |z|
Up, an 2" o |
. q an+1 N
Par suite, si — fou:
an, n—-+oo
7-’fn-‘,—l

— L e R7, alors ——— £|z|. Ainsi, d’apres le critére de D’Alembert, si |z| < %, > up

n n—-+oo

converge et si [z| > %, > u, diverge. Par suite, R = 7.

U

ol o Ainsi, d’apres le critéere de D’Alembert, pour tout
Up, n—+00

z € C*, > u, diverge donc R = 0.

u
5. Ainsi, d’apres le critére de D’Alembert, pour tout z € C*,
Up, n—-+oo

> uy, converge. Par suite, R = 4o00.

— ¢ = 400, alors

— ¢ =0, alors

O

10



Remarque 3.

Attention le critére précédent n’est valable que si (ay, )nen est différente de 0 & partir d’un certain
rang !

Ainsi, pour une série entiere du type Zanz‘P(”) avec ¢ : N — N strictement croissante, on
appliquera directement la régle de D’Alembert sur la série (tout court) > a,2?™ ie. on étudie

la limite de

Zép(’r%‘rl) An+1

Qn

an+1

=0 .|Z<p(n+1)*so(n)|,
Ap 2P\

en fonction des valeurs de z € C* afin de majorer et minorer le rayon de convergence de la série

entiére.

Exercice 5.

1. Déterminer les rayons de convergence des séries entieres

a.n x nn 4 n
an ou a € R; Z%z, Z(Qnil)z;

n>1

P(n) 2" ou
> o) P,Q € K[X].

n>ngo

2. Déterminer les rayons de convergence des séries entieres :

Zn!zzn Zn!z"2 Zn”z(i?)

1. Pour cette question, on remarque que les séries entieres ne sont pas lacunaires et que les
suites (an )nen associées sont non nuls (a partir d’un certain rang). On peut donc appliquer

le critere de D’Alembert pour les séries entiéres :
— Ici, a, = n® pour n > 1 et ap = 0. Ainsi, a partir du rang 1, on a, par continuité de la

fonction x — 2% en 1 :
1 «
n n—-+oo

= Il

an+1
an

Ainsi, le rayon de convergence R de ) ., n*2" est R =

1
1
— Ici, ap, = ?T' pour n > 0. Ainsi, comme pour tout x € R, (1 + %)" ——— ¢, on a:

n—-+oo
<n+1>n L
= e =e€
n n—-+o00

. . n
Ainsi, le rayon de convergence R de Y 22" est R = 1.
n: e

4
— Ici, a, = <2n Z 1) pour n > 0. Ainsi, on a :

An+41
Qn

dn+4)(4n+ 3)(4dn + 2)(4n + 1 4*nint
4 21 =16

Ap+1
(2n +3)(2n +2)(2n 4+ 1)(2n) n—too 24pt n—+o00

2%

11



4
Ainsi, le rayon de convergence R de ) (2 j_ 1) z" est R = %.
n

— On suppose que P, (Q sont des polynomes non nuls. Ici, a,, = % pour n > ng ou

ng = E(max{z € R} | Q(x) = 0})+1 si Q admet des racines réelles positives et ng = 0
sinon (pour s’assurer qu’on me divise par par 0; dans le cas ou @ posséde des racines
positives, ce “max” existe bien car @ étant un polynéme non nul, l’ensemble de ses
racines est fini) et a,, = 0 pour tout n < ng.

On va cette fois utiliser une comparaison avec la premiere série entiere de la question
pour déterminer le rayon de convergence :

Comme P, sont non nuls, il existe p,q € N et des coefficients a;, 5; € K tels que
P=3" o;X"et Q =" B X" avec o, # 0 et B, # 0. Par suite, on a, pour tout
n>mng:

P(n) apn?  ap .

Q(n) n—too Bnd By

Or, pour @ = p — g € R, la série entiére n®z"™ possede un rayon de convergence
5 ) n>1

égal a 1, donc, par comparaison, le rayon de convergence de Zn>n0 %z" est égal a 1.

2. Les séries entieres de cette question sont lacunaires, on ne peut donc pas appliquer le critere
de D’Alembert pour les séries entiéres. On se rabat donc sur le critere de D’Alembert... tout
court !

— Soit z € C*. On pose, pour n € N, u,, = [n!2?"| = n!|z|*" > 0. On peut donc appliquer
la régle de D’Alembert a la suite (up)nen. On a :

Un+1

=(n+1)z]? —— 400" > 17
n n—-+oo

Ainsi, d’apres la régle de D’Alembert, Y u,, diverge.

Par suite, pour tout z € C*, Y nlz™ ne converge pas absolument. Or le rayon R de la
série entiére vérifie R = sup{|z| | >_ n!z"™ converge absolument}, donc R = 0.

— Soit z € C*. On pose, pour n € N, u,, = |n!z"2| = n!|z\"2 > 0. On peut donc appliquer
la régle de D’Alembert & la suite (up)nen. On a :

Un+1 _ (n+ 1)|Z|2n+1

+o0” > 1" silz| >1
Up, n—-+oo

0<1 si|z| <1

N . . 7. 2
Donc, d’apres la régle de D’Alembert, la série numérique > n!z"" converge absolument
si, et seulement si, |z| < 1.

11 en résulte que R =1 car R = sup{|z| | Zn!z”2 converge absolument}.

— Soit z € C*. On pose, pour n € N, u,, = |n"z(3n7rl)| = n"|z|(3:) > 0. On peut donc
appliquer la régle de D’Alembert & la suite (uy)nen. On remarque que, comme n <

E(32),ona (}") < (*) et donc :

3n+3\ _ (3n) _ (3n 3(3n+2) 3n+1)_1 > 3n <9 — 6n .
n+1 n n (2n+2 1 n—+o00
| Gy —

—~|—

2n +1)

>1

12



et ainsi,

Lot — (n+1) ("“) ] G =C) >{+o<> >17 sz 21
n n—-+oo

Un 0<1 si|z] <1

h p s . s . 3n
Donc, d’apres la régle de D’Alembert, la série numérique » | n”z( ) converge absolument
si, et seulement si, |z| < 1.

11 en résulte que R =1 car R = sup{|z| | Zn"zeﬂ converge absolument}.

Exercice 6. Apparté : Transformée d’Abel
Soit (an)nen €t (bp)nen deux suites & valeurs dans K. On considére les séries > apb, et > ap.
On note (Sy,)nen la suite de ses sommes partielles de > anby, et (A, )nen celle de Y ay,.
1. Montrer que, pour tout N € N,

N-1
Sy = Anby = > Ap(bng1 — b).

n=0
Cette identité est appelée transformée d’Abel des sommes partielles de la série > a,by,.

2. En déduire le critére d’Abel : si
e (A,)nen est bornée;

e b, ——0et
n—-+4oo

e > (bpt1 — by) est absolument convergente,
alors la série Y a,b, converge.

3. Montrer le critére des séries alternées en utilisant le critére d’Abel.

1. On pose S_1 = 0et A_; = 0. Soit N € N On remarque que, pour tout n € N, a,, =

13



A, — A, _1, d’ou on obtient :

N
SN = Z anbn
n=0
N N
= ZAnbn - ZAnflbn
n=0 n=0
N N-1
= ZAnbn - Z Anbn+1
n=0

n=-—1
N—-1
= Anbn+ Y An(bn — bny1) — A_1bo
n=0
N—-1
= Anby — > Ap(bnt1 —bn).

n=0

Remarque : la transformation d’Abel est l’analogue pour les suites de l'intégration par parties

pour les fonctions de la variable réelle ; en effet,

— prendre la somme partielle de la série associée a une suite est l’analogue de la primiti-
vation pour une fonction,

— prendre la différence de deux termes successifs d’une suite est l’analogue de la dérivation
pour une fonction.

. Supposons les hypothéses vérifiées. Comme (A, ) ecn est bornée, il existe M € Ry tel que,

pour tout n € N, |A,| < M. Ainsi, pour tout n € N :

— |Anb,| < M|by,| ~—+_% 0; donc la suite (Anbn)nven converge (vers 0) ;
n——+00

— |An(bpt1 — bp)| < M|bpt1 — by| qui est le terme général d’une série convergente donc,
par comparaison, » . Ay (by4+1—by) converge absolument et donc converge. Ainsi, la suite
(Zfz\:ol Ay (b1 — b)) ven des sommes partielles de cette série converge.

Par suite, par transformation d’Abel des sommes partielles Sy pour N € N (question 1), la

suite (Sn)nven s’écrit comme combinaison linéaire de suites convergentes et donc converge.

Il en résulte que la série > a,b, = (Sy)nNen converge.

. Soit (un)nen une suite décroissante de réels positifs qui converge vers 0. Montrons que la
série > (—1)"u,, converge.
On pose, pour n € N, a, = (—=1)", b, = up, et A, =Y ;1 ax. Alors :

e On a, pour n € N,

- 1— (=1ntt 1 sin est pai
AnZZ(—l)k: (-1 :{ si n est pair

P 2 0 sin est impair

donc (Ap)nen est bornée par 1.

o b, =u, —— 0.
n—-+o0o

e Pour n € N, |by11 — bp| = uy, — uptq car la suite (uy,)nen est décroissante. Par suite, la
série Y |bpt1 — bn| = D (un — up+1) est télescopique et donc convergente car de méme
nature que la suite convergente (up)nen. Ainsi, Y (bn+1 — by,) converge absolument.

Par suite, d’apres le critere d’Abel, la série > (—1)"u, = > a,b, converge.
Nous avons donc (re)démontré le critére des séries alternées.

14



Exercice 7. FEtude d’une série entiére sur la frontiére du disque

On considere la série entiere E —.
n>1

1. Montrer que son rayon de convergence est 1. Que dire de la convergence en z =17

Zn
2. Soit zp € U~ {1}. En utilisant le critéere d’Abel (exercice 6), montrer que E Z0 converge.
n
n>1

n
3. En déduire le domaine de convergence de E —.
n>1

n

n

z
1. On note R le rayon de convergence de Z —. Pour n € N*| on pose a,, = % > 0. Alors
n>1

Ap+1
Qanp

n
= )

n+1 n—s+oo

donc R = % =1 d’apres la regle de D’Alembert pour les séries entiéres.

) 1
Evaluer en z = 1, on obtient la série harmonique Z — qui est divergente.

n>1
2. On reprend les notations de 'exercice 6. Pour n € N* on pose a, = z7, b, = % et
A =30 ak. Alors :
e Comme |zg| = 1, on a, pour n € N*,
n
1— n+1 1 n+1 )
=[St < L= Ll
s |1720| |1720| |1720|

donc (A, )nen est bornée par ﬁ
1

— 0.

" n—+4oo
e Pour n € N*, |bp1 —by| = 1 — n-lu' Par suite, la série > o [bnt1 — bn| = Zn21(% —
est télescopique et donc convergente car de méme nature que la suite convergente

e b, =

1
1)
(L)nen+- Ainsi, >, <1 (bpt1 — bp) converge absolument.

ZTL
Par suite, d’apres le critére d’Abel (exercice 6 question 2.), la série Z Z0 converge.
n>1

3. On note D le domaine de convergence de la série entiere. Comme R =1, on a

D(0,1) € D C D(0,1)

De plus, pour z € U, on a, d’apres les questions 1 et 2, z € D si, et seulement si, z # 1.

Par suite, D =D(0,1) \ {1}.
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Partie B

Propriétés des séries entieres

1. Opérations sur les séries entieres
a. Combinaisons linéaires

Proposition 5. Produit par un scalaire

Soit Y a,z™ une série entiere et A € C*. Alors > Aa,z™ et Y a,z™ ont le méme rayon de
convergence.

Soit z € C. Comme A # 0, la suite (Aa,z™)nen est bornée si, et seulement si, (a,2")nen est
bornée.
Il en résulte que Y Aa,z" et > a,2"™ ont méme rayon de convergence. O

Proposition 6. Somme

Soit " anz™ et Y b,z™ des séries entiéres et R,, Ry leurs rayons de convergence respectifs. Alors
le rayon de convergence R de la série entiere > (ay + by,)z" vérifie :

— si Ry # Ry, R = min(R,, Ry)
— si Ra = Rb, R 2 Ra(z Rb).

Soit z € C. Si (an2™)nen et (bnz™)nen sont des suites bornées, alors la suite ((an + bn)2™)nen est
bornée, donc |z| < R. Ceci étant vrai pour tout z € C tel que |z| < min(R,, Rp), on obtient :

R > min(R,, Ryp).
Supposons que R, # Ry. Quitte a échanger R, et R;, on suppose que R, < Ry.

Soit z € C tel que R, < |z| < Ry. Alors la suite ((an, + bp)2™)nen n'est pas bornée car (anz")nen
n’est pas bornée et (b,z")nen est bornée.

Remarque : pour démontrer le fait précédent, on peut utiliser la contraposée de I'assertion :
St (Un)neN €t (Un)nen sont bornées, alors (u, + v, )nen est bornée.

Ainsi, on a |z] > R. Ceci étant vrai pour tout z € C avec R, < |z| < R}, on obtient min(R,, Ry) =
R, > R.
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Il en résulte que, si R, # Ry,
R = min(R,, Ryp).

Proposition 7.| Somme d’une combinaison linéaire de séries entiéres

Soit > an,z™ et Y b,z"™ des séries entiéres de rayon de convergence respectifs R,, Ry et A\, u € C.
On pose R = min(R,, Rp). Alors, pour tout z € C tel que |z2| < R, on a :

+00 +oo +oo
Z(Aan + ubp)z" = A Z anz" + Z bpz".
n=0 n=0 n=0

Les séries entiéres Y Aa,z™ et > ub,z™ sont de rayons de convergences supérieurs & respective-
ment R, et Ry (égaux si A\, # 0 (proposition 5) et +o0 sinon) donc, d’apres la proposition 6,
la série entiere > (Aay + pb,)2z™ est de rayon de convergence supérieur & R = min(R,, Ryp). Par
suite, pour tout w € C tel que |w| < R, w appartient au disque ouvert de convergence de la série
entiere > (Aa, + pb,)z" et donc, d’apres la proposition 1, Y (Aa,, + by, )w™ converge absolument
et donc converge ; de plus, comme |w| < R < R,, et |w| < R < Ry, par un raisonnement similaire,
les séries numériques > a,w™ et > b,w™ convergent.

Ainsi, par linéarité de la somme d’une série, on obtient, pour tout w € C avec |w| < R :

+oo +oo “+o0

Ay + pby )w™ = A an,w™ + 1 bpw™.
> ( ) > >
n=0 n=0 n=0

Exercice 8.

Déterminer les rayons de convergence et la somme dans le disque ouvert de convergence des
séries entieres suivantes :

Z ch(n)z" Z sin(nf)z" (ou 6 € R).

1. On a, par définition, pour tout z € R, ch(z) = Ez"';fz.l

La série entiere ) e™z" a pour rayon de convergence = et la série entiere ) e™"2" a pour
rayon de convergence e donc la série entiére Y ch(n)z™ a pour rayon de convergence R =

min(L,e) =1 et on a, pour tout z € C tel que |z| < 1 :

+oo +oo +o00
1 1 11 11
h n_ - n_n - -n,n _ = — .
HZZOC (@) QnZ:[)e “ +2nZ:O€ i 21—ez+21—§
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iz —ix
e —e

2. On a, par définition, pour tout z € R, sin(z) = “—=;
Les séries entieres > e?2" et 3" e~"%2" ont pour rayons de convergence 1 donc la série
entiere > sin(nf)z"™ a pour rayon de convergence R > 1 et on a, pour tout z € C tel que

|| <1:
1 1
wnb _n —inf _n
27-2@ z —27-26 z
n=0 n=0

“+o0
Z sin(nf)z"
n=0

11 11
T 21-—e€7 2i1—e %
—+o0 .
0
Z sin(nd)z" = sin(9)2 e
o 1—2cos(0)z+ =

Maintenant, déterminons exactement le rayon de convergence R de > sin(nf)z".
Si 0 € 27Z, alors sin(nf) = 0 pout tout n € N. Donc dans ce cas, R = +o0.

Supposons 6 ¢ 2nZ. Comme la suite (sin(nd))neny ne tend pas vers 0 alors la suite
(sin(nf)1™),en n'est pas le terme général d’une série convergente et donc R < 1.
Il en résulte que R = 1.
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