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Dans ce chapitre, E et F désigne un espace vectoriel normé de dimension finie sur K = R ou C. Toutes
les fonctions que l’on considère dans ce chapitre sont, sauf indication contraire, des fonctions définies sur
une partie A de E et à valeurs dans F .

Convergences des suites et des séries de fonctions
Partie APartie A

1. Convergence simple

a. Convergence simple d’une suite de fonctions

Définition 1.Définition 1. gConvergence simple d’une suite de fonctionsConvergence simple d’une suite de fonctions

Soit (fn)n∈N une suite de fonctions de A ⊂ E dans F .
On dit que la suite (fn)n∈N converge simplement sur A si, pour tout x ∈ A, la suite
(fn(x))n∈N à valeurs dans F est convergente.
Dans ce cas, la fonction f : x 7→ limn→+∞ fn(x) de A dans F est bien définie ; on dit alors que
la suite (fn)n∈N converge simplement vers f ou encore que f est la limite simple de la
suite (fn)n∈N.

Exemple 1.Exemple 1.

La suite (fn)n∈N de fonctions de R dans R définie, pour n ∈ N, par fn : t 7→ tn converge
simplement sur [0, 1] vers la fonction

f : t 7→

{
0 si t ∈ [0, 1[

1 si t = 1.

CVS sur [0, 1] :
Soit t ∈ [0, 1]. Étudions la nature de (fn(t))n∈N
La suite (fn(t))n∈N = (tn)n∈N converge car elle est géométrique de raison t ∈ [0, 1] ⊂ ]− 1, 1].
Par suite, (fn(t))n∈N converge simplement sur [0, 1].
De plus, on a :

lim
n→+∞

fn(t) = lim
n→+∞

tn =

{
0 si t ∈ [0, 1[

1 si t = 1.

Il en résulte que la suite (fn(t))n∈N converge simplement vers la fonction f annoncée.
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Remarque 1.Remarque 1.

L’exemple précédent nous montre que lorsqu’une suite de fonctions continues converge simple-
ment vers f , f n’est pas continue en général !

Remarque 2.Remarque 2.

Quand on parle de limite d’une suite, cela présuppose sa convergence, et dans notre cas, il s’agit
d’une suite de fonctions. On pourrait donc s’attendre à pouvoir affirmer, lorsque qu’une suite de
fonctions converge simplement, que cette suite converge pour une certaine norme sur un espace
vectoriel qui contient ces fonctions, puisque c’est comme ça que nous avons défini la convergence
des suites dans ce cours !
Il n’en est rien ! La convergence simple d’une suite ne correspond généralement pas à la conver-
gence de cette suite pour une certaine norme (voire exercice 29).
Mais, malgré cela, dans un cadre plus général que les espaces vectoriels normés - les espaces
topologiques - on peut donner un vrai sens de convergence à la convergence simple : on peut
ainsi tout de même voir la limite simple d’une suite de fonctions comme une ”vraie” limite de
suite !

Exercice 1.Exercice 1.

Étudier la convergence simple de la suite de fonctions (fn)n∈N∗ définie, pour n ∈ N∗, par :

a) fn : t 7→ 1 + nt2

1 + nt
sur R+. b) fn : t 7→ sinn(t) cos(t) sur R.

c) fn : x 7→ fn(x) =

{
nx2 si x ∈ [− 1

n ,
1
n ]

6n
(

1
sin( 1

nx )
− 1

tan( 1
nx )

)
si x /∈ [− 1

n ,
1
n ]

sur R.

Correction.

a) Étudions la convergence simple de la suite (fn)n∈N∗ sur R+ :

CVS sur R+ :
Soit x ∈ R+. On étudie la nature de (fn(x))n∈N. On a :

fn(x) =
1 + nx2

1 + nx
−−−−−→
n→+∞

{
1 si x = 0

t si x > 0

Ainsi, la suite (fn(x))n∈N converge, et ce, pour tout x ∈ R+.

Donc (fn) converge simplement vers f : t 7→

{
1 si t = 0

t si t > 0
sur R+.

b) Étudions la convergence simple de la suite (fn)n∈N sur R.

CVS sur R :
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Soit t ∈ R. On étudie la nature de (fn(t))n∈N. On a :

fn(t) = sinn(t)cos(t) −−−−−→
n→+∞

{
0 si t ∈ {π

2 + kπ | k ∈ Z} car cos(t) = 0

0 si t /∈ {π
2 + kπ | k ∈ Z} car |sin(t)| < 1

Ainsi, la suite (fn(t))n∈N converge, et ce, pour tout t ∈ R.
Donc (fn)n∈N converge simplement sur R vers la fonction nulle.

c) Étudions la convergence simple de la suite (fn)n∈N∗ sur R.

CVS sur R :
Soit x ∈ R. On étudie la nature de (fn(x))n∈N∗ .
Traitons tout d’abord le cas x 6= 0. Alors 1

nx −−−−−→
n→+∞

0, donc, à partir d’un certain rang
N (par exemple N = E(1/|x|) + 1), pour tout n ≥ N , x /∈ [− 1

n ,
1
n ]. Par suite, pour tout

n ≥ N ,
fn(x) = 6n

(
1

sin( 1
nx )

− 1

tan( 1
nx )

)
.

Or, quand n → +∞, on a :
1

sin( 1
nx )

− 1

tan( 1
nx )

=
tan( 1

nx )− sin( 1
nx )

sin( 1
nx ) tan( 1

nx )

=
1
nx + 1

3n3x3 + o( 1
n3 )− ( 1

nx − 1
6n3x3 + o( 1

n3 ))
1

n2x2 + o( 1
n2 )

=
1

2n3x3 + o( 1
n3 )

1
n2x2 + o( 1

n2 )

∼
n→+∞

1

2nx
Remarque : on aurait pu obtenir ce résultat plus simplement, en utilisant tan = sin / cos :

1

sin( 1
nx )

− 1

tan( 1
nx )

=
1− cos( 1

nx )

sin( 1
nx )

∼
n→+∞

1/(nx)2

2

1/nx
=

1

2nx

Ainsi, toujours pour x 6= 0 et n ≥ N ,

fn(x) = 6n

(
1

sin( 1
nx )

− 1

tan( 1
nx )

)
∼

n→+∞

6n

2nx
=

3

x
.

Il en résulte que :

fn(t) −−−−−→
n→+∞

0 si x = 0
3

x
si x ∈ R∗

Ainsi, la suite (fn(x))n∈N∗ converge, et ce, pour tout x ∈ R.

Donc (fn)n∈N∗ converge simplement sur R vers la fonction f : x 7→

0 si x = 0
3

x
si x ∈ R∗ .
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Exercice 2.Exercice 2.

1. Écrire la définition de la convergence simple vers une fonction en termes ”epsilonesques”.

2. Pour (fn)n∈N et (gn)n∈N des suites de fonctions qui converge simplement sur A vers des
fonctions f et g respectivement, étudier la convergence simple des suites de fonctions
(λfn + µgn)n∈N (où λ, µ ∈ K) et (fngn)n∈N.

3. Soit (fn)n∈N une suite de fonctions qui converge simplement sur A vers une fonction f . Que
dire de f lorsqu’à partir d’un certain rang, les fn sont : positives ? croissantes ? dérivables ?
périodiques (de même période T ) ? strictement positives ?

Correction.

1. Soit (fn)n∈N une suite de fonctions de A dans F et f : A → F . Alors (fn)n∈N converge
simplement vers f sur A si, et seulement si,

∀ε > 0, ∀x ∈ A, ∃N ∈ N, ∀n ≥ N, ‖fn(x)− f(x)‖F ≤ ε.

2. On suppose que (fn)n∈N et (gn)n∈N convergent simplement vers f et g respectivement sur
A. Soit λ, µ ∈ K. Montrons que (λfn + µgn)n∈N converge simplement sur A vers λf + µg
et que (fngn)n∈N converge simplement sur A vers fg.

CVS sur A :
Soit x ∈ A. On étudie la nature des suites ((λfn + µgn)(x))n∈N et ((fngn)(x))n∈N.
On a :

(λfn + µgn)(x) = λfn(x) + µgn(x) −−−−−→
n→+∞

λf(x) + µg(x) = (λf + µg)(x),

et
(fngn)(x) = fn(x)gn(x) −−−−−→

n→+∞
f(x)g(x) = (fg)(x),

Ainsi, les suites ((λfn + µgn)(x))n∈N et ((fngn)(x))n∈N sont convergentes, et ce pour tout
x ∈ A. Par suite, (λfn + µgn) et (fngn)n∈N convergent simplement sur A et ce, vers les
fonctions λf + µg et fg respectivement.

3. Par les propriétés de la limite, on remarque que la positivité, la croissance et la périodicité
(avec une période commune) ”passent” à la convergence simple.
Par contre, la dérivabilité ne passe pas (voire fn : t 7→ tn sur [0, 1]) et la stricte positivité
ne passe pas non plus (voire fn : t 7→ tn sur ]0, 1]).

Exercice 3.Exercice 3.

Soit f ∈ C([0, 1],R) une fonction qui vérifie, pour tout t ∈ ]0, 1], 0 ≤ f(t) < t.
On pose, pour n ∈ N, fn = fn (= f ◦ f ◦ · · · ◦ f).

1. Pour n ∈ N, déterminer fn(0).

2. Montrer que la suite (fn)n∈N converge simplement sur [0, 1].

3. Déterminer la limite de la convergence simple sur [0, 1] de la suite (fn)n∈N.
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Correction.

1. On a, pour tout t ∈ ]0, 1], 0 ≤ f(t) < t donc, en passant à la limite lorsque t tend vers 0,
on obtient, d’après le théorème des gendarmes, f(0) = 0.
Ainsi, pour n ∈ N, on obtient, de proche en proche :

fn(0) = fn(0) = fn−1(f(0)) = fn−1(0) = · · · = f0(0) = Id(0) = 0.

2. CVS sur [0, 1] :
Soit t ∈ [0, 1]. On étudie la nature de (fn(t))n∈N.
Si t = 0, (fn(0))n∈N est la suite nulle d’après la question précédente et donc est convergente.
On suppose t 6= 0. On a, pour tout n ∈ N, fn+1(t) = f(fn(t)) < fn(t) = fn(t) donc la
suite (fn(t))n∈N est décroissante et minorée par 0. Ainsi, d’après la théorème de la limite
monotone, (fn(t))n∈N converge.
Il en résulte que la suite (fn)n∈N converge simplement sur [0, 1].

3. Notons φ la limite de la convergence simple sur [0, 1] de la suite (fn)n∈N.
Pour t ∈ [0, 1], comme f est continue sur [0, 1], par caractérisation séquentielle de la conti-
nuité, on a :

fn+1(t) = f(fn(t)) −−−−−→
n→+∞

f(φ(t)).

Ainsi, par unicité de la limite, f(φ(t)) = φ(t) ; et donc φ(0) = 0 car, pour tout x 6= 0,
f(x) 6= x.

b. Convergence simple d’une série de fonctions

La définition suivante est une simple reformulation de la précédente dans le cas particulier des séries :

Définition 2.Définition 2. gConvergence simple d’une série de fonctionsConvergence simple d’une série de fonctions

Soit
∑

fn une série de fonctions de A ⊂ E dans F . On dit que
∑

fn converge simplement
sur A si la suite de ses sommes partielles converge simplement sur A i.e. si pour tout x ∈ A,∑

fn(x) est convergente.
Dans ce cas,

— on appelle fonction somme de la série
∑

fn et on note S : A → F la fonction :

S : x 7→
+∞∑
n=0

fn(x);

— pour n ∈ N, on appelle fonction reste d’ordre n de la série
∑

fn et on note Rn : A → F
la fonction :

Rn = S − Sn : x 7→
+∞∑

k=n+1

fk(x),

où Sn =

n∑
k=0

fk.
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Exemple 2.Exemple 2.

— La série de fonctions
∑

fn de terme général fn : t 7→ tn converge simplement vers S :
t 7→ 1

1−t sur ] − 1, 1[ et, pour tout n ∈ N, la fonction reste d’ordre n de cette série est
Rn : x 7→ tn+1

1−t .

— La série de fonctions
∑

fn de terme général fn : t 7→ tn

n!
converge simplement sur R.

— CVS sur ]− 1, 1[.
Soit t ∈]− 1, 1[. On étudie la nature de

∑
tn = (SN )N∈N. On a :

SN =

N∑
n=0

tn =
1− tN+1

1− t
−−−−−→
N→+∞

1

1− t
car |t| < 1,

donc
∑

fn converge simplement sur ]− 1, 1[ vers la fonction t 7→ 1
1−t .

De plus, pour tout n ∈ N et tout t ∈]− 1, 1[, on a :

Rn(t) =

+∞∑
k=n+1

tk =
tn+1

1− t
.

— CVS sur R.
Soit t ∈ R. On étudie la nature de

∑
tn

n! .
En appliquant la règle de D’Alembert, on montre que

∑
tn

n! est une série absolument
convergente et donc convergente. Ainsi, la série

∑
tn

n! converge pour tout t ∈ R, d’où
∑

fn
converge simplement sur R.
De plus, on le montrera plus tard dans ce chapitre, sa somme vérifie

+∞∑
n=0

tn

n!
= et,

donc
∑

fn converge simplement sur R vers la fonction exponentielle.

Exercice 4.Exercice 4.

Montrer que la série de fonctions
∑

fn de terme général fn : t 7→ ne−nt converge simplement
sur R∗

+.

Correction.

CVS sur R∗
+.

Soit t ∈ R∗
+. On étudie la nature de

∑
ne−nt.

Pour tout n ∈ N, ne−nt ≥ 0 et on a, comme t > 0, par croissances comparées :

n2 × ne−nt = n3e−nt −−−−−→
n→+∞

0,
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d’où ne−nt = o
n→+∞

(
1

n2

)
.

Ainsi, par comparaison de séries à termes positifs,
∑

ne−nt converge.
Remarque : on aurait également pu montrer la convergence de cette série avec la règle de D’Alem-
bert.
Par suite, la série

∑
fn(t) converge pour tout t ∈ R∗

+, d’où
∑

fn converge simplement sur R∗
+.

Exercice 5.Exercice 5.

Soit p ∈ N∗. On munit l’algèbre E = Mp(K) d’une norme sous-multiplicative ‖ · ‖.
Pour n ∈ N∗, on considère la fonction fn : E → E telle que, pour A ∈ E, fn(A) = An

n2 .
Montrer que la série de fonctions

∑
n≥1 fn converge simplement sur la boule unité fermée Bf de

(E, ‖ · ‖).

Correction.

CVS sur Bf .
Soit A ∈ Bf . On étudie la nature de

∑
n≥1

An

n2 .
La norme considérée étant sous-multiplicative, on a :∥∥∥∥An

n2

∥∥∥∥ ≤ ‖A‖n

n2
≤ 1

n2
.

Ainsi, par comparaison à une série de Riemann convergente,
∑

n≥1
An

n2 converge absolument et
donc converge car E est de dimension finie.
Par suite, la série

∑
n≥1 fn(A) converge pour tout A ∈ Bf , d’où

∑
fn converge simplement sur

Bf .

Proposition 1.Proposition 1.

Soit
∑

fn une série de fonctions de A ⊂ E dans F . Si
∑

fn converge simplement sur A, alors
la suite des fonctions reste (Rn)n∈N converge simplement sur A vers la fonction nulle de A dans
F .

Démonstration.

On suppose
∑

fn converge simplement sur A. Alors
∑

fn converge simplement sur A vers la
fonction S : x 7→

∑+∞
n=0 fn(x). Pour n ∈ N, on a fonction Rn = S − Sn, où Sn =

∑n
k=0 fk.

CVS sur A.
Soit x ∈ A. On étudie la nature de la suite (Rn(x))n∈N.
Comme

∑
fn converge simplement vers S sur A, la suite (Sn)n∈N =

∑
fn(x) converge vers S(x),

d’où Rn(x) = S(x)− Sn(x) −−−−−→
n→+∞

0.
Par suite, la suite de fonctions (Rn)n∈N converge simplement sur A vers la fonction nulle.
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c. Domaine de définition d’une limite de suite de fonctions

Méthode. On calcule domaine de définition Df d’une fonction f définie comme la limite d’une
suite ou la somme d’une série de fonctions :

f : x 7→ lim
n→+∞

fn(x) ou f : x 7→
∞∑

n=0

fn(x),

en déterminant :
— l’ensemble D de définition commun à tous les fn (l’intersection des domaines de définition) ;

— le plus grand sous-ensemble de D sur lequel la suite (fn)n∈N ou la série
∑

fn converge
simplement.

Exemple 3.Exemple 3.

On se place dans le cas d’une variable complexe.
— Le domaine de définition de la fonction f : z 7→ lim

n→+∞
zn est Df = {z ∈ C | |z| < 1}∪{1}.

— Le domaine de définition de la fonction f : z 7→
+∞∑
n=1

1

1− zn
est Df = {z ∈ C | |z| > 1}.

— Pour n ∈ N, on pose fn : z 7→ zn qui est définie sur C.
CVS sur C.
Soit z ∈ C. La suite géométrique (fn(z))n∈N = (zn)n∈N converge si, et seulement si,
|z| ∈ [0, 1[ ou z = 1.
Par suite, la suite de fonctions (fn)n∈N converge simplement sur {z ∈ C | |z| < 1} ∪ {1} et
ne converge pas simplement en dehors.
Il en résulte que Df = {z ∈ C | |z| < 1} ∪ {1}.

— Pour n ∈ N∗, on pose fn : z 7→ 1
1−zn qui est définie sur C∖ Un.

On note alors D = C∖
⋃

n∈N Un.
CVS sur D.
Soit z ∈ D.
⋆ On suppose |z| ≤ 1. Alors, pour tout n ∈ N, |1− zn| ≤ 1 + |z|n ≤ 2, d’où :

1

|1− zn|
≥ 1

2
,

et donc 1
1−zn 6→ 0.

Ainsi,
∑

fn(z) diverge (grossièrement).
⋆ Si |z| > 1, alors, comme |z|n −−−−−→

n→+∞
+∞ :

1

|1− zn|
∼

n→+∞

1

|z|n

qui est le terme général d’une série géométrique convergente car de raison 1
|z| ∈]− 1, 1[.

Ainsi, par comparaison,
∑

fn(z) converge absolument et donc converge.
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Par suite,
∑

fn converge simplement sur {z ∈ C | |z| > 1} et ne converge pas simplement
en dehors.
Il en résulte que Df = {z ∈ C | |z| > 1}.

Exercice 6.Exercice 6.

Déterminer le domaine de définition de la fonction de la variable réelle :

f : x 7→
+∞∑
n=1

cosn(x)
n

.

Correction.

Pour n ∈ N∗, on pose fn : x 7→ cosn(x)
n qui est bien définie sur R.

CVS sur R.
Soit x ∈ R.

⋆ Si cos(x) = 1, alors
∑

n≥1 fn(x) =
∑

1
n diverge (d’après le critère de Riemann par

exemple) ;
⋆ Si cos(x) = −1, alors

∑
n≥1 fn(x) =

∑ (−1)n

n converge (d’après le critère des séries alter-
nées par exemple) ;

⋆ Si | cos(x)| < 1, alors
∑

n≥1
cosn(x)

n converge (d’après la règle de D’Alembert par exemple).
Ainsi, la série

∑
n≥1 fn(x) converge si, et seulement si, cos(x) 6= 1 i.e. x 6≡ 0 [2π].

Par suite,
∑

n≥1 fn converge simplement sur R∖ 2πZ et pas en dehors.
Il en résulte que :

Df = R∖ 2πZ.

2. Convergence uniforme

a. Définition et premières propriétés

Définition 3.Définition 3. gConvergence uniforme d’une suite de fonctionsConvergence uniforme d’une suite de fonctions

Soit (fn)n∈N une suite de fonctions et f une fonction de A ⊂ E dans F .
On dit que la suite (fn)n∈N converge uniformément vers f sur A si :

∀ ε > 0, ∃ N ∈ N, ∀ x ∈ A, ∀ n ≥ N, ‖fn(x)− f(x)‖F ≤ ε.

On dit que (fn)n∈N converge uniformément sur A s’il existe f telle que (fn)n∈N converge
uniformément vers f sur A.
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Question 1.Question 1.

Comparer les définitions des convergences simple et uniforme en termes epsilonesques ! Quelle
est la différence ?

On rappelle la notation suivante :

Notation 1.Notation 1. gNorme de la convergence uniformeNorme de la convergence uniforme

Soit Fb(A,F ) (ou encore B(A,F )) l’espace vectoriel sur K des fonctions bornées de A ⊂ E dans
F . On note ‖·‖∞ la norme de la convergence uniforme sur Fb(A,F ) i.e. pour f ∈ Fb(A,F ) :

‖f‖∞ = sup
x∈A

‖f(x)‖F .

Proposition 2.Proposition 2.

Soit (fn)n∈N une suite de fonctions et f une fonction de A dans F . La suite (fn)n∈N converge
uniformément vers f sur A si, et seulement si :

i) Les fonctions fn − f sont bornées sur A à partir d’un certain rang N ∈ N et,
ii) ‖fn − f‖∞ −−−−−→

n→+∞
0.

Démonstration.

• (⇒). On suppose que (fn) converge uniformément vers f sur A. Alors :

∀ ε > 0, ∃ N ∈ N, ∀ x ∈ A, ∀ n ≥ N, ‖fn(x)− f(x)‖F ≤ ε.

Prenons ε = 1. Alors il existe un rang N1 ∈ N tel que pour tout n ≥ N , on a, pour tout
x ∈ A, ‖fn(x)− f(x)‖F ≤ 1.
Ainsi, à partir d’un certain rang, fn − f est bornée sur A par 1.
Montrons désormais que ‖fn − f‖∞ −−−−−→

n→+∞
0.

Soit ε > 0. Alors

∃ N ∈ N, ∀ x ∈ A, ∀ n ≥ N, ‖fn(x)− f(x)‖F ≤ ε.

Par suite, comme l’inégalité précédente est vraie pour tout x ∈ A, on a, pour tout n ≥ N ,

‖fn − f‖∞ = sup
x∈A

‖fn(x)− f(x)‖F ≤ ε.

Il en résulte que ‖fn − f‖∞ −−−−−→
n→+∞

0.

• (⇐). On suppose i) et ii). Du fait de i), quitte à supprimer une nombre fini de termes de
la suite (fn) on peut supposer que, pour tout n ∈ N, fn − f est bornée sur A. Ainsi, on
peut considérer, pour chaque n ∈ N, la quantité ‖fn − f‖∞ = supt∈A ‖fn(t)− f(t)‖F .
Soit ε > 0. D’après ii), ‖fn − f‖∞ −−−−−→

n→+∞
0, il existe un rang N ∈ N tel que pour tout

entier n ≥ N ,
‖fn − f‖∞ ≤ ε.

11



Soit n ∈ N avec n ≥ N et x ∈ A. Alors on a :

‖fn(x)− f(x)‖F ≤ sup
t∈A

‖fn(t)− f(t)‖F = ‖fn − f‖∞ ≤ ε.

Il en résulte que la suite (fn − f)n∈N converge uniformément vers f .

Proposition 3.Proposition 3.

Soit (fn)n∈N une suite de fonctions et f une fonction de A dans F . Si (fn)n∈N converge unifor-
mément vers f sur A, alors (fn)n∈N converge simplement vers f sur A.

Démonstration.

On suppose que (fn)n∈N converge uniformément vers f sur A. alors d’après la proposition pré-
cédente, il existe un rang N ∈ N tel que pour tout n ≥ N , fn − f est bornée. Soit x ∈ A. Pour
n ≥ N , on a :

|fn(x)− f(x)| ≤ ‖fn − f‖∞ −−−−−→
n→+∞

0,

d’où fn(x) −−−−−→
n→+∞

f(x). Il en résulte que (fn)n∈N converge simplement vers f sur A.

Exemple 4.Exemple 4.

— La suite (fn)n∈N telle que, pour n ∈ N, fn : x 7→
√

x+ 1
n converge uniformément vers

x 7→
√
x sur R+.

En effet : soit n ∈ N∗ et on note f : x 7→
√
x. On a, pour tout x ∈ R+,

|fn(x)−f(x)| = |
√
x+

1

n
−
√
x| =

1

n√
x+ 1

n +
√
x
≤

1

n√
0 + 1

n +
√
0
=

1

n
1√
n

=
1√
n
.

Par suite, les fonctions fn − f sont bornées sur R+ et :

‖fn − f‖∞ = sup
x∈R+

|fn(x)− f(x)| ≤ 1√
n
−−−−−→
n→+∞

0

— La suite de fonctions de terme général t 7→ tn ne converge pas uniformément sur [0, 1[.

12



En effet, on remarque tout d’abord que (fn) converge simplement vers le fonction
nulle sur [0, 1[.
Soit n ∈ N et on note f : x 7→ 0. Comme fn : t 7→ tn est strictement croissante sur
[0, 1[ (pour n > 0), on a :

‖fn − f‖∞ = sup
t∈[0,1[

tn = lim
t→1−

tn = 1

Par suite,
‖fn − f‖∞ = 1 ↛

n→+∞
0.

Proposition 4.Proposition 4.

Soit (fn)n∈N, (gn)n∈N des suites de fonctions de A dans F et λ, µ ∈ K. Si (fn)n∈N et (gn)n∈N
convergent uniformément vers respectivement f et g sur A, alors (λfn + µgn)n∈N converge
uniformément vers λf + µg sur A.

Démonstration.

On suppose (fn)n∈N et (gn)n∈N convergent uniformément vers respectivement f et g sur A. Alors,
à partir d’un certain rang N1 (resp. N2), pour tout n ≥ N1 (resp. n ≥ N2), fn − f (resp. gn − g)
est bornée sur A. Par suite, comme l’ensemble des fonctions bornées sur A est un espace vectoriel,
à partir du rang N = max(N1, N2), pour tout n ≥ N , λfn + µgn − (λf + µg) est bornée sur A.
Et de plus, on a :

‖λfn + µgn − (λf + µg)‖∞ ≤ |λ|‖fn − f‖∞ + |µ|‖gn − g‖∞ −−−−−→
n→+∞

0,

car (fn)n∈N et (gn)n∈N convergent uniformément vers respectivement f et g sur A. Il en résulte
que (λfn + µgn)n∈N converge uniformément vers λf + µg sur A.

Méthode : Montrer qu’une suite de fonctions converge uniformément.
• Limite potentielle : On étudie la convergence simple de la suite (fn)n∈N. S’il y a convergence

simple vers une fonction f sur A, on étudie alors la convergence uniforme vers f sur A.
• Convergence uniforme vers la limite : Pour montrer la convergence uniforme de (fn)n∈N,

on cherche à obtenir une majoration de ‖fn − f‖∞ qui tende vers 0 i.e. une majoration
indépendante de x ∈ A du type (à partir d’un certain rang)

‖fn(x)− f(x)‖F ≤ un −−−−−→
n→+∞

0

où (un) est une suite de réels positifs qui tend vers 0 (et qui ne dépend pas de x ∈ A !!!).

La suite (un) s’obtient la plus souvent par une majoration simple, quand c’est possible, de
‖fn(x) − f(x)‖F ou par une étude des extrema de la fonction x 7→ ‖fn(x) − f(x)‖F (à n
fixé).

13



Exercice 7.Exercice 7.

Étudier la convergence uniforme des suites de fonctions de termes généraux suivants sur l’inter-
valle de définition indiqué :

1. pour n ∈ N, fn : [− 1
2 ,

1
2 ] → R tel que fn : x 7→ xn.

2. pour n ∈ N, fn : [0, 1] → R tel que fn : x 7→ xn(1− x).

3. pour n ∈ N∗, fn : R → R tel que fn : x 7→ sin(x+ 1
n ).

4. pour n ∈ N∗, fn : R+ → R tel que fn : x 7→ x
n(1+xn) .

Correction.

1. — CVS sur [− 1
2 ,

1
2 ]. Soit x ∈ [− 1

2 ,
1
2 ]. On a :

fn(x) = xn −−−−−→
n→+∞

0

car |x| ≤ 1
2 < 1.

Par suite, (fn)n∈N converge simplement vers 0 (la fonction nulle) sur [− 1
2 ,

1
2 ].

— CVU sur [− 1
2 ,

1
2 ]. Soit n ∈ N. Pour tout x ∈ [− 1

2 ,
1
2 ], on a :

|fn(x)− f(x)| = |x|n ≤ 1

2n
,

D’où fn − f est borné sur [− 1
2 ,

1
2 ] et :

‖fn − f‖∞ ≤ 1

2n
−−−−−→
n→+∞

0.

Remarque : l’inégalité précédente est en fait une égalité.
Il en résulte que (fn)n∈N converge uniformément vers 0 sur [− 1

2 ,
1
2 ].

2. — CVS sur [0, 1]. Soit x ∈ [0, 1]. On a :

fn(x) = xn(1− x) −−−−−→
n→+∞

{
0× (1− x) = 0 si 0 ≤ x < 1

1× 0 = 0 si x = 1

Par suite, (fn)n∈N converge simplement vers 0 (la fonction nulle) sur [0, 1].
— CVU sur [0, 1]. Soit n ∈ N∗. On étudie sur [0, 1] la fonction :

x 7→ gn(x) = |fn(x)− f(x)| = xn(1− x).

La fonction gn est dérivable, et on a g′n(x) = xn−1(n− (n+ 1)x).

x

g′n(x)

gn(x)

0
n

n+ 1
1

0 + 0 −

00

gn(
n

n+1 )gn(
n

n+1 )

00

14



Par suite, on a :

‖fn − f‖∞ = gn(
n

n+ 1
) =

(
n

n+ 1

)n

(1− n

n+ 1
) −−−−−→

n→+∞

1

e
× 0 = 0.

Il en résulte que (fn)n∈N converge uniformément vers 0 sur [0, 1].

3. — CVS sur R. Soit x ∈ R. On a, par continuité de la fonction sin sur R et donc en x :

fn(x) = sin(x+
1

n
) −−−−−→

n→+∞
sin(x)

Par suite, (fn)n∈N converge simplement vers f = sin sur R.
— CVU sur R. Soit n ∈ N∗. Pour tout x ∈ R, on a :

|fn(x)− f(x)| = | sin(x+ 1
n )− sin(x)|

= | cos(x) sin( 1n ) + sin(x)
(
cos( 1n )− 1

)
|

≤ | cos(x)|| sin( 1n )|+ | sin(x)|| cos( 1n )− 1|
≤ | sin( 1n )|+ | cos( 1n )− 1|

D’où fn − f est bornée sur R et :

‖fn − f‖∞ ≤ | sin( 1
n
)|+ | cos( 1

n
)− 1| −−−−−→

n→+∞
0.

car limt→0 sin(t) = 0 et limt→0 cos(t) = 1.
Il en résulte que (fn)n∈N converge uniformément vers sin sur R.
Remarque : on puvrait également utiliser la formule sin(a)− sin(b) = 2 cos(a+b

2 sin(a−b
2 )

ou encore l’inégalité des accroissements finis pour majorer ‖fn − f‖∞.

Correction suite.

4. — CVS sur R+. Soit x ∈ R+. On a :

fn(x) =
x

n(1 + xn)
−−−−−→
n→+∞

{
0 si x = 0

0 si x > 0.

Par suite, (fn)n∈N converge simplement vers 0 (la fonction nulle) sur R+.
— CVU sur R+. Soit n ≥ 2. On étudie sur [0, 1] la fonction :

x 7→ gn(x) = |fn(x)− f(x)| = x

n(1 + xn)
.

La fonction gn est dérivable, et on a

g′n(x) =
n(1 + xn)− n2xn

n2(1 + xn)2
=

1− (n− 1)xn

n(1 + xn)2
=

1− (n− 1)xn

n(1 + xn)2

15



x

g′n(x)

gn(x)

0
1

n
√
n− 1

+∞

+ 0 −

00

gn(
1

n
√
n−1

)gn(
1

n
√
n−1

)

00

Par suite, on a :

‖fn − f‖∞ = gn(
1

n
√
n− 1

) =
1

n
√
n− 1

.
1

n(1 +
1

n− 1
)
−−−−−→
n→+∞

1× 0 = 0.

Il en résulte que (fn)n∈N converge uniformément vers 0 sur R+.
Remarque : on pouvait conclure plus rapidement en remarquant l’inégalité suivante :

gn(x) =
x

n(1 + xn)
≤ 1

n
.

En effet, pour 0 ≤ x ≤ 1, x
1+xn ≤ 1

1 + xn
≤ 1 ;

et pour x > 1, xn > x, donc x
1+xn ≤ x

1 + x
≤ 1.

Méthode : Montrer qu’une suite de fonctions ne converge pas uniformément.

S’il n’y a pas convergence simple sur A, il n’y pas convergence uniforme.
Mais si on a déterminé une limite f pour la convergence simple, pour montrer que la suite (fn)
ne converge pas uniformément vers f , on peut :

• montrer que la fonction fn − f n’est pas bornée sur A, ou
• exhiber une suite (xn)n∈N à valeurs dans A telle que la suite de terme général

‖fn(xn)− f(xn)‖F ne tend pas vers 0.

Exercice 8.Exercice 8.

Étudier la convergence uniforme des suites de fonctions de termes généraux suivants :

1. pour n ∈ N, fn : R → R tel que fn : x 7→ xn

n! .

2. pour n ∈ N, fn : R → R tel que fn : x 7→ nx
1+n2x2 .

3. pour n ∈ N∗, fn : R → R tel que fn : x 7→
(
x+ 1

n

)2.
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Correction.

1. — CVS sur R. Soit x ∈ R. On a :

fn(x) =
xn

n!
−−−−−→
n→+∞

0.

Par suite, (fn)n∈N converge simplement vers 0 (la fonction nulle) sur R.
— CVU sur R. Soit n ∈ N∗. Pour x ∈ R, on a :

|fn(x)− f(x)| = |x|n

n!
−−−−−→
x→±∞

+∞,

Par suite, pour tout n ∈ N∗, fn − f n’est pas bornée sur R.
Il en résulte que (fn)n∈N ne converge pas uniformément vers 0 sur R.

2. — CVS sur R. Soit x ∈ R. On a :

fn(x) =
nx

1 + n2x2
−−−−−→
n→+∞

{
0 si x = 0

0 sinon.

car, pour x 6= 0, nx

1 + n2x2
∼

n→+∞

1

nx
.

Par suite, (fn)n∈N converge simplement vers 0 (la fonction nulle) sur R.
— CVU sur R. Soit n ∈ N. On considère, pour x ∈ R :

gn(x) = |fn(x)− f(x)| = n|x|
1 + n2x2

.

On remarque que pour xn =
1

n
, on a :

gn(xn) =
n 1

n

1 + n2( 1n )
2
=

1

2

Donc :
‖fn − f‖∞ = sup

x∈R
gn(x) ≥ gn(xn) =

1

2
↛

n→+∞
0.

Il en résulte que (fn)n∈N ne converge pas uniformément vers 0 sur R.

3. — CVS sur R. Soit x ∈ R. On a, par continuité sur R et donc en x de la fonction carrée :

fn(x) =

(
x+

1

n

)2

−−−−−→
n→+∞

x2.

Par suite, (fn)n∈N converge simplement vers f : x 7→ x2 sur R.
— CVU sur R. Soit n ∈ N∗. Pour x ∈ R, on a :

|fn(x)− f(x)| = |
(
x+

1

n

)2

− x2| = |2x
n

+
1

n2
| −−−−−→

x→±∞
+∞,

Par suite, pour tout n ∈ N∗, fn − f n’est pas bornée sur R.
Il en résulte que (fn)n∈N ne converge pas uniformément vers f sur R.

17



Exercice 9.Exercice 9.

Soit (fn)n∈N et (gn)n∈N des suites de fonctions à valeurs réelles qui convergent uniformément
vers f et g respectivement. Est-ce que (fngn)n∈N converge uniformément ?

Correction.

Non, car la suite (fn)n∈N, définie par fn : x 7→ x + 1
n pour n ∈ N, converge uniformément vers

f : x 7→ x sur R et on a prouvé précédemment que la suite de terme général f2
n : x 7→ (x + 1

n )
2

ne converge pas uniformément vers x 7→ x2 sur R.

b. Convergence uniforme des suites de fonctions bornées

Proposition 5.Proposition 5.

Soit (fn)n∈N une suite de fonctions bornées sur A. Si (fn)n∈N converge uniformément vers une
fonction f sur A, alors f est bornée sur A.

Démonstration.

Soit (fn)n∈N une suite de fonctions bornées sur A. On suppose que (fn)n∈N converge uniformément
vers f sur A.
Par convergence uniforme, à partir d’un certain rang N ∈ N, pour tout entier n ≥ N fn − f est
bornée sur A. Par suite, pour tout x ∈ A, on a :

‖f(x)‖F ≤ ‖fN (x)‖F + ‖fN (x)− f(x)‖F ≤ ‖fN‖∞ + ‖fN − f‖∞

Donc f est bornée sur A.

Question 2.Question 2.

Cela est-il vrai dans le cas de la convergence simple ?

Réponse.

Non ! Considérons la fonction f : x 7→ x et la suite de fonctions (fn)n∈N définie, pour n ∈ N, par :

fn : x 7→

{
f(x) = x si x ∈ [−n, n]

0 sinon.

Alors, (fn)n∈N est un suite de fonctions bornées sur R qui converge simplement vers f qui n’est
pas bornée sur R.
(Et bien-sur, il ne peut y avoir convergence uniforme vers f sur R en vertu de la proposition
précédente !)
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Proposition 6.Proposition 6.

Soit (fn)n∈N une suite de fonctions bornées sur A. Alors (fn)n∈N converge uniformément si, et
seulement si, (fn) converge dans l’espace vectoriel normé (Fb(A,F ), ‖ · ‖∞).

Démonstration.

Il s’agit simplement de deux formulations différentes de la même propriété.

Exercice 10.Exercice 10.

Soit g : R → R telle que g : x 7→ x

1 + 27x4

1. Calculer ‖g‖∞.

2. On considère la suite de terme générale fn : x 7→ g(nx). Étudier les convergences simple
et uniforme de cette suite.

Correction.

1. La fonction g est une fonction impaire et dérivable sur R. On effectue son étude sur R+.
Pour x ∈ R+, on a :

g′(x) =
(1 + 27x4)− 108x4

(1 + 27x4)2
=

1− 81x4

(1 + 27x4)2
,

x

g′(x)

g(x)

0
1

3
+∞

+ 0 −

00

1
4
1
4

00

Par suite, comme g est impaire, on a :

‖g‖∞ = sup
x∈R

|g(x)| = sup
x∈R+

|g(x)| = 1

4
.

2. — CVS sur R. Soit x ∈ R. On a :

fn(x) = g(nx) =
nx

1 + 27n4x4
−−−−−→
n→+∞

{
0 si x = 0

0 si x 6= 0,

car pour x 6= 0, nx

1 + 27n4x4
∼

n→+∞

1

27n3x3
.

Par suite, (fn)n∈N converge simplement vers f : x 7→ 0 sur R.
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— CVS sur R. Soit n ∈ N∗. La fonction φ : x 7→ nx est une bijection de R dans R, donc :

‖fn − f‖∞ = sup
x∈R

|g(nx)| = sup
y∈R

|g(y)| = 1

4
↛

n→+∞
0.

Par suite, (fn)n∈N ne converge pas uniformément vers f sur R.

Exercice 11.Exercice 11.

Soit (fn)n∈N et (gn)n∈N des suites de fonctions à valeurs réelles bornées qui convergent unifor-
mément vers f et g respectivement. Est-ce que (fngn)n∈N converge uniformément ?

Correction.

Cette fois-ci, l’hypothèse ”bornées” permet de conclure par l’affirmative.
En effet, d’après la proposition précédente, f et g sont bornées sur A. De plus, pour tout entier
n assez grand (à partir du rang où toutes les fonctions fn − f et gn − g sont bornées sur A) et
pour tout x ∈ A, on a :

|(fngn − fg)(x)| = |fn(x)gn(x)− f(x)gn(x) + f(x)gn(x)− f(x)g(x)|
≤ |fn(x)gn(x)− f(x)gn(x)|+ |f(x)gn(x)− f(x)g(x)|
≤ |gn(x)|.|fn(x)− f(x)|+ |f(x)|.|gn(x)− g(x)|
≤ |gn(x)|.|fn(x)− f(x)|+ |f(x)|.|gn(x)− g(x)|
≤ ‖gn‖∞‖fn − f‖∞ + ‖f‖∞‖gn − g‖∞

Donc fngn − fg est bornée et on remarque que, par convergence uniforme de (gn)n∈N vers g, on
a :

‖gn‖∞ = ‖gn − g + g‖∞ ≤ ‖gn − g‖∞ + ‖g‖∞ −−−−−→
n→+∞

‖g‖∞.

Ainsi, on a :

‖fngn − fg‖∞ ≤ ‖gn‖∞‖fn − f‖∞ + ‖f‖∞‖gn − g‖∞ −−−−−→
n→+∞

‖g‖∞ × 0 + ‖f‖∞ × 0 = 0.

Donc (fngn)n∈N converge uniformément vers fg.

c. Convergence uniforme sur une partie

Dans ce paragraphe, on s’intéresse à la convergence uniforme d’une suite de fonctions sur des famille
de sous-ensemble du domaine de définition de ces fonctions.

Exemple 5.Exemple 5.

Pour tout a > 0, la suite de fonctions de terme général fn : t 7→ 1
1+nt converge uniformément sur

[a,+∞[⊂ R∗
+.
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On remarque tout d’abord que (fn)n∈N ne converge pas uniformément sur R∗
+. En effet,

(fn)n∈N converge simplement vers f : x 7→ 0 sur R∗
+ mais on a, pour tout n ∈ N :

‖fn − f‖∞ = sup
t∈R

(
1

1 + nt
) = 1 ↛

n→+∞
0,

car fn est décroissante sur R∗
+ et limt→0

1

1 + nt
= 1.

Donc (fn)n∈N ne converge pas uniformément sur R∗
+.

Remarque : on aurait aussi pu utiliser le fait que, pour n ∈ N∗ :

‖fn − f‖∞ = ‖fn‖∞ ≥ fn(
1

n
) =

1

1 + n 1
n

=
1

2
↛

n→+∞
0.

Soit a > 0. Étudions la convergence uniforme sur [a,+∞[.
Soit n ∈ N. On a, pour tout x ∈ [a,+∞[,

|fn(t)− f(t)| = 1

1 + nt
≤ 1

1 + na
.

Ainsi, les fn − f sont bornés sur [a,+∞[ et :

‖fn − f‖∞ ≤ 1

1 + na
−−−−−→
n→+∞

0.

Il en résulte que (fn)n∈N converge uniformément vers f sur [a,+∞[.

Exercice 12.Exercice 12.

Étudier la convergence uniforme de la suite de terme général fn : x 7→ e−nx sin(nx) sur R+ puis
sur les intervalles de la forme [a,+∞[ avec a > 0.

Correction.

— CVS sur R+. Soit x ∈ R+. On a :

fn(x) −−−−−→
n→+∞

{
0 si x = 0 car sin(0) = 0

0 sinon

car, pour x > 0, e−nx −−→
n→

0 et | sin(nx)| ≤ 1.

Par suite, (fn)n∈N converge simplement vers f : x 7→ 0 sur R+.
— CVU sur R+. On considère la suite (xn)n∈N∗ telle que, pour n ∈ N∗, xn = 1

n . Alors, on a :

|fn(xn)− f(xn)| = e−n 1
n sin(n 1

n
) = e sin(1).

Par suite,
‖fn − f‖∞ ≥ e sin(1) ↛

n→+∞
0.

21



Donc (fn)n∈N ne converge pas uniformément sur R+.
— Soit a > 0. CVU sur [a,+∞[. Soit n ∈ N. Pour tout x ∈ [a,+∞[,

|fn(x)− f(x)| = e−nx| sin(nx)| ≤ e−na.

Par suite,
‖fn − f‖∞ ≤ e−na −−−−−→

n→+∞
0.

Il en résulte que (fn)n∈N converge uniformément vers f sur [a,+∞[.

Proposition 7.Proposition 7.

Soit (fn)n∈N une suite de fonctions de A dans R et f une fonction de A dans R. Si (fn)n∈N
converge uniformément sur A vers f alors, pour tout B ⊂ A, (fn)n∈N converge uniformément
sur B vers f .

Démonstration.

On suppose (fn)n∈N converge uniformément sur A vers f . Soit B ⊂ A. On a alors, pour tout
n ∈ N assez grand, fn − f est bornée sur A, donc fn − f est bornée sur B et de plus :

‖fn − f‖∞,B = sup
x∈B

|fn(x)− f(x)| ≤ sup
x∈A

|fn(x)− f(x)| = ‖fn − f‖∞,A −−−−−→
n→+∞

0.

Il en résulte que (fn)n∈N converge uniformément sur B vers f .

Définition 4.Définition 4. gConvergence uniforme sur tout compact/segmentConvergence uniforme sur tout compact/segment

(fn)n∈N une suite de fonctions de A dans F . On dit que (fn)n∈N converge uniformément
sur tout compact de A si, pour tout compact K ⊂ A, (fn)n∈N converge uniformément sur
K. On parle alors de convergence uniforme sur tout compact de A.
Dans le cas où A est un intervalle de R, on la convergence uniforme sur tout compact est
autrement désignée par convergence uniforme sur tout segment.

Exemple 6.Exemple 6.

La suite de fonctions de terme général fn : t 7→ tn converge uniformément sur tout segment de
]− 1, 1[.
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CVS sur ]− 1, 1[ :
Soit t ∈]− 1, 1[. On étudie la nature de la suite (tn)n∈N.
On a : tn −−−−−→

n→+∞
0 car |t| < 1 donc (tn)n∈N est convergente.

Ainsi la suite (fn)n∈N converge simplement vers la fonction f : x 7→ 0 sur ]− 1, 1[.

CVU sur [−a, a] avec a ∈ [0, 1[ :
Soit n ∈ N. On a fn − f : t 7→ tn est bornée sur [−a, a] car continue sur un segment et,
comme |a| < 1 :

‖fn − f‖∞ = sup
t∈[−a,a]

|tn| = an −−−−−→
n→+∞

0

Par suite, (fn)n∈N converge uniformément vers la fonction f sur tout intervalle de la forme
[−a, a] avec a ∈ [0, 1[.
Or, tout segment de ]−1, 1[ est inclus dans un intervalle de la forme [−a, a] avec a ∈ [0, 1[ :
en effet, si [b, c] ⊂]− 1, 1[, alors, pour a = max(|b|, |c|) ∈ [0, 1[, on a [b, c] ⊂ [−a, a] ; donc,
(fn)n∈N converge uniformément vers la fonction f sur tout segment de ]− 1, 1[.

Exercice 13.Exercice 13.

Étudier la converge uniforme de la suite de terme général fn : x 7→ xn

n! sur tout segment de R.

Correction.

On a déjà prouvé que (fn)n∈N sur R où fn : x 7→ xn

n! pour n ∈ N, converge simplement vers la
fonction nulle - notée f ici - sur R et on a prouvé que cette suite ne converge pas uniformément
sur R. Montrons qu’il y a tout de même convergence uniforme sur tout segment de R.
Soit a > 0.

CVU sur [−a, a]. Soit n ∈ N. Pour tout x ∈ [−a, a], on a :

|fn(x)− f(x)| = |fn(x)| =
|x|n

n!
≤ an

n!

Donc la fonction fn − f est bornée sur [−a, a] et on a :

‖fn − f‖∞ = sup
x∈[−a,a]

|fn(x)− f(x)| ≤ an

n!
−−−−−→
n→+∞

0.

Il en résulte que (fn)n∈N converge uniformément sur [−a, a] vers la fonction nulle.
Comme tout segment de R est inclus dans un intervalle de la forme [−a, a] avec a > 0, (fn)n∈N
converge uniformément sur tout segment de R vers la fonction nulle.

3. Convergence uniforme des séries de fonctions

a. Généralités
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On donne la définition suivante qui n’en est pas vraiment une : il s’agit d’une répétition, dans le cas
particulier des séries, de la définition de la convergence uniforme pour les suites de fonctions.

Définition 5.Définition 5.

Soit
∑

fn une série de fonctions de A dans F . On dit que
∑

fn converge uniformément sur
A si la suite (Sn)n∈N de ses sommes partielles converge uniformément sur A.

Proposition 8.Proposition 8. gCaractérisation de la convergence uniforme pour les séries de fonctionsCaractérisation de la convergence uniforme pour les séries de fonctions

Soit
∑

fn une série de fonctions de A dans F . Alors
∑

fn converge uniformément sur A si, et
seulement si, les deux conditions suivantes sont satisfaites :

— la série
∑

fn converge simplement sur A et,
— la suite (Rn)n∈N des restes de

∑
fn converge uniformément vers la fonction nulle sur A.

Démonstration.

Si
∑

fn converge simplement sur A, alors, pour tout x ∈ A,
∑

fn(x) converge et ainsi, la suite
(Rn(x))n∈N des restes de

∑
fn(x) est bien définie et converge vers 0F .

Ainsi, pour tout n ∈ N, la fonction Rn : x 7→ Rn(x) est bien définie et donc (Rn)n∈N est une
suite de fonctions de A dans F qui converge simplement sur A vers la fonction nulle.
Fort de cette remarque, passons à la démonstration proprement dite. Que ce soit dans le sens
l’implication directe, comme convergence uniforme implique convergence simple ; ou dans le sens
de l’implication réciproque, par hypothèse ; on a la convergence simple de

∑
fn sur A vers S :

x 7→
∑+∞

n=0 fn(x). Ainsi, dans les deux implications, la suite (Rn)n∈N de fonctions de A dans F est
bien définie et converge simplement sur A vers la fonction nulle. On conclut alors en remarquant
que :
la série

∑
fn = (Sn)n∈N converge uniformément vers la fonction S sur A si, et seulement si,

(Rn)n∈N = (S − Sn)n∈N converge uniformément vers la fonction S − S = 0 sur A.

Exemple 7.Exemple 7.

La série de fonctions
∑

fn de terme général fn : x 7→ xn converge uniformément vers x 7→ 1

1− x
sur tout segment de ]− 1, 1[ mais ne converge pas uniformément sur ]− 1, 1[.
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D’après l’exemple 2,
∑

fn converge simplement sur ]− 1, 1[ vers S : x 7→ 1
1−x .

Soit n ∈ N. Pour tout x ∈]− 1, 1[, on a :

Rn(x) =

+∞∑
k=n+1

xk =
xn+1

1− x
.

CVU sur [−a, a] avec a ∈ [0, 1[ :

Soit n ∈ N. Pour tout x ∈ [−a, a], on a |xn+1| ≤ an+1 et 1−x ≥ 1−a donc |Rn(x)| ≤ an+1

1−a .
Par suite, la fonction Rn est bornée sur [−a, a] et on a, comme |a| < 1 :

‖Rn‖∞ ≤ an+1

1− a
−−−−−→
n→+∞

0.

Il en résulte que (Rn)n∈N converge uniformément sur [−a, a] vers la fonction nulle et donc∑
fn converge uniformément sur [−a, a] vers S.

De plus, tout segment de ]− 1, 1[ étant inclus dans un intervalle de la forme [−a, a] avec
a ∈ [0, 1[, la série

∑
fn converge uniformément sur tout segment de ]− 1, 1[ vers S.

CVU sur ]− 1, 1[ :
Soit n ∈ N. On a :

Rn(x) =
xn+1

1− x
−−−−→
x→1−

+∞,

d’où la fonction Rn n’est pas bornée sur ]− 1, 1[ et donc (Rn)n∈N ne converge pas unifor-
mément sur ]− 1, 1[.
Il en résulte que la série

∑
fn ne converge pas uniformément sur ]− 1, 1[.

Exercice 14.Exercice 14.

1. Étudier la convergence uniforme de la série
∑ (−1)n

n+1+x2 sur R.

2. Étudier la convergence uniforme de la série
∑

xn

n! sur R puis sur tout segment de R.

Correction.

1. Tout d’abord étudions la convergence simple de
∑

fn sur R où fn : x 7→ (−1)n

n+1+x2 pour
n ∈ N.
CVS sur R. Soit x ∈ R. On considère la suite (un)n∈N telle que, pour n ∈ N, un = 1

n+1+x2 .
Alors (un)n∈N est décroissante et tend vers 0 quen n → +∞ donc, d’après le critère des
séries alternées,

∑ (−1)n

n+1+x2 converge.

Il en résulte que
∑

fn converge simplement vers f : x 7→
+∞∑
n=0

(−1)n

n+ 1 + x2
sur R.

CVU sur R. Soit n ∈ N. Pour tout x ∈ R, comme la somme d’une série alternées convergente
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est plus petite que son premier terme (en valeur absolue), on a :

|Rn(x)| =

∣∣∣∣∣
+∞∑

k=n+1

(−1)k

k + 1 + x2

∣∣∣∣∣ ≤ 1

n+ 2 + x2
≤ 1

n+ 2

Donc la fonction Rn est bornée et :

‖Rn‖∞ = sup
x∈R

|Rn(x)| ≤
1

n+ 2
−−−−−→
n→+∞

0.

Par suite,
∑

fn converge uniformément sur R (vers f).

2. On a déjà prouvé que
∑

fn sur R où fn : x 7→ xn

n! pour n ∈ N, converge simplement vers
exp sur R - et on a également montrer que

∑
fn converge uniformément sur tout segment

de R.
Montrons que

∑
fn ne converge pas uniformément sur R tout entier.

CVU sur R. Soit n ∈ N. Pour tout x ∈ R, on a :

|Rn(x)| =

∣∣∣∣∣
+∞∑

k=n+1

xk

k!

∣∣∣∣∣
Si x > 0, on a 7→ xk

k! > 0 pour tout k ≥ n+ 1. Ainsi, pour tout x > 0 :

|Rn(x)| =
+∞∑

k=n+1

xk

k!
≥ xn+1

(n+ 1)!

Or la fonction x 7→ xn+1

(n+1)! n’est pas bornée sur R ; en effet sa limite quand x → +∞ est
+∞, donc la fonction Rn n’est pas bornée sur R.
Il en résulte que

∑
fn ne converge pas uniformément sur R.

Comme il n’y a pas convergence sur R et que le ”problème” se situe en +∞, on tente la
convergence uniforme sur tout segment de R. Soit a ∈ R.
CVU sur [−a, a]. Soit n ∈ N. Pour tout x ∈ [−a, a], on a :

|Rn(x)| ≤
+∞∑

k=n+1

∣∣∣∣xn

n!

∣∣∣∣ = +∞∑
k=n+1

|x|n

n!
≤

+∞∑
k=n+1

an

n!
= rn.

Ainsi, la fonction Rn est bornée sur A et on a ‖Rn‖∞ ≤ rn.
De plus, (rn)n∈N est la suite des reste de la série convergente

∑
an

n! donc elle converge vers
0.
Par suite, ‖Rn‖∞ −−−−−→

n→+∞
0, d’où (Rn)n∈N converge uniformément vers la fonction nulle.

Il en résulte, d’après la proposition 8, que
∑

fn converge uniformément sur [−a, a] et ce,
pour tout a > 0.
Tout segment de R étant inclus dans un segment de la forme [−a, a] avec a > 0, on a donc
la convergence uniforme sur tout segment de R de

∑
fn vers sa somme S : x 7→

∑+∞
n=0

xn

n! -
dont on va bientôt montrer qu’il s’agit bien de la fonction exponentielle !

Remarque 1 : Cette preuve de la CVU sur [−a, a] repose simplement sur le fait que ‖fn‖∞(=
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an/n! ici) est le terme général d’une série convergente... cela va nous inspirer dans la suite !

Remarque 2 : Si on sait déjà que S est la fonction exponentielle, on peut procéder de la
façon suivante pour la CVU :
Pour tout x ∈ [−a, a], en faisant le changement d’indice k′ = k − (n+ 1) et en remarquant
que, pour tout k ∈ N, (k + n+ 1)! ≥ k!(n+ 1)!, on obtient :

|Rn(x)| ≤
+∞∑

k=n+1

|x|k

k!
≤ |x|n+1

(n+ 1)!

+∞∑
k=0

|x|k

k!
=

|x|n+1

(n+ 1)!
e|x| ≤ an+1

(n+ 1)!
ea

Donc la fonction Rn est bornée sur [−a, a] et on a :

‖Rn‖∞ = sup
x∈[−a,a]

|Rn(x)| ≤
an+1

(n+ 1)!
ea −−−−−→

n→+∞
0.

On a donc bien la convergence uniforme sur tout segment de R de
∑

fn vers la fonction
exponentielle.

b. Convergence normale des séries de fonctions

La deuxième question de l’exercice 14 est très instructive : on remarque que le raisonnement qui
nous a amené à prouver la convergence uniforme sur [−a, a] de

∑
xn

n! reposait seulement sur le fait que
an

n! = supx∈[−a,a] |x
n

n! | est le terme général d’une série convergente. On veut donc généraliser cette situation
pour éviter de répéter et répéter cette preuve dans les cas analogues !

Définition 6.Définition 6. gConvergence normaleConvergence normale

Soit
∑

fn une série de fonctions de A dans F . On dit que
∑

fn converge normalement sur
A si :

i) pour tout n ∈ N, la fonction fn est bornée ; et
ii) la série

∑
‖fn‖∞ est convergente.

Exemple 8.Exemple 8.

La série
∑ cos(n3x)

(n+ 1)2
converge normalement sur R.

En effet, on a, pour fn : x 7→ cos(n3x)

(n+ 1)2
:

‖fn‖∞ = sup
x∈R

(

∣∣∣∣cos(n3x)

(n+ 1)2

∣∣∣∣) ≤ 1

(n+ 1)2

Or d’après le critère de Riemann, 1
(n+1)2 est le terme général d’une série convergente.

Ainsi,
∑

fn converge normalement.
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Proposition 9.Proposition 9.

Soit
∑

fn une série de fonctions de A dans F . Si
∑

fn converge normalement sur A, alors, pour
tout x ∈ A, la série

∑
fn(x) est absolument convergente i.e.

∑
‖fn(x)‖F converge.

Démonstration.

Si
∑

fn converge normalement, ‖fn‖∞ = supx∈A ‖fn(x)‖F est le terme général d’une série conver-
gente. Soit x ∈ A. Comme pour tout n ∈ N, on a :

‖fn(x)‖F ≤ ‖fn‖∞,

par comparaison, la série à terme positifs
∑

‖fn(x)‖F est convergente i.e.
∑

fn(x) est absolument
convergente.

Corollaire 1.Corollaire 1.

Soit
∑

fn une série de fonctions de A dans F (qui est un espace vectoriel de dimension finie). Si∑
fn converge normalement sur A, alors

∑
fn converge simplement sur A.

Démonstration.

On suppose
∑

fn converge normalement.
CVS sur A. Soit x ∈ A.
D’après la proposition précédente,

∑
fn(x) converge absolument, ainsi, comme F est de dimension

finie,
∑

fn(x) converge.
Ceci étant vrai pour tout x ∈ A,

∑
fn converge simplement sur A (vers sa somme).

Proposition 10.Proposition 10.

Soit
∑

fn une série de fonctions de A dans F . Si
∑

fn converge normalement sur A, alors
∑

fn
converge uniformément sur A.

Démonstration.

On suppose que
∑

fn converge normalement sur A. Montrons que
∑

fn converge uniformément
sur A. Pour cela, on utilise la caractérisation de le convergence uniforme pour les séries donnée
par la proposition 8 :

CVS sur A de
∑

fn :
Comme

∑
fn converge normalement sur A alors, d’après le corollaire 1,

∑
fn converge simplement

sur A.

CVU sur A de (Rn)n∈N vers 0 :

28



Soit n ∈ N. Pour tout x ∈ A, comme ‖fn(x)‖F ≤ ‖fn‖∞ :

‖Rn(x)‖F ≤
+∞∑

k=n+1

‖fn(x)‖F ≤
+∞∑

k=n+1

‖fn‖∞ = rn

Ainsi, la fonction Rn est bornée sur A et on a ‖Rn‖∞ ≤ rn.
De plus, (rn)n∈N est la suite des reste de la série convergente

∑
‖fn‖∞ donc elle converge vers 0.

Par suite, ‖Rn‖∞ −−−−−→
n→+∞

0.

Il en résulte, d’après la proposition 8, que
∑

fn converge uniformément sur A.‘

Remarque 3.Remarque 3.

Attention, la réciproque est fausse : chercher parmi les exemples précédents une série de fonctions
qui converge uniformément mais pas normalement.

On a ainsi, pour une série de fonctions, le diagramme suivant :

CVN ⇒
⇍

CVU ⇒
⇍

CVS

Méthode : Montrer qu’une série de fonctions converge normalement

Pour montrer la convergence normale de
∑

fn, on cherche à obtenir une majoration de ‖fn‖∞ qui
tende vers 0 i.e. une majoration indépendante de x ∈ A du type (à partir d’un certain rang)

‖fn(x)‖F ≤ un

telle que
∑

un est une série numérique convergente (et un ne dépend pas de x ∈ A !!!).

Exercice 15.Exercice 15.

1. Étudier la convergence normale/uniforme/simple de
∑

n≥1

e−nx

n2
sur R+.

2. Étudier la convergence normale/uniforme/simple de
∑

n≥1

1

n2 + x2
puis de

∑
n≥0

1

n2 + x2

sur R.

Correction.

1. On pose, pour n ∈ N∗, fn : x 7→ e−nx

n2 . Commençons par la convergence normale :
CVN sur R+ : Soit n ∈ N∗. On a, pour tout x ∈ R+ :

|fn(x)| =
e−nx

n2
≤ 1

n2
.
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Donc fn est bornée sur R+ et l’inégalité précédente étant une égalité pour x = 0, on a

‖fn‖∞ =
1

n2

Or 1
n2 est le terme général d’une série convergente d’après le critère de Riemann (2 > 1) ;

par suite,
∑

‖fn‖∞ converge et donc
∑

fn converge normalement sur R+.
Comme pour une série de fonctions, CVN ⇒ CVU ⇒ CVS, la série

∑
fn converge unifor-

mément et simplement sur R+.

2. • On pose, pour n ∈ N∗, fn : x 7→ 1
n2+x2 qui est bien définie sur R.

CVN sur R : Soit n ∈ N∗. On a, pour tout x ∈ R :

|fn(x)| =
1

n2 + x2
≤ 1

n2
.

Donc fn est bornée sur R et l’inégalité précédente étant une égalité pour x = 0, on a :

‖fn‖∞ =
1

n2

Or 1
n2 est le terme général d’une série convergente d’après le critère de Riemann (2 > 1) ;

par suite,
∑

‖fn‖∞ converge et donc
∑

fn converge normalement sur R.
Comme pour une série de fonctions, CVN ⇒ CVU ⇒ CVS, la série

∑
fn converge

uniformément et simplement sur R.
• On garde les mêmes notations que précédemment et on pose f0 : x 7→ 1

x2 qui est définie
sur R∗. On ne peut donc plus étudier les convergences sur R de

∑
n≥0 fn du fait que f0

n’est pas définie en 0 ! On doit donc faire notre étude sur les intervalles R∗
− et R∗

+. Les
fn étant tous des fonctions paires, on peut restreindre l’étude à R∗

+.
CVN sur R∗

+ : Soit n ∈ N. On remarque que f0 n’est pas bornée sur R∗
+ car f0(x) −−−−→

x→0+

+∞ donc sa norme infinie n’est pas définie et donc l’étude de la convergence normale
n’est pas possible même si cela semblait de prime abord être exactement comme le cas
précédent.
Il n’y a donc pas convergence normale sur R∗

+ à cause d’un ”détail” mais on se doute que
la convergence uniforme va sûrement fonctionner puisque dans les restes, f0 n’apparaîtra
pas !
CVS sur R∗

+ : Soit x ∈ R∗
+. On étudie la nature de

∑
fn(x).

On a fn(x) =
1

n2+x2 ∼
n→+∞

1
n2 et 1

n2 est le terme général d’une série convergente (critère
de Riemann avec 2 > 1), donc

∑
fn(x) converge, et ce, pour tout x ∈ R∗

+.
Ainsi,

∑
fn converge simplement sur R∗

+.
CVU sur R∗

+ : Soit n ∈ N. Pour tout x ∈ R∗
+, on a :

|Rn(x)| =
+∞∑

k=n+1

1

n2 + x2
≤

+∞∑
k=n+1

1

n2
= rn

Or la série
∑

n≥1
1
n2 converge donc la suite (rn)n∈N∗ de ses restes converge vers 0. Ainsi,

Rn est une fonction bornée et on a :

‖Rn‖∞ ≤ rn −−−−−→
n→+∞

0.

Par suite,
∑

n≥0 fn converge uniformément sur R∗
+ (et donc également sur R∗

−).
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Exercice 16.Exercice 16. gFonction Zêta de RiemannFonction Zêta de Riemann

La fonction ζ de Riemann est définie, pour s ∈]1,+∞[ par :

ζ(s) =

+∞∑
n=1

1

ns
.

Justifier la définition de la fonction ζ sur ]1,+∞[ en étudiant la convergence simple de la série
de fonctions. Que dire de la convergence uniforme de la série vers la fonction ζ ?

Correction.

Pour n ∈ N∗, on pose fn : s 7→ 1
ns qui est bien définie sur R.

• Déterminons le domaine de la fonction ζ. On remarque que ζ(s) existe si, et seulement si,
la série numérique

∑
fn(s) est convergente. On se ramène donc à trouver le plus grand

intervalle sur lequel la série de fonction
∑

fn converge simplement.
CVS sur R : Soit s ∈ R. On a, d’après le critère de Riemann,
fn(s) =

1
ns est le terme général d’une série convergente si, et seulement si, s > 1.

Ainsi, la série
∑

fn converge simplement sur ]1,+∞[ et ne converge pas simplement sur
]−∞, 1].
Il en résulte que le domaine de définition de ζ est ]1,+∞[.

Remarque : En prenant s complexe, on peut, de la même manière que précédem-
ment, montrer que ζ est bien définie sur DP = {s ∈ C | Re(s) > 1}. On montrera
dans la suite que ζ est de classe C∞ sur ]1,+∞[ et de manière similaire, on peut
montrer que ζ est holomorphe (i.e. une fonction de la variable complexe dérivable...
pour sa variable complexe !) sur DP.
Par des méthodes que nous ne détaillerons pas ici, on peut montrer que la fonction
ζ peut être prolongée de manière analytique (nous parlerons de cela quand nous
aborderons les développements en séries entières) et donc en particulier, ζ admet
un prolongement continu sur C∖ {1}.
Ce prolongement (dont on peut prouver qu’il est unique) donne la valeur :

ζ(−1) = − 1

12

d’où la célèbre confusion :
+∞∑
n=1

n = − 1

12
!

Mais il ne faut pas s’y méprendre ! Comme nous l’avons définie, la série à termes
positifs

∑
n diverge et donc tend vers +∞. La formule

∑+∞
n=1

1
ns de la fonction ζ

n’est plus valable dans le sens ”somme de série numérique” pour les complexes s
en dehors de DP et il faut utiliser une autre formule - une de celles qui permettent
de définir le prolongement - pour obtenir la valeur de ζ(s).

• On essaye la convergence normale dans un premier temps :
CVN sur ]1,+∞[ : Soit n ∈ N∗. On a :

‖fn‖∞ = sup
s∈]1,+∞[

(
1

ns

)
=

1

n
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qui le terme général d’une série divergente, donc il n’y a pas convergence normale sur
]1,+∞[.
On voit que le problème se situe en 1 puisque le ” 1

n” est atteint en s = 1. On tente donc
d’isoler ce problème :
soit a > 1.
CVN sur [a,+∞[ : Soit n ∈ N∗. On a :

‖fn‖∞ = sup
s∈[a,+∞[

(
1

ns

)
=

1

na

qui est le terme général d’une série convergente d’après le critère de Riemann car a > 1.
Ainsi,

∑
fn converge normalement et donc uniformément vers ζ sur tout intervalle de la

forme [a,+∞[ pour a > 1. Nous verrons dans la partie suivante que cela nous satisfait
amplement pour en déduire la continuité de ζ sur ]1,+∞[.

Mais pour répondre à la question initiale, il nous reste à étudier la convergence uniforme
sur ]1,+∞[ :
CVU sur ]1,+∞[ : Soit n ∈ N∗. On a, pour tout s > 1 :

|Rn(s)| =
+∞∑

k=n+1

1

ks
.

Or, par une comparaison série-intégrale que nous avons effectuée au chapitre précédent,
on a :

+∞∑
k=n+1

1

ks
≥
∫ +∞

n+1

1

ts
dt = 1

s− 1

1

(n+ 1)s−1
−−−−→
s→1+

+∞× 1 = +∞

Donc, d’après le théorème des gendarmes, |Rn(s)| −−−−→
s→1+

+∞ et ainsi, Rn n’est pas bornée
sur ]1,+∞[.
Ainsi,

∑
fn ne converge pas uniformément sur ]1,+∞[.

32



Théorèmes d’étude de fonctions définies par des
limites/sommes de suites/séries de fonctions

Partie BPartie B

1. Continuité

Proposition 11.Proposition 11.

Soit a ∈ A, (fn)n∈N une suite de fonctions et f une fonction de A dans F . Si la suite (fn)n∈N
converge uniformément vers f sur A et, pour tout n ∈ N, fn est continue en a, alors f est
continue en a.

Démonstration.

Pour tout x ∈ A, on a pour tout n ∈ N.

‖f(x)− f(a)‖F ≤ ‖f(x)− fn(x)‖F + ‖fn(x)− fn(a)‖F + ‖fn(a)− f(a)‖F .

Soit ε > 0.
• Comme (fn)n∈N converge uniformément vers f sur A, alors il existe N ∈ N tel que pour

tout x ∈ A et pour tout n ≥ N :

‖f(x)− fn(x)‖F ≤ ‖fn − f‖∞ ≤ ε

3
.

et c’est donc en particulier vrai pour x = a également :

‖f(a)− fn(a)‖F ≤ ‖fn − f‖∞ ≤ ε

3
.

• Soit n ≥ N . Comme fn est continue en a, alors il existe δ > 0 tel que pour tout x ∈ A
avec ‖x− a‖E ≤ δ :

‖fn(x)− fn(a)‖F ≤ ε

3
.

Ainsi, en choisissant n ≥ N , on exhibe un δ tel que pour tout x ∈ A avec ‖x− a‖E ≤ δ,

‖f(x)− f(a)‖F ≤ ‖f(x)− fn(x)‖F︸ ︷︷ ︸
≤ ε

3

+ ‖fn(x)− fn(a)‖F︸ ︷︷ ︸
≤ ε

3

+ ‖fn(a)− f(a)‖F︸ ︷︷ ︸
≤ ε

3

≤ ε.

Par suite, f est continue en a.

Corollaire 2.Corollaire 2.

Soit (fn)n∈N une suite de fonctions et f une fonction de A dans F . Si la suite (fn)n∈N converge
uniformément vers f sur A et, pour tout n ∈ N, fn est continue sur A, alors f est continue sur
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A.

Démonstration.

Si la suite (fn)n∈N converge uniformément vers f sur A et, pour tout n ∈ N, fn est continue sur
A, alors, pour tout a ∈ A, fn est continue sur A et donc, d’après la proposition précédente, f est
continue en a. Il en résulte que f est continue sur A.

Proposition 12.Proposition 12. gCas particulier des sériesCas particulier des séries

Soit a ∈ A,
∑

fn une série de fonctions et S une fonction de A dans F . Si la série
∑

fn converge
uniformément vers S sur A et, pour tout n ∈ N, fn est continue en a (resp. sur A), alors S est
continue en a (resp. sur A).

Démonstration.

On suppose que
∑

fn = (Sn)n∈N converge uniformément vers S sur A et, pour tout n ∈ N, fn est
continue en a (resp. sur A). Alors, la suite (Sn)n∈N converge uniformément vers S sur A et, pour
tout n ∈ N, Sn =

∑n
k=0 fk est continue en a (resp. sur A) comme somme (finie !) de fonctions

continues en a (resp. sur A). Ainsi, d’après la proposition 11 (resp. le corollaire 2), S est continue
en a (resp. sur A).

Remarque 4.Remarque 4.

— Ainsi, on peut, après avoir établi la convergence simple d’une suite/série de fonctions
continues, conclure directement à la non convergence uniforme si la fonction limite n’est
pas continue !

— Comme la convergence normale d’une série de fonctions implique la convergence uniforme,
une série de fonctions continues qui converge normalement converge vers une fonction S
continue.

Théorème 1.Théorème 1.

Soit a ∈ A, (fn)n∈N une suite de fonctions et f une fonction de A dans F . Si la suite (fn)n∈N
converge uniformément vers f sur un voisinage de a et, pour tout n ∈ N, fn est continue en a,
alors f est continue en a.

Soit a ∈ A,
∑

fn une série de fonctions et S une fonction de A dans F . Si la série
∑

fn converge
uniformément vers S sur un voisinage de a et, pour tout n ∈ N, fn est continue en a, alors S
est continue en a.
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Démonstration.

On suppose que la suite (fn)n∈N converge uniformément vers f sur un voisinage V de a et que,
pour tout n ∈ N, fn est continue en a. Alors d’après le corollaire 2, f : V → F est continue sur
V . Comme V est un voisinage (relatif de A) de a, alors f : A → F est continue en a.
De même dans le cas particulier des séries en utilisant la proposition 12.

Théorème 2.Théorème 2. gThéorème de continuité des limites de suites/séries de fonctionsThéorème de continuité des limites de suites/séries de fonctions

Soit (fn)n∈N une suite de fonctions et f une fonction de A dans F . Si la suite (fn)n∈N converge
uniformément vers f au voisinage de tout point de A et, pour tout n ∈ N, fn est continue sur
A, alors f est continue sur A.

Soit
∑

fn une série de fonctions et S une fonction de A dans F . Si la série
∑

fn converge
uniformément vers S au voisinage de tout point de A et, pour tout n ∈ N, fn est continue sur
A, alors S est continue sur A.

Démonstration.

On applique le théorème précédent en tout point de A.

Exemple 9.Exemple 9.

La série de fonction
∑ xn

n!
converge uniformément sur tout segment de R vers S : x 7→

+∞∑
n=0

xn

n!
.

On pose fn : x 7→ xn

n! . Soit a ∈ R∗
+.

CVN sur [−a, a] :
Soit n ∈ N. On a :

‖fn‖∞ = sup
x∈[−a,a]

(∣∣∣∣xn

n!

∣∣∣∣) =
an

n!
.

Or, an

n! est le terme général d’une série convergente (d’après la règle de D’Alembert par
exemple) d’où

∑
fn converge normalement sur [−a, a] et donc uniformément sur [−a, a]

vers S et ce, pour tout a > 0.
De plus, tout segment de R est inclus dans intervalle de la forme [−a, a] avec a > 0 donc∑ xn

n!
converge uniformément sur tout segment de R vers S.

Ainsi, la fonction S est continue sur R car
∑ xn

n!
converge uniformément au voisinage de tout

point de R.

En effet, chaque point x0 de R est inclus dans un segment [x0 − 1, x0 + 1] qui est un
voisinage de x0 dans R.
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Exercice 17.Exercice 17.

1. Justifier que la fonction S : x 7→
∑+∞

n=0

1

n2 + x2
est bien définie sur ]0,+∞[ et qu’elle est

continue sur cet intervalle.

2. Montrer que la fonction ζ de Riemann est continue sur ]1,+∞[.

Correction.

1. Pour n ∈ N, on pose fn : x 7→ 1
n2+x2 . On a montré dans l’exercice 15 que

∑
fn converge

simplement et uniformément sur R∗
+.

Comme
∑

fn converge simplement sur R∗
+, sa fonction limite S : x 7→

+∞∑
n=0

1

n2 + x2
est bien

définie sur R∗
+.

De plus,
∑

fn converge uniformément sur R∗
+ vers S donc d’après le théorème de continuité

des limites de séries de fonctions (Theorème 1), S est continue sur R∗
+.

2. On pose, pour n ∈ N et x ∈ R, fn(x) =
1

nx
. Montrons que ζ : x 7→

∑+∞
n=0 fn(x) est définie

et continue sur ]1,+∞[.
— Domaine de définition de ζ.

CVS sur R :
Soit x ∈ R. Alors, d’après le critère de Riemann, fn(x) =

1

nx
est le terme général d’une

série convergente si, et seulement si, x > 1.
Ainsi,

∑
fn converge simplement sur ]1,+∞[ d’où ζ est définie sur ]1,+∞[.

— On applique le théorème de continuité de la somme d’une série de fonctions :

• les fn sont continues sur ]1,+∞[ car fn : x 7→ 1

nx
= e−x ln(n) est une fonction

continue sur R.
• CVU sur tout segment de R :

Soit a > 1. On établit la Convergence Normale sur [a,+∞[.
Soit n ∈ N. pour tout x ∈ [a,+∞[,

|fn(x)| =
1

nx
≤ 1

na

donc ‖fn‖∞ ≤ 1

na
(c’est même une égalité) qui est le terme général d’une série

convergente d’après le critère de Riemann.
Ainsi, par comparaison,

∑
‖fn‖∞ converge. Il en résulte que, pour tout a > 1,

∑
fn

converge normalement sur [a,+∞[, et donc que
∑

fn converge uniformément sur
tout segment de ]1,+∞[.

Par suite, d’après le théorème de continuité de la somme d’une série de fonction, ζ est
continue sur ]1,+∞[

2. Limites

a. Interversion de limites
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Théorème 3.Théorème 3. gThéorème de la double limiteThéorème de la double limite

Soit a ∈ A et (fn)n∈N une suite de fonctions qui converge uniformément vers une fonction f sur
A. Si, pour tout n ∈ N, il existe ℓn ∈ F tel que fn(x) −−−→

x→a
ℓn alors :

i) il existe ℓ ∈ F tel que la suite (ℓn)n∈N converge dans F vers ℓ et,
ii) f(x) −−−→

x→a
ℓ.

Autrement dit,
lim
x→a

f(x) = lim
x→a

(
lim

n→+∞
fn(x)

)
= lim

n→+∞

(
lim
x→a

fn(x)
)
.

Sous les mêmes hypothèses, le résultat est valable dans les cas suivants :
— A ⊂ R et a = ±∞ ;
— F = R ; à partir d’un certain rang, ℓn = limx→a fn(x) = ±∞ ; et ℓ = ±∞.

Démonstration Hors programme.

Cette démonstration est hors programme car nous n’avons pas le bon cadre permettant de la
démontrer ”joliment” : il nous manque la notion d’espace métrique complet. En fait, l’énoncé
reste vrai en supposant que F (l’espace d’arrivée des fonctions fn et f) est un espace métrique
complet. Dans notre cas, F est bien complet car c’est un espace vectoriel normé de dimension
finie sur R ou C.
Un espace métrique est dit complet si toutes les suites à valeurs dans cet espace dont les termes
se rapprochent uniformément en l’infini - on appelle cela une suite de Cauchy - convergent. De
manière imagée, un espace complet est un ensemble dans lequel il n’y a pas d’élement ”manquant”,
de ”trou”, métriquement parlant - penser à Q et R munis de la distance associée à la valeur
absolue : Q n’est pas complet et R l’est ; les trous dans Q sont les irrationnels. Par exemple,
pour montrer la non-complétude de Q, on peut considérer la suite ( ⌊10

ne⌋
10n )n∈N qui est une suite

de Cauchy à valeurs dans Q mais qui ne converge pas dans Q car e est irrationnel (oui, e est
irrationnel ! Exercice : prendre la suite (Sn) des sommes partielles de

∑ 1
n!

et la suite (Sn + 1
n.n!

) ; montrer
qu’elles sont adjacentes - et donc de limite e puis en déduire que e est bien irrationnel).
Comme dit précédemment, (R, | · |) est complet : pour le démontrer, il nous faudrait construire
proprement l’ensemble des réels, ce qui est complètement hors programme. Selon la construction
effectuée (avec des suites de Cauchy justement ou les coupures de Dedekind par exemple), la
complétude ne s’obtient pas de la même manière.
Pour démontrer notre énoncé tout en restant dans le programme, nous allons ”tricher” un peu,
en laissant sous silence la construction de R, et en nous inspirant d’une façon de montrer la
complétude de R, sans en parler bien-sûr !

Allons-y :
Soit a ∈ A et (fn)n∈N une suite de fonctions qui converge uniformément vers une fonction f sur
A telle que, pour tout n ∈ N, il existe ℓn ∈ F tel que fn(x) −−−→

x→a
ℓn.

i) Montrons que la suite (ℓn)n∈N converge.
Soit ε > 0. Comme (fn)n∈N converge uniformément vers f sur A, il existe un rang N ∈ N
tel que, pour tout entier n ≥ N , ‖fn−f‖∞ ≤ ε

2 . Ainsi, pour tous p, q ∈ N tels que p, q ≥ N
et pour tout x ∈ A, on a :

‖fp(x)− fq(x)‖F ≤ ‖fp(x)− f(x)‖F + ‖fq(x)− f(x)‖F ≤ ‖fp − f‖∞ + ‖fq − f‖∞ ≤ ε.

Par suite, en passant à la limite quand x tend vers a, l’application u 7→ ‖u‖F étant continue
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sur F , on obtient :
‖ℓp − ℓq‖F ≤ ε.

C’est ici que nous devons nous compliquer la vie : avec l’hypothèse F complet, nous aurions
pu conclure directement que la suite (ℓn)n∈N converge car nous venons de prouver qu’il
s’agit d’une suite de Cauchy. Rusons pour nous en sortir dans le cadre du programme :
pour tout n ≥ N , on a ‖ℓn‖F ≤ ‖ℓn − ℓN‖F + ‖ℓN‖F ≤ ε+ ‖ℓN‖F , donc la suite (ℓn)n∈N
est bornée à partir du rang N et donc est bornée tout court !
Comme F est un espace vectoriel normé de dimension finie (sur K = R ou C), le théorème
de Bolzano-Weierstrass s’applique à la suite (ℓn)n∈N : il existe une sous-suite (ℓφ(n))n∈N
qui converge vers un certain ℓ ∈ F .
Soit ε′ > 0. On pose ε = ε′

2 > 0.
Comme (ℓφ(n))n∈N converge vers ℓ, il existe un rang M ∈ N tel que pour tout n ≥ M ,
‖ℓφ(n)−ℓ‖F ≤ ε et en reprenant le calcul initial, il existe N ∈ N tel que pour tous p, q ≥ N ,
‖ℓp − ℓq‖F ≤ ε.
On pose N ′ = max(N,M) ∈ N. Pour tout n ≥ N ′, on a φ(n) ≥ n ≥ N , d’où :

‖ℓn − ℓ‖F ≤ ‖ℓn − ℓφ(n)‖F + ‖ℓφ(n) − ℓ‖F ≤ 2ε = ε′.

Par suite, (ℓn)n∈N converge.

ii) Notons ℓ la limite de la suite (ℓn)n∈N et montrons que f(x) −−−→
x→a

ℓ. Soit ε > 0.

— Comme (fn)n∈N converge uniformément vers f sur A, il existe un rang N1 ∈ N tel que,
pour tout entier n ≥ N1, ‖fn − f‖∞ ≤ ε

3 ;
— comme (ℓn)n∈N converge vers ℓ, il existe un rang N2 ∈ N tel que, pour tout entier

n ≥ N2, ‖ℓn − ℓ‖F ≤ ε
3 ;

— pour N = max(N1, N2), comme fN (x) −−−→
x→a

ℓN , il existe δ > 0 tel que pour tout
x ∈ A, ‖x− a‖E ≤ δ ⇒ ‖fN (x)ℓN‖F ≤ ε

3 .
Par suite, pour tout x ∈ A tel que ‖x− a‖E ≤ δ, on a :

‖f(x)− ℓ‖F ≤ ‖f(x)− fN (x)‖F︸ ︷︷ ︸
≤∥fN−f∥∞≤ ε

3

+ ‖fN (x)− ℓN‖F︸ ︷︷ ︸
≤ ε

3

+ ‖ℓN − ℓ‖F︸ ︷︷ ︸
≤ ε

3

≤ ε.

Ainsi, f(x) −−−→
x→a

ℓ.

b. Cas des séries

Théorème 4.Théorème 4. gInversion limite/sommeInversion limite/somme

Soit a ∈ A et
∑

fn une série de fonctions qui converge uniformément sur A. Si, pour tout n ∈ N,
il existe ℓn ∈ F tel que fn(x) −−−→

x→a
ℓn alors la série

∑
ℓn converge et on a :

lim
x→a

+∞∑
n=0

fn(x) =

+∞∑
n=0

(
lim
x→a

fn(x)
)
.

Sous les mêmes hypothèses, le résultat est valable dans les cas où A ⊂ R et a = ±∞.
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Exercice 18.Exercice 18.

1. Justifier l’existence et déterminer lims→+∞ ζ(s).

2. Justifier l’existence et déterminer limx→0+ x
∑

n=0

1

n2 + x
.

3. Intégration
Dans ce paragraphe, les fonctions considérées sont définies sur un intervalle d’intérieur non vide I de

R et sont à valeurs dans K = R ou C ; de plus, a, b sont des éléments de I tels que a < b.

a. Intégration sur un segment

On rappelle la notation suivante :

Notation 2.Notation 2. gNorme de la convergence en moyenneNorme de la convergence en moyenne

Soit C([a, b],K) l’espace vectoriel sur K des fonctions continues de [a, b] dans K. On note ‖ · ‖1
la norme de la convergence en moyenne sur C([a, b],K) i.e. pour f ∈ C([a, b],K) :

‖f‖1 =

∫ b

a

|f(t)| dt.

Proposition 13.Proposition 13.

Soit (fn) une suite de fonctions continues et f une fonction continue de [a, b] dans K. Si (fn)n∈N
converge en moyenne vers f i.e. ‖fn − f‖1 −−−−−→

n→+∞
0, alors

lim
n→+∞

∫ b

a

fn(t) dt =
∫ b

a

f(t) dt.

Démonstration.

On a : ∣∣∣∫ b

a
fn(t) dt−

∫ b

a
f(t) dt

∣∣∣ =
∣∣∣∫ b

a
(fn(t)− f(t)) dt

∣∣∣
≤
∫ b

a
|fn(t)− f(t)| dt

= ‖fn − f‖1 −−−−−→
n→+∞

0.

Lemme 1.Lemme 1.

Sur C([a, b],K), la norme de la convergence en moyenne est dominée par la norme de la conver-
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gence uniforme ; plus précisément, on a, pour tout f ∈ C([a, b],K) :

‖f‖1 ≤ (b− a)‖f‖∞.

Démonstration.

Soit f ∈ C([a, b],K). On a :∫ b

a

|f(t)|︸ ︷︷ ︸
≤supt∈[a,b] |f(t)|

dt ≤ ‖f‖∞
∫ b

a

dt = (b− a)‖f‖∞.

Théorème 5.Théorème 5. gInterversion limite/intégraleInterversion limite/intégrale

Soit (fn)n∈N une suite de fonctions de [a, b] dans K et f une fonction de [a, b] dans K. Si :
• pour tout n ∈ N, fn est continue sur [a, b] et ;
• la suite (fn)n∈N converge uniformément vers f sur [a, b],

alors f ∈ C([a, b],K) et :

lim
n→+∞

∫ b

a

fn(t) dt =
∫ b

a

lim
n→+∞

fn(t) dt =
∫ b

a

f(t) dt.

Démonstration.

On suppose que (fn)n∈N converge uniformément vers f sur [a, b]. Alors, comme les (fn) sont
continues sur [a, b], alors f est continue sur [a, b]. Ainsi, pour tout n ∈ N, fn − f ∈ C([a, b],K) et
on a, d’après le lemme précédent :

‖fn − f‖1 ≤ (b− a)‖fn − f‖∞ −−−−−→
n→+∞

0.

Donc (fn) converge en moyenne vers f . Par suite, d’après la proposition précédente, on a :

lim
n→+∞

∫ b

a

fn(t) dt =
∫ b

a

f(t) dt.

Exercice 19.Exercice 19.

Déterminer lim
n→+∞

∫ 1

0

n sinn(x) dx.
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Correction.

Pour n ∈ N, on pose fn : x 7→ n sinn(x) qui est continue sur [0, 1]. Étudions la convergence
uniforme de la suite (fn)n∈N.
CVS sur [0, 1] :
Soit x ∈ [0, 1]. Étudions la nature de (fn(x))n∈N.
Comme [0, 1] ⊂ [0, π

2 [, on a 0 ≤ sin(x) < 1 donc, par croissances comparées :

fn(x) = n sinn(x) −−−−−→
n→+∞

0.

Par suite, (fn)n∈N converge simplement sur [0, 1] vers la fonction nulle.

CVU sur [0, 1] :
On a, par positivité et croissance de la fonction sinn sur [0, 1] :

‖fn − f‖∞ = n sinn(1) −−−−−→
n→+∞

0.

Par suite, (fn)n∈N converge uniformément sur [0, 1] vers la fonction nulle.

Ainsi, d’après le théorème d’interversion limite/intégrale, on a :

lim
n→+∞

∫ 1

0

n sinn(x) dx =

∫ 1

0

(
lim

n→+∞
n sinn(x)

)
dx =

∫ 1

0

0dx = 0.

b. Intégration des séries de fonctions

Théorème 6.Théorème 6. gInterversion intégrale/sommeInterversion intégrale/somme

Soit
∑

fn une série de fonctions de [a, b] dans K. Si :
• pour tout n ∈ N, fn est continue sur [a, b] et ;
• la série

∑
fn converge uniformément sur [a, b],

alors :
+∞∑
n=0

(∫ b

a

fn(t) dt
)

=

∫ b

a

S(t) dt =
∫ b

a

(
+∞∑
n=0

fn(t)

)
dt.

Démonstration.

On note (Sn)n∈N =
∑

fn. Comme pour tout k ∈ N, fn est continue sur [a, b], Sn =
∑n

k=0 fk est
continue sur [a, b] comme somme de fonctions continues sur [a, b] et (Sn)n∈N =

∑
fn converge uni-

formément sur [a, b] vers S. Ainsi, on obtient le résultat en appliquant le théorème d’interversion
limite/intégrale (Théorème 5) à la suite de fonctions (Sn)n∈N.

Exercice 20.Exercice 20.

Montrer que f : x 7→
+∞∑
n=1

sin(nx)
n2

est définie et continue sur [0, π], puis démontrer que
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∫ π

0

f(t) dt = 7

4
ζ(3).

c. Primitives

Théorème 7.Théorème 7.

Soit a ∈ I, (fn)n∈N une suite de fonctions continues et f une fonction de I dans K. Si (fn)n∈N
converge uniformément vers f sur tout segment de I, alors pour tout x ∈ I :

lim
n→+∞

∫ x

a

fn(t) dt =
∫ x

a

lim
n→+∞

fn(t) dt =
∫ x

a

f(t) dt.

Soit a ∈ I et
∑

fn une série de fonctions continues de I dans K. Si
∑

fn converge uniformément
sur tout segment de I vers sa somme S, alors on a :

+∞∑
n=0

(∫ x

a

fn(t) dt
)

=

∫ x

a

S(t) dt =
∫ x

a

(
+∞∑
n=0

fn(t)

)
dt.

Démonstration.

On applique le théorème 5 sur le segment [a, x].

Exercice 21.Exercice 21.

Montrer que pour tout x ∈]− 1, 1[,
+∞∑
n=1

xn

n
= − ln(1− x).

Correction.

Pour n ∈ N, on pose fn : x 7→ xn qui est une fonction continue sur ] − 1, 1[. De plus, d’après
l’exemple 7 la série

∑
fn converge uniformément sur tout segment de ] − 1, 1[ vers la fonction

S : x 7→ 1
1−x .

Ainsi, d’après le théorème 7, pour tout x ∈]− 1, 1[, on a :

− ln(1− x) =

∫ x

0

S(t) dt =
∞∑

n=0

(∫ x

0

tn dt
)

=

∞∑
n=0

xn+1

n+ 1
=

∞∑
n=1

xn

n
.

4. Dérivation
Dans ce paragraphe, les fonctions considérées sont définies sur un intervalle d’intérieur non vide I de

R et sont à valeurs dans K = R ou C ; de plus, a, b sont des éléments de I tels que a < b.
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a. Dérivation des suites de fonctions

Théorème 8.Théorème 8. gInterversion dérivation/limiteInterversion dérivation/limite

Soit (fn)n∈N une suite de fonctions de I dans K et f, g des fonctions de I dans K. Si :
• pour tout n ∈ N, fn est de classe C1 sur I ;
• la suite (fn)n∈N converge simplement vers f sur I et ;
• la suite (f ′

n)n∈N converge uniformément vers g sur tout segment de I.
Alors :

— la suite (fn)n∈N converge uniformément vers f sur tout segment de I ;
— la fonction f est de classe C1 sur I et on a :

f ′ =

(
lim

n→+∞
fn

)′

= g = lim
n→+∞

f ′
n.

Démonstration.

En fait, on peut affaiblir les hypothèses du théorème sans changer sa conclusion : le résultat reste
valide si on remplace i) par : ”il existe a ∈ I et ℓ ∈ K tel que (fn(a))n∈N converge vers ℓ” et en
posant f : x 7→

∫ x

a
g(x) dt+ ℓ. Montrons le :

Tout d’abord, remarquons que la fonction g est continue sur I d’après le théorème de continuité
des limites de suites de fonctions car les f ′

n sont continues sur I et la suite (f ′
n)n∈N converge sur

tout segment de I vers la fonction g.
Ainsi, la fonction f : x 7→

∫ x

a
g(x) dt + ℓ est définie sur I et de classe C1 sur I comme primitive

sur I de la fonction g continue sur I.
Comme les fn sont C1 sur I, les f ′

n sont continues sur I et d’après ii), la suite (f ′
n)n∈N converge

sur tout segment de I vers la fonction g. Ainsi, d’après le théorème 7, pour x ∈ I, la suite(∫ x

a

f ′
n(t) dt

)
n∈N

converge et on a :

f(x)− ℓ =

∫ x

a

g(t) dt = lim
n→+∞

∫ x

a

f ′
n(t) dt.

De plus, d’après le théorème fondamental de l’analyse, on a, pour tout n ∈ N :

fn(x) =

∫ x

a

f ′
n(t) dt+ fn(a).

Ainsi, comme par hypothèse, (fn(a))n∈N converge vers ℓ, la suite (fn(x))n∈N converge comme
combinaison linéaire de suites convergentes et on a :

fn(x) −−−−−→
n→+∞

f(x) + ℓ− ℓ = f(x).

Il en résulte que (fn)n∈N converge simplement vers f sur I et on a :(
lim

n→+∞
fn

)′

= f ′ = g = lim
n→+∞

f ′
n.

Il reste à montrer que la convergence est uniforme sur tout segment de I :
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Soit S un segment de I de longueur s et contenant a. Pour tout x ∈ S, on a :

|fn(x)− f(x)| =

∣∣∣∣∫ x

a

f ′
n(t) dt+ fn(a)−

(∫ x

a

g(t) dt− ℓ

)∣∣∣∣
=

∣∣∣∣∫ x

a

(f ′
n(t)− g(t)) dt+ fn(a)− ℓ

∣∣∣∣
≤

∫ max(a,x)

min(a,x)
|f ′

n(t)− g(t)|︸ ︷︷ ︸
≤∥f ′

n−g∥∞,S

dt+ |fn(a)− ℓ|

≤ |x− a| ‖f ′
n − g‖∞,S + |fn(a)− ℓ|

≤ s‖f ′
n − g‖∞,S + |fn(a)− ℓ|.

Par suite, fn − f est bornée sur S (mais on le savait déjà car fn − f est continue sur le segment
S) et on a, par convergence uniforme sur S de (f ′

n)n∈N vers g et par convergence de (fn(a))n∈N
vers ℓ :

‖fn − f‖∞,S ≤ s‖f ′
n − g‖∞,S + |fn(a)− ℓ| −−−−−→

n→+∞
0.

Ainsi (fn)n∈N converge uniformément sur tout segment de I contenant a vers f . Or, tout segment
de I est inclus dans un segment de I contenant a, donc (fn)n∈N converge uniformément sur tout
segment de I vers f .

Remarque 5.Remarque 5.

— Dans la conclusion, on ne peut pas espérer mieux que la convergence uniforme de (fn)n∈N
sur tout segment de I, et ce, même si on a convergence uniforme de (f ′

n)n∈N sur I tout
entier vers g. En effet, pour fn : x 7→ (x+ 1

n )
2, on a (f ′

n)n∈N converge uniformément sur
R vers g : x 7→ 2x mais (fn)n∈N ne converge pas uniformément vers f : x 7→ x2 sur R
tout entier (mais converge bien sûr uniformément sur tout segment de R) !

— Avec la notation de la dérivation d
dx , la conclusion du théorème précédent devient, pour

x ∈ I :
d
dx lim

n→+∞
fn(x) = lim

n→+∞

d
dxfn(x).

Corollaire 3.Corollaire 3. gCas des fonctions de classe CkCas des fonctions de classe Ck

Soit k ∈ N∗ et (fn)n∈N une suite de fonctions de I dans K. Si :
• pour tout n ∈ N, fn est de classe Ck sur I ;
• pour tout i ∈ J0, k − 1K, la suite (f

(i)
n )n∈N converge simplement sur I et ;

• la suite (f
(k)
n )n∈N converge uniformément sur tout segment de I.

Alors :
— pour tout i ∈ J0, k − 1K, la suite la suite (f

(i)
n )n∈N converge uniformément sur I ;

— la limite simple f de la suite (fn)n∈N est de classe Ck sur I et, pour tout i ∈ J0, kK, on
a :

f (i) = lim
n→+∞

f (i)
n .
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b. Dérivation des séries de fonctions

Théorème 9.Théorème 9. gInterversion dérivation/sommeInterversion dérivation/somme

Soit
∑

fn une série de fonctions de I dans K. Si :
• pour tout n ∈ N, fn est de classe C1 sur I ;
• la série

∑
fn converge simplement vers sa somme S sur I et ;

• la série
∑

f ′
n converge uniformément sur tout segment de I.

Alors :
— la série

∑
fn converge uniformément vers S sur tout segment de I ;

— la fonction S est de classe C1 sur I et on a :

S′ =

(
+∞∑
n=0

fn

)′

=

+∞∑
n=0

f ′
n.

Remarque 6.Remarque 6.

Avec la notation de la dérivation d
dx , la conclusion du théorème précédent devient, pour x ∈ I :

d
dx

+∞∑
n=0

fn(x) =

+∞∑
n=0

d
dxfn(x).

Exemple 10.Exemple 10.

La fonction S : x 7→
+∞∑
n=1

e−nx

n
est de classe C1 sur R∗

+ et on a, pour tout x ∈ R∗
+,

S(x) = − ln(1− e−x).

En Sup’, la fonction exponentielle exp de R dans R∗
+ est définie comme étant la fonction réciproque

de la fonction logarithme népérien (l’unique primitive de x 7→ 1
x s’annulant en 1. On peut alors montrer

que la fonction exp est l’unique solution du problème de Cauchy y′ = y et y(0) = 1 (ce qui peut d’ailleurs
être pris comme définition de l’exponentielle également). Le théorème suivant propose une ”nouvelle”
expression de la fonction exp comme somme de série de fonctions... bon, en fait, on en parle depuis
longtemps mais on va enfin le démontrer proprement !

Théorème 10.Théorème 10.

Pour tout x ∈ R, on a :

exp(x) =
+∞∑
n=0

xn

n!
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Démonstration.

Considérons la fonction S : x 7→
+∞∑
n=0

xn

n!
. On pose, pour n ∈ N, fn : x 7→ xn

n! .

Vérifions les hypothèses du théorème d’interversion dérivation / somme (Théorème 9) :

• Pour n ∈ N, fn est de classe C1 sur R car polynomiale et on a, pour tout x ∈ R :

f ′
n(x) =

0 si n = 0
xn−1

(n− 1)!
si n ≥ 1.

• Montrons la convergence simple de
∑

fn sur R.

CVS sur R : Soit x ∈ R. En appliquant la règle de D’Alembert, on montre que xn

n!
est le

terme général d’une série numérique absolument convergente et donc convergente.
Ainsi,

∑
fn converge simplement sur R.

• Montrons la convergence uniforme de
∑

f ′
n (au moins) sur tout segment de R.

Soit a > 0.
CVN sur [−a, a] : Soit n ∈ N. On a f ′

0 = 0 et, si n ≥ 1, pour tout x ∈ [−a, a],

|f ′
n(x)| =

|x|n−1

(n− 1)!
≤ an−1

(n− 1)!

donc ‖f ′
n‖∞ ≤ an−1

(n− 1)!
(c’est même une égalité) qui est le terme général d’une série

convergente d’après, par exemple, la règle de d’Alembert.
Ainsi, par comparaison,

∑
‖f ′

n‖∞ converge. Il en résulte que, pour tout a > 0,
∑

f ′
n

converge normalement sur [−a, a], et donc,
∑

f ′
n converge uniformément sur [−a, a].

Tout segment de R étant inclus dans un intervalle de la forme [−a, a] avec a > 0, la série∑
f ′
n converge uniformément sur tout segment de R.

Par suite, d’après le théorème d’interversion dérivation/somme, S est de classe C1 sur R et on a,
pour tout x ∈ R :

S′(x) =
d
dx

+∞∑
n=0

xn

n!
=

+∞∑
n=0

d
dx

xn

n!
=

+∞∑
n=1

xn−1

(n− 1)!
=

+∞∑
n=0

xn

n!
= S(x).

Par suite, comme de plus on a S(0) = 1, S est solution du problème de Cauchy :{
y′ = y

y(0) = 1

dont l’unique solution est la fonction x 7→ exp(x).
Il en résulte que pour tout x ∈ R :

exp(x) =
+∞∑
n=0

xn

n!
.
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Exercice 22.Exercice 22.

Montrer que la fonction S : x 7→
+∞∑
n=0

xn

1 + x2n
est de classe C1 sur ]− 1, 1[.

Correction.

Pour n ∈ N, on note fn : x 7→ xn

1+x2n . Montrons que S est de classe C1 sur ]− 1, 1[.
⋆ Pour tout n ∈ N, fn est de classe C1 sur ]−1, 1[ comme quotient de fonctions polynomiales

dont le dénominateur ne s’annule pas. De plus, pour tout x ∈]− 1, 1[, on a :

f ′
n(x) =

nxn−1(1− x2n)

(1 + x2n)2
.

⋆ CVS sur ]− 1, 1[ : Soit x ∈]− 1, 1[. Étudions la nature de
∑

fn(x). On a :

|fn(x)| =
|x|n

1 + x2n
∼

→+∞
|x|n

Or |x|n est le terme général d’une série géométrique convergente car |x| < 1, donc, par
comparaison,

∑
fn(x) converge absolument et donc converge.

⋆ Étudions la convergence uniforme de
∑

f ′
n (au moins) sur tout segment de ]− 1, 1[.

Soit a ∈]0, 1[.
CVN sur [−a, a] de

∑
f ′
n : Soit n ∈ N. Pour tout x ∈ [−a, a], on a :

|f ′
n(x)| =

n|x|n−1(1− x2n)

(1 + xn)2
≤ nan−1

Par suite, f ′
n est bornée sur [−a, a] et on a, sur [−a, a] :

‖f ′
n‖∞ ≤ nan−1

Or, comme a ∈]0, 1[,
∑

nan−1 converge (en utilisant la règle de D’Alembert ou par compa-
raison à une série de Riemann convergente par exemple), donc, par comparaison,

∑
‖f ′

n‖∞
converge i.e.

∑
f ′
n converge normalement sur [−a, a].

Ainsi, pour tout a ∈]0, 1[,
∑

f ′
n converge normalement et donc uniformément sur [−a, a].

Or, tout segment de ] − 1, 1[ est inclus dans un intervalle de la forme [−a, a], donc
∑

f ′
n

converge uniformément sur tout segment de ]− 1, 1[.

Il en résulte que, d’après le théorème d’interversion dérivation/somme :
— la série

∑
fn converge uniformément sur tout segment de ]− 1, 1[ ;

— la fonction S est de classe C1 sur ]− 1, 1[ et on a, pour tout x ∈]− 1, 1[ :

S′(x) =
d
dx

+∞∑
n=0

xn

1 + x2n
=

+∞∑
n=0

d
dx

xn

1 + x2n
=

+∞∑
n=1

nxn−1(1− x2n)

(1 + x2n)2
.
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Corollaire 4.Corollaire 4. gCas des séries de fonctions de classe CkCas des séries de fonctions de classe Ck

Soit k ∈ N∗ et
∑

fn une série de fonctions de I dans K de I dans K. Si :
• pour tout n ∈ N, fn est de classe Ck sur I ;
• pour tout i ∈ J0, k − 1K, la série

∑
f
(i)
n converge simplement sur I et ;

• la série
∑

f (k) converge uniformément sur tout segment de I,
alors :

— pour tout i ∈ J0, k − 1K, la série
∑

f
(i)
n converge uniformément sur tout segment de I ;

— la somme S de la série
∑

fn est de classe Ck sur I et, pour tout i ∈ J0, kK, on a

S(i) =

(
+∞∑
n=0

fn

)(i)

=

+∞∑
n=0

f (i)
n .

c. Suites et séries de fonctions de classe C∞

Théorème 11.Théorème 11. gCas des fonctions de classe C∞Cas des fonctions de classe C∞

Soit (fn)n∈N une suite de fonctions de I dans K.
i) Théorème d’interversion dérivation/limite. Si :

• pour tout n ∈ N, fn est de classe C∞ sur I ;
• la suite (fn)n∈N converge simplement sur I ; et
• pour tout k ∈ N∗, la suite (f

(k)
n )n∈N converge uniformément sur tout segment de I,

alors :
— la suite (fn)n∈N converge uniformément sur tout segement de I et,
— la limite simple f de la suite (fn)n∈N est de classe C∞ sur I et, pour tout k ∈ N, on

a

f (k) =

(
lim

n→+∞
fn

)(k)

= lim
n→+∞

f (k)
n

ii) Théorème d’interversion dérivation/somme. Si :
• pour tout n ∈ N, fn est de classe C∞ sur I ;
• la série

∑
fn converge simplement sur I, et

• pour tout k ∈ N∗, la série
∑

f
(k)
n converge uniformément sur tout segment de I,

alors :
— la série

∑
fn converge uniformément sur tout segement de I et,

— la somme S de la série
∑

fn est de classe C∞ sur I et, pour tout k ∈ N, on a :

S(k) =

(
+∞∑
n=0

fn

)(k)

=

+∞∑
n=0

f (k)
n .

Exemple 11.Exemple 11.

La somme S de la série de fonctions
∑

fn de terme général fn : x 7→ xn

n! est de classe C∞ sur R
et, pour tout k ∈ N, S(k) = S.
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Remarque : cet exemple est destiné à illustrer le théorème précédent, donc nous allons l’utiliser
pour montrer l’affirmation proposée. On pouvait bien-sûr la démontrer beaucoup plus rapidement
en utilisant le fait que S = exp d’après le théorème 10 !

Vérifions les hypothèses du théorème d’interversion dérivation/somme (version C∞) :
• pour tout n ∈ N, fn est de classe C∞ sur I car polynomiale et on a, pour tout k ∈ N et

tout x ∈ R :

f (k)
n (x) =

{
0 si n < k
xn−k

(n−k)! si n ≥ k.

• la série
∑

fn converge simplement sur I (voire Exemple 2)
• Soit k ∈ N∗. Étudions la convergence uniforme (au moins) sur tout segment de I de la série∑

f
(k)
n .

Soit a > 0.
CVN sur [−a, a] : Soit n ∈ N. Si n < k, on a f ′

n = 0 et si n ≥ k, pour tout x ∈ [−a, a],

|f (k)
n (x)| = |x|n−k

(n− k)!
≤ an−k

(n− k)!

donc ‖f (k)
n ‖∞ ≤ an−k

(n− k)!
qui est le terme général d’une série convergente d’après, par

exemple, la règle de d’Alembert.
Ainsi, par comparaison,

∑
‖f (k)

n ‖∞ converge. Il en résulte que, pour tout a > 0,
∑

f
(k)
n

converge normalement sur [−a, a], et donc,
∑

f
(k)
n converge uniformément sur [−a, a].

Tout segment de R étant inclus dans un intervalle de la forme [−a, a] avec a > 0, la série∑
f
(k)
n converge uniformément sur tout segment de R.

Par suite, d’après le théorème d’interversion dérivation/somme, S est de classe C∞ sur R et on
a, pour tout x ∈ R :

S(k)(x) =
dk

dxk

+∞∑
n=0

xn

n!
=

+∞∑
n=0

dk

dxk

xn

n!
=

+∞∑
n=k

xn−k

(n− k)!
=

+∞∑
n=0

xn

n!
= S(x).

Exercice 23.Exercice 23.

1. Montrer que la série de fonctions
∑

fn de terme général fn : x 7→ xn est C∞ sur ]− 1, 1[.
Pour k ∈ N, en déduire une expression, pour tout x ∈]− 1, 1[, de :

+∞∑
n=0

(
k + n

k

)
xn.

2. Montrer que la fonction ζ est C∞ sur ]1,+∞[ et pour k ∈ N déterminer ζ(k).

3. Montrer que la fonction φ : x 7→
∑+∞

n=0

e−nx

n2 + 1
est continue sur R+ et C∞ sur R∗

+. Montrer
que f est croissante et déterminer limx→0+ f(x). En déduire que f n’est pas dérivable en
0.
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Correction.

2. Montrons que ζ : x 7→
∑+∞

n=1

1

nx
est de classe C∞ sur ]1,+∞[. Pour cela, on vérifie les

hypothèses du théorème d’interversion dérivation/somme (version C∞) :

i) Pour tout n ∈ N∗, fn : x 7→ 1
nx est de classe C∞ sur ]1,+∞[ ;

ii) pour tout k ∈ N, la série
∑

f
(k)
n converge uniformément sur tout segment de ]1,+∞[.

i) Soit n ∈ N∗. On a, pour x ∈]1,+∞[, fn(x) = 1
nx = e−x ln(n). Ainsi, fn est de classe C∞

sur R comme composée de la fonction exp et x 7→ −x ln(n) qui sont C∞ sur R. Ainsi,
en particulier, fn est de classe C∞ sur ]1,+∞[ et on a, pour k ∈ N et x ∈]1,+∞[ :

f (k)
n = (−1)k ln(n)ke−x ln(n) =

(−1)k ln(n)k
nx

.

ii) Soit k ∈ N. Soit a > 1. On étudie la convergence normale de
∑

f
(k)
n sur [a,+∞[.

Soit n ∈ N. On a :

‖f (k)
n ‖∞ = sup

x∈[a,+∞[

∣∣∣∣ (−1)k ln(n)k
nx

∣∣∣∣ ≤ ln(n)k
na

.

— Pour k = 0, ln(n)k
na

=
1

na
est le terme général d’une série convergente d’après le

critère de Riemann car a > 1. Ainsi,
∑

fn converge normalement sur [a,+∞[.

— Soit k ∈ N∗. Pour tout β > 0, ln(n) = o(nβ) ; ainsi, pour β =
a− 1

2k
> 0, on a :

ln(n)k
na

= o

(
1

na−kβ

)

Or a − kβ = a − a−1
2 =

a+ 1

2
> 1 car a > 1 ; par suite, d’après le critère de

Riemann, 1

na−kβ
est le terme général d’une série convergente et donc ln(n)k

na
l’est

aussi par comparaison. Ainsi,
∑

f
(k)
n converge normalement sur [a,+∞[

Il en résulte que, pour tout k ∈ N,
∑

f
(k)
n converge uniformément sur [a,+∞ pour

tout a > 1 et donc sur tout segment de ]1,+∞[.
Il en résulte que, par le théorème d’interversion dérivation/somme, ζ est de classe C∞

sur ]1,+∞[, et on a, pour tout k ∈ N et tout x ∈]1,+∞[ :

ζ(k)(x) =

(
+∞∑
n=1

fn

)(k)

(x) =

+∞∑
n=1

f (k)
n (x) = (−1)k

+∞∑
n=1

ln(n)k
nx

.
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Approximation uniforme
Partie CPartie C

Dans cette partie, les fonctions considérées sont définies sur un intervalle I de R d’intérieur non vide et
sont à valeurs dans un espace vectoriel F sur K = R ou C de dimension finie. De plus, a, b désignent deux
réels de I tels que a < b.

1. Définitions

Définition 7.Définition 7. gSubdivision d’un segmentSubdivision d’un segment

Soit n ∈ N∗ et σ = (ai)i∈J0,nK une famille finie à valeurs dans [a, b]. On dit que σ est une
subdivision du segment [a, b] si

a = a0 < a1 < . . . < an−1 < an = b.

Définition 8.Définition 8. gFonctions en escalierFonctions en escalier

Soit φ : [a, b] → F. On dit que φ est une fonction en escalier sur [a, b] s’il existe une
subdivision σ = (a0, . . . , an) de [a, b] telle que pour tout i ∈ J0, n− 1K, φ|]ai,ai+1[

est constante.
On note Esc([a, b], F ) l’ensemble des fonctions en escalier sur [a, b].

Définition 9.Définition 9. gFonctions continues par morceauxFonctions continues par morceaux

Soit f : I → F . On dit que f est continue par morceaux sur le segment [a, b] s’il existe
une subdivision σ = (a0, . . . , an) de [a, b] telle que pour tout i ∈ J0, n−1K, f|]ai,ai+1[

est continue
et prolongeable par continuité sur [ai, ai+1].
On dit que f est continue par morceaux sur l’intervalle I si f est continue par morceaux
sur tout segment de I.
On note Cpm(I, F ) l’ensemble des fonctions continues par morceaux sur I.

Exercice 24.Exercice 24.

1. Dessiner quelques graphes de fonctions en escalier et continues par morceaux sur un seg-
ment.

2. Montrer que Cpm(I, F ) est un sous-espace vectoriel de Fb(I, F ).

2. Approximation uniforme par des fonctions en escalier
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Théorème 12.Théorème 12.

Soit f ∈ Cpm([a, b], F ). Alors, pour tout ε > 0, il existe φ ∈ Esc([a, b], F ) telle que ‖f−φ‖∞ ≤ ε.

Autrement dit, toute fonction continue par morceaux sur [a, b] est limite uniforme d’une suite
de fonctions en escalier sur [a, b].
Autrement dit, l’ensemble Esc([a, b], F ) est dense dans (Cpm([a, b], F ), ‖ · ‖∞).

Démonstration.

• On traite tout d’abord le cas f continue sur [a, b]. Alors, d’après le théorème de Heine, f
est uniformément continue sur [a, b].
Soit ε > 0. Alors il existe δ > 0 tel que, pour tout x, y ∈ [a, b] avec |x − y| ≤ δ, ‖f(x) −
f(y)‖F ≤ ε. On construit alors une subdivision de [a, b] de la façon suivante :
— comme la suite (

b− a

n
)n∈N∗ converge vers 0, il existe n ∈ N∗ tel que b− a

n
≤ δ.

— pour i ∈ J0, nK, on pose ai = a+ i
b− a

n
.

Ainsi, σ = (a0, . . . , an) est une subdivision de [a, b]. On définit alors la fonction en escalier
φ : [a, b] → F , pour x ∈ [a, b], par :

φ(x) =

{
f(a) si x = a

f(ai+1) si ai < x ≤ ai+1, i ∈ J0, n− 1K.
Pour x ∈ [a, b], on a l’alternative :
— x = a. Alors ‖f(a)− φ(a)‖F = 0 ≤ ε.
— il existe i ∈ i ∈ J0, n− 1K tel que x ∈]ai, ai+1]. Alors |x− ai+1| ≤ δ, donc :

‖f(x)− φ(x)‖F = ‖f(x)− f(ai)‖F ≤ ε.

Dans tous les cas, ‖f(x)− φ(x)‖F ≤ ε. Par suite, ‖f − φ‖∞ ≤ ε.
• Traitons maintenant le cas général f ∈ Cpm([a, b], F ). On considère une subdivision σ =
(a0, . . . , an) adaptée à f et on note, pour tout i ∈ J0, n − 1K, fi le prolongement par
continuité de f|]ai,ai+1[

sur [ai, ai+1].
Soit ε > 0. Comme pour chaque i ∈ J0, n− 1K, fi est continue sur [ai, ai+1], en appliquant
le point précédent à fi, on construit φi ∈ Esc([a, b], F ) telle que ‖fi − φi‖∞ ≤ ε.
On définit alors la fonction en escalier φ : [a, b] → F , pour x ∈ [a, b], par :

φ(x) =

{
f(ai) si x = ai, i ∈ J0, nK
φi(x) si ai < x < ai+1, i ∈ J0, n− 1K.

Pour x ∈ [a, b], on a l’alternative :
— il existe i ∈ i ∈ J0, nK tel que x = ai. Alors ‖f(ai)− φ(ai)‖F = 0 ≤ ε.
— il existe i ∈ i ∈ J0, n− 1K tel que x ∈]ai, ai+1[. Alors, on a :

‖f(x)− φ(x)‖F = ‖fi(x)− φi(x)‖F ≤ ‖fi − φi‖∞ ≤ ε.

Dans tous les cas, ‖f(x)− φ(x)‖F ≤ ε. Par suite, ‖f − φ‖∞ ≤ ε.
Pour démontrer ce point, on pouvait également remarquer que tout fonction continue par
morceaux sur [a, b] est la somme d’une fonction continue et d’une fonction en escalier.
On conclut alors en approximant, grâce au premier point, cette fonction continue par une
fonction en escalier.
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Exercice 25.Exercice 25.

Montrer que toute fonction continue sur le segment [a, b] est limite uniforme d’une suite de
fonctions affines par morceaux.

Exercice 26.Exercice 26. gCas particulier du Lemme intégrale de Riemann-LebesgueCas particulier du Lemme intégrale de Riemann-Lebesgue

Soit f ∈ Cpm([a, b],C). Montrer que
∫ b

a
f(t)eint dt −−−−−→

n→+∞
0.

3. Approximation uniforme par des fonctions polynomiales : théorème de Weierstrass

Notation 3.Notation 3. gFonctions polynomialesFonctions polynomiales

On note P([a, b],K) l’ensemble des fonctions polynomiales de R dans K restreintes au segment
[a, b] i.e. si p ∈ P([a, b],K), il existe P ∈ K[X] tel que, pour tout x ∈ [a, b], p(x) = P (x).

Théorème 13.Théorème 13. gThéorème de WeierstrassThéorème de Weierstrass

Soit f ∈ C([a, b],K). Alors, pour tout ε > 0, il existe p ∈ P([a, b],K) telle que ‖f − φ‖∞ ≤ ε.
Autrement dit, toute fonction continue sur [a, b] est limite uniforme d’une suite de fonctions
polynomiales.
Autrement dit, l’ensemble P([a, b],K) est dense dans (C([a, b],K), ‖ · ‖∞).

Démonstration non exigible.

Voire le problème 1.

Exercice 27.Exercice 27.

Soit f ∈ C([0, 1],R). Montrer que si, pour tout n ∈ N,
∫ 1

0
tnf(t) dt = 0, alors f est la fonction

nulle sur [0, 1].

Remarque 7.Remarque 7.

Le théorème de Weierstrass n’est pas valable en remplaçant [a, b] par un intervalle non bornée,
comme R par exemple. On peut s’en convaincre en remarquant par exemple qu’une fonction
continue bornée non constante sur R ne peur être approchée uniformément pas une suite de
polynômes.
Et c’est même ”plus grave” que cela, comme en atteste l’exercice suivant :
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Exercice 28.Exercice 28.

1. Soit p une fonction polynomiale de R dans R. Montrer que si la fonction p est bornée sur
R, alors p est constante sur R.

2. Soit f ∈ C(R,R). On suppose qu’il existe une suite (pn)n∈N de fonctions polynomiales qui
convergent uniformément sur R vers f . Montrer que f est une fonction polynomiale.

Correction.

1. Soit p : x 7→
∑n

k=0 akx
k une fonction polynomiale. On suppose que p n’est pas constante.

Alors n ≥ 1 et an 6= 0. Ainsi, on a p(x) ∼
x→+∞

anx
n −−−−−→

x→+∞
±∞ donc p n’est pas bornée

sur R.
Ainsi, par contraposée, si p est bornée sur R alors p est constante sur R.

2. Soit f : R → R une fonction continue. Supposons qu’il existe une suite (pn)n∈N de fonctions
polynomiales qui convergent uniformément sur R vers f .
Ainsi, il existe N ∈ N tel que, pour tout entier n ≥ N , ‖pn − f‖∞ ≤ 1.
Soit n ∈ N avec n ≥ N . Pour tout x ∈ R, on a :

|pn(x)− pN (x)| ≤ |pn(x)− f(x)|+ |pN (x)− f(x)| ≤ ‖pn − f‖∞ + ‖pN − f‖∞ ≤ 2.

La fonction pn − pN qui est polynomiale comme combinaison linéaire de fonctions polyno-
miales, est donc bornée sur R. Par suite, d’après la question 1., pn − pN est une fonction
constante sur R. On note cn cette constante.
D’après le calcul précédent, on a |cn| = ‖pn − pN‖∞ ≤ 2 d’où (cn)n≥N est une suite à
valeurs réelles bornées et donc, d’après le théorème de Bolzano-Weierstrass, il existe une
sous-suite (cφ(n))n≥N de (cn)n≥N qui converge vers une réel c.
Comme (pφ(n))n≥N converge uniformément et donc simplement vers f sur R, on a, pour
x ∈ R et pour n ∈ N avec n ≥ N :

f(x) = pN (x) + (pφ(n)(x)− PN (x))︸ ︷︷ ︸
=cφ(n)

+(f(x)− pφ(n)(x))︸ ︷︷ ︸
−−−−−→
n→+∞

0

−−−−−→
n→+∞

pN (x) + c

Ainsi f = pN + c et donc f est une fonction polynomiale.

54



Exercices et problèmes
E&PE&P

Exercice 29.Exercice 29.

On considère E l’espace vectoriel des fonctions de R dans R. On souhaite montrer qu’il n’existe
pas de norme ‖ · ‖ sur E telle que, pour toute suite (fn)n∈N ∈ EN, (fn)n∈N converge simplement
sur E vers 0E si, et seulement si, (fn)n∈N converge vers 0E dans (E, ‖ · ‖).

1. Soit ‖ · ‖ une norme sur E. Construire une suite de fonctions de norme 1 qui converge
simplement vers 0E .

2. Conclure.

3. Montrer, si ce n’est déjà fait !, que l’affirmation de l’énoncé reste valable pour E = C(R,R).

Correction.

1. Soit ‖ · ‖ une norme sur E.

Pour n ∈ N, on pose gn = 1]0, 1
n+1 ]

: x 7→

{
1 si x ∈ ]0, 1

n+1 ]

0 sinon
; alors gn 6= 0E et on note

fn = gn
∥gn∥ .

Montrons que (fn)n∈N converge simplement vers la fonction nulle.
CVS sur R.
Soit x ∈ R. Si x ≤ 0, alors, pour tout n ∈ N, fn(x) = 0. Si x > 0, alors, pour N = b 1

xc ∈ N,
1
x < N + 1, donc, pour tout entier n ≥ N , x > 1

N+1 ≥ 1
n+1 .

Par suite, on a, pour tout entier n ≥ N , gn(x) = 0 et donc fn(x) =
gn(x)
∥gn∥ = 0. Ainsi,

fn(x) −−−−−→
n→+∞

0.

Il en résulte que (fn)n∈N converge simplement sur R vers la fonction nulle.

2. La suite (fn)n∈N de la question précédente ne converge pas vers 0E dans (E, ‖ · ‖) car
‖fn − 0E‖ = 1 −−−−−→

n→+∞
1 6= 0. Par suite, il existe une suite à valeurs dans E qui converge

simplement vers 0E mais qui ne converge pas vers 0E dans (E, ‖ · ‖) d’où la véracité de
l’affirmation de l’énoncé.

3. Soit ‖ · ‖ une norme sur E = C(R,R).
La suite de fonctions (fn)n∈N contruite dans la question 1. n’est plus à valeurs dans
E et même si essayait de rendre au moins affine par morceaux les fn, on perdrait la
convergence en 0 vers 0. On va donc éloigner 0 de la partie ! Pour n ∈ N, on pose

gn = x 7→


(n+ 2)x si x ∈ [0, 1

n+2 ]

1 si x ∈ [ 1
n+2 ,

1
n+1 ]

n+1
n (1− x) si x ∈ [ 1

n+1 , 1]

0 sinon.

; alors, on vérfie que la gn est continue, que

gn 6= 0E et on note fn = gn
∥gn∥ . La suite de fonctions (fn)n∈N converge simplement vers 0E
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(à vérfier par le lecteur !) et, comme précédemment, (fn)n∈N ne converge pas vers 0E dans
(E, ‖ · ‖) !

Exercice 30.Exercice 30. gFonction continue et dérivable nulle partFonction continue et dérivable nulle part

On considère la fonction φ : R → R telle que φ est 4-périodique sur R et définie, pour x ∈ [−2, 2],
par :

φ(x) =

{
1− x si 0 ≤ x ≤ 2

1 + x si − 2 < x < 0

On pose, pour n ∈ N∗, fn : x 7→ φ(22
n

)x

2n
.

1. Montrer que φ est bornée par 1 et 1-lipschitzienne sur R.

2. Montrer que la fonction S : x 7→
+∞∑
n=1

fn(x) est définie, 1-périodique et continue sur R.

3. Dans cette question, on cherche à démontrer que S n’est dérivable en aucun point de R.
Soit x ∈ R.
(a) Montrer que pour tout n ∈ N∗, il existe an ∈ Z et un ∈ {−1, 1} tels que 22

n

x et
22

n

x+ un sont compris entre 2an et 2an + 2.
(b) Soit N ∈ N∗. On pose hN = uN

22N
.

i. Calculer fn(x+ hN )− fN (x) pour n = N puis pour n > N .
ii. Montrer que :

|SN−1(x+ hN )− SN−1(x)| ≤
1

22N−1

où Sn désigne la somme partielle d’ordre n ∈ N de la série
∑

n≥1 fn.
(c) Déduire de ce qui précède que S n’est pas dérivable en x puis conclure.

Correction.

1. On a |1 ± x| ≤ 1 pour tout x ∈ [−2, 2], donc, par 4-périodicité de φ, φ est bornée par 1
sur R. Montrons qu’elle est 1-lipschitzienne sur R. Soit x, y ∈ R avec x < y. Distinguons
plusieurs cas :
∗ Si |x− y| ≥ 2 : comme φ est bornée par 1, on a :

|φ(x)− φ(y)| ≤ 2 ≤ |x− y|.

∗ Si |x − y| < 2 : φ étant 4-périodique, on peut supposer sans perte de généralité que
x ∈]− 2, 2].
— Si x, y ∈] − 2, 0[ ou x, y ∈ [0, 2] alors, φ étant affine de coefficient directeur ±1 sur

ces intervalles, on a |φ(x)− φ(y)| = |x− y|.
— Sinon, si x ∈]− 2, 0[, alors y ∈ [0, 2] d’où :

|f(x)− f(y)| ≤ |f(x)− f(0)|︸ ︷︷ ︸
=|1+x−1|

+ |f(0)− f(y)|︸ ︷︷ ︸
|1−(1−y)|

= |x|+ |y| = −x+ y = |x− y|.
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— Sinon, si x ∈ [0, 2], alors y ∈]2, 4[ d’où :

|f(x)−f(y)| ≤ |f(x)− f(2)|︸ ︷︷ ︸
=|1−x+1|

+ |f(2)− f(y)|︸ ︷︷ ︸
|−1−(1+(y−4))|

= |2−x|+|2−y| = 2−x+y−2 = |x−y|.

Ainsi, dans tous les cas, |φ(x)− φ(y)| ≤ |x− y|. D’où φ est 1-lipschitzienne sur R.
Remarque : on aurait pu montrer le fait plus général suivant : si une fonction est continue, lipschitzienne
par morceaux sur R et telle que l’ensemble des constantes de Lispchitz sur les morceaux est majoré,
alors cette fonction est lipschitzienne sur R.

2. On considère la série de fonctions
∑

n≥1 fn.
CVN sur R :
Soit n ∈ N∗. Pour tout x ∈ R, on a, comme φ est bornée par 1 sur R :

|fn(x)| =
|φ(22nx)|

2n
≤ 1

2n
.

Ainsi, ‖fn‖∞ ≤ 1
2n qui est le terme général d’une série convergente car série géométrique

de raison 1
2 ∈]− 1, 1[.

Par suite, par comparaison
∑

n≥1 ‖fn‖∞ converge et donc
∑

n≥1 fn converge normalement
sur R.
Il en résulte que

∑
n≥1 fn converge uniformément et simplement sur R vesr S.

De plus, pour tout n ∈ N∗, fn est continue sur R comme composée de la fonctions continues
x 7→ 22

n

x et φ (continue car lipschitzienne), donc, d’après le théorème de continuité des
sommes de séries de fonctions, S est définie et continue sur R.
On remarque que, pour tout n ∈ N∗, on a 2n ≥ 2 d’où 22

n

= 4q avec q ∈ N∗ et donc, par
4-périodicité de φ :

fn(x+ 1) = φ(22
n

(x+ 1)) = φ(22
n

x+ 22
n

) = φ(22
n

x) = fn(x).

Par suite, fn est 1 périodique. Ainsi, comme S est la limite simple de la série
∑

n≥1 fn, S
est 1 périodique sur R.

3. Soit x ∈ R.
(a) Soit n ∈ N∗. On pose y = 22

n

x. Pour an =
⌊y
2

⌋
∈ Z, on a 2an ≤ y < 2an + 2.

— Si 2an ≤ y < 2an + 1, alors 2an ≤ 2an + 1 ≤ y + 1 < 2an + 2, d’où, pour un = 1,
22

n

x = y et 22
n

x+ un = y + 1 sont compris entre 2an et 2an + 2.
— Si 2an + 1 ≤ y < 2an + 2, alors 2an ≤ y − 1 < 2an + 1 < 2an + 2, d’où, pour

un = −1, 22nx = y et 22
n

x+ un = y − 1 sont compris entre 2an et 2an + 2.
(b) Soit N ∈ N∗. Pour n ∈ N∗, on a :

22
n

hN = 22
n uN

22N
= 22

n−2NuN .

i. ∗ pour n = N :
Si aN est pair, alors 22

N

x et 22
N

x + uN sont compris entre 4q et 4q + 2 où
aN = 2q ;
Si aN est impair, alors 22

N

x et 22
N

x+ uN sont compris entre 4q − 2 et 4q où
aN = 2q − 1 ;

57



donc, par 4-périodicité de φ, on a :

φ(22
N

x+ uN )− φ(22
N

x)

=

{
1− (22

N

x+ uN − 4q)− (1− (22
N

x− 4q)) si aN pair
1 + (22

N

x+ uN − 4q)− (1 + (22
N

x− 4q)) si aN impair

φ(22
N

x+ uN )− φ(22
N

x) = uN

d’où :
fN (x+ hN )− fN (x) =

uN

2N
= ± 1

2N
.

∗ pour n > N :
On a 2n − 2N = 2N (2n−N ) ≥ 2 car N ∈ N∗ donc q = 22

n−2N−2uN est un
entier et on a :

22
n

hN = 22
n−2NuN = 4q.

Par suite, par 4-périodicité de φ :

fn(x+hN )−fn(x) = φ(22
n

x+22
n

hN )−φ(22
n

x) = φ(22
n

x+4q)−φ(22
n

x) = 0.

ii. Comme φ est 1-lipschitzienne sur R, on a, pour tout n ∈ N∗ :

|φ(22
n

x+ 22
n

hN )− φ(22
n

x)| ≤ 22
n

|hN | = 22
n−2N .

Par suite, si n < N , on a 2n − 2N ≤ 2N−1 − 2N = −2N−1, d’où

|φ(22
n

x+ 22
n

hN )− φ(22
n

x)| ≤ 1

22N−1 .

Ainsi, on a :

|SN−1(x+ hN )− SN−1(x)| =

∣∣∣∣∣
N−1∑
n=1

(fn(x+ hN )− fn(x))

∣∣∣∣∣
≤

N−1∑
n=1

|fn(x+ hN )− fn(x)|

≤
N−1∑
n=1

|φ(22nx+ 22
n

hN )− φ(22
n

x)|
2n

≤ 1

22N−1

N−1∑
n=1

1

2n︸ ︷︷ ︸
=1− 1

2N−1 ≤1

≤ 1

22N−1 .
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(c) On a, d’après les deux précédentes questions, pour tout N ∈ N∗ :∣∣∣∣S(x+ hN )− S(x)

hN

∣∣∣∣ =
1

|hN |

∣∣∣∣∣
+∞∑
n=1

(fn(x+ hN )− fn(x))

∣∣∣∣∣
= 22

N

∣∣∣∣(SN−1(x+ hN )− SN−1(x))±
1

2N

∣∣∣∣
≥ 22

N

(
1

2N
− |SN−1(x+ hN )− SN−1(x)|

)
≥ 22

N

(
1

2N
− 1

22N−1

)
.

Ainsi, on a :∣∣∣∣S(x+ hN )− S(x)

hN

∣∣∣∣ ≥ 22
N

(
1

2N
− 1

22N−1

)
= 22

N−N

(
1− 1

22N−1−N

)
−−−−−→
N→+∞

+∞

Or, on remarque que la suite (hn)n∈N converge vers 0, donc la quantité
S(x+ h)− S(x)

h
n’admet pas de limite finie quand h tend vers 0 i.e. S n’est pas

dérivable en x.

Ceci étant vrai pour tout x ∈ R, S n’est dérivable en aucun point de R et est continue
en tout point de R !

Aperçu des fonctions : φ (en noir) ; S1 (en bleu) ; S2 (en vert) ; S3 (en rouge).

On se propose, dans le problème suivant, de démontrer le théorème de Weierstrass (Théorème 13) à
l’aide des polynômes de Bernstein. La démonstration semble astucieuse mais nous verrons une reformu-
lation bien plus élégante de cette démonstration dans le chapitre sur les probabilités dont les outils sont
bien adaptés à l’étude de ces polynômes.
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Problème 1.Problème 1. gPolynômes de Bernstein et démonstration du Théorème de WeierstrassPolynômes de Bernstein et démonstration du Théorème de Weierstrass

Pour f ∈ C([0, 1],K) et n ∈ N∗, on considère le polynôme Bn(f) ∈ K[X] défini par :

Bn(f) =

n∑
k=0

(
n

k

)
f

(
k

n

)
Xk(1−X)n−k.

Les polynômes Bn(f) sont appelés polynômes de Bernstein associés à f .
Pour i ∈ N, on note fi : x 7→ xi et g : x 7→ x(1− x).

1. Déterminer les polynômes de Bernstein associés aux fonctions f0, f1 et g.
2. Soit n ∈ N∗.

(a) Après avoir montrer que l’application f 7→ Bn(f) définie sur C([0, 1],K) est linéaire,
déterminer Bn(f2).

(b) Exprimer de deux façons le polynôme Bn(f2)− 2XBn(f1) +X2Bn(f0) puis montrer
que, pour tout x ∈ [0, 1] :

n∑
k=0

(
k

n
− x)2

(
n

k

)
xk(1− x)n−k ≤ 1

4n
.

3. Soit f ∈ C([0, 1],K).
(a) Soit ε > 0. Montrer qu’il existe δ > 0 tel que, pour tout n ∈ N∗ et pour tout x ∈ [0, 1] :

|Bn(f)(x)− f(x)| ≤ ‖f‖∞
2δ

.
1

n
+

ε

2
.

Indication : on pensera à utiliser le théorème de Heine.
(b) En déduire que la suite de fonctions polynomiales (Bn(f))n∈N∗ converge uniformé-

ment sur [0, 1] vers f .

4. Démontrer le théorème de Weierstrass.

Correction.

1. Soit n ∈ N∗.
f0. On a, d’après la formule du binôme de Newton :

Bn(f0) =

n∑
k=0

(
n

k

)
Xk(1−X)n−k = (X + (1−X))n = 1.
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f1. On remarque que, pour tout k ∈ J1, nK, (nk) kn =
(
n−1
k−1

)
donc :

Bn(f1) =

n∑
k=0

(
n

k

)
k

n
Xk(1−X)n−k

=

n∑
k=1

(
n− 1

k − 1

)
Xk(1−X)n−k

=

n−1∑
k=0

(
n− 1

k

)
Xk+1(1−X)(n−1)−k

= X(X + (1−X))n−1

Bn(f1) = X.

g. Si n = 1, on a B1(f) = 0. Supposons n ≥ 2.
On a, pour tout k ∈ J2, nK :(

n

k

)
g

(
k

n

)
=

(
n

k

)
k

n

k − n

n
=

(
n− 2

k − 1

)
1− n

n
.

Ainsi :
Bn(g) =

n∑
k=0

(
n

k

)
g

(
k

n

)
Xk(1−X)n−k

=
1− n

n

n∑
k=2

(
n− 2

k − 1

)
Xk(1−X)n−k

=
1− n

n

n−2∑
k=0

(
n− 2

k

)
Xk+1(1−X)(n−2)−k+1

=
1− n

n
X(1−X)(X + (1−X))n−2

Bn(g) =
n− 1

n
X(X − 1).

2. (a) On a, pour tous φ1, φ2 ∈ C([0, 1],K) et tous λ, µ ∈ K :

Bn(λφ1 + µφ2) =

n∑
k=0

(
n

k

)
(λφ1 + µφ2)

(
k

n

)
Xk(1−X)n−k

=

n∑
k=0

(
n

k

)(
λφ1

(
k

n

)
+ µφ2

(
k

n

))
Xk(1−X)n−k

=

n∑
k=0

(
n

k

)
φ1

(
k

n

)
Xk(1−X)n−k +

n∑
k=0

(
n

k

)
φ2

(
k

n

)
Xk(1−X)n−k

Bn(λφ1 + µφ2) = λBn(φ1) + µBn(φ2).

D’où f 7→ Bn(f) est linéaire.
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On remarque que f2 = g + f1 d’où, par linéarité :

Bn(f2) = Bn(g) +Bn(f1) =
n− 1

n
X(X − 1) +X.

(b) On a, d’après la question précédente :

Bn(f2)− 2XBn(f1) +X2Bn(f0) =
n− 1

n
X(X − 1) +X − 2X2 +X2

=
n− 1

n
X(X − 1)−X(X − 1)

Bn(f2)− 2XBn(f1) +X2Bn(f0) =
1

n
X(1−X).

D’autre part, on a :

Bn(f2)− 2XBn(f1) +X2Bn(f0) =

n∑
k=0

(
n

k

)(
k2

n2
− 2X

k

n
+X2

)
Xk(1−X)n−k

Bn(f2)− 2XBn(f1) +X2Bn(f0) =

n∑
k=0

(
n

k

)(
k

n
−X

)2

Xk(1−X)n−k.

Ainsi, en évaluant Bn(f2)− 2XBn(f1) +X2Bn(f0) en x ∈ [0, 1], on obtient :
n∑

k=0

(
n

k

)(
k

n
− x

)2

xk(1− x)n−k =
1

n
x(1− x)

De plus, l’étude de la fonction t 7→ t(1 − t) montre qu’elle admet 1
4 pour maximum

(atteint en t = 1
2 ), d’où :

n∑
k=0

(
n

k

)(
k

n
− x

)2

xk(1− x)n−k =
1

n
x(1− x) ≤ 1

4n
.

3. Soit f ∈ C([0, 1],K), ε > 0 et n ∈ N∗.
(a) La fonction f est continue sur le segment [0, 1] donc, d’après le théorème de Heine,

elle est uniformément continue sur ce segment. Ainsi, il existe δ > 0 tel que, pour tous
x, y ∈ [0, 1], |x− y| < δ ⇒ |f(x)− f(y)| ≤ ε

2 .
Soit x ∈ [0, 1]. On a :

|Bn(f)(x)− f(x)| =

∣∣∣∣∣
n∑

k=0

(
n

k

)(
f

(
k

n

)
− f(x)

)
xk(1− x)n−k

∣∣∣∣∣
|Bn(f)(x)− f(x)| ≤

n∑
k=0

(
n

k

) ∣∣∣∣f (k

n

)
− f(x)

∣∣∣∣xk(1− x)n−k.

On considère l’ensemble D = {k ∈ J0, nK | | kn − x| ≤ δ} et son complémentaire Dc

dans J0, nK. On remarque alors que, pour tout k ∈ Dc, 1 ≤
(
k
n − x

)2
δ2

et donc :∣∣∣∣f (k

n

)
− f(x)

∣∣∣∣ ≤ 2‖f‖∞ = 2‖f‖∞.1 ≤ 2‖f‖∞
δ2

.

(
k

n
− x

)2

.
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Ainsi, d’après la question 2.b) :

|Bn(f)(x)− f(x)| ≤
∑
k∈D

(
n

k

) ∣∣∣∣f (k

n

)
− f(x)

∣∣∣∣︸ ︷︷ ︸
≤ ε

2

xk(1− x)n−k

+
∑
k∈Dc

(
n

k

) ∣∣∣∣f (k

n

)
− f(x)

∣∣∣∣xk(1− x)n−k

≤ ε

2

∑
k∈D

(
n

k

)
xk(1− x)n−k +

2‖f‖∞
δ2

∑
k∈Dc

(
n

k

)(
k

n
− x

)2

xk(1− x)n−k

≤ ε

2

n∑
k=0

(
n

k

)
xk(1− x)n−k +

2‖f‖∞
δ2

n∑
k=0

(
n

k

)(
k

n
− x

)2

xk(1− x)n−k

≤ ε

2
+

‖f‖∞
2δ2

.
1

n
.

D’où :
|Bn(f)(x)− f(x)| ≤ ‖f‖∞

2δ2
.
1

n
+

ε

2
.

(b) Comme 1
n −−−−−→

n→+∞
0 et εδ2

∥f∥∞
> 0, il existe un rang N ∈ N∗ tel que, pour tout entier

n ≥ N , 1
n ≤ εδ2

∥f∥∞
. Ainsi, d’après la question précédente, on a, pour tout n ≥ N et

pour tout x ∈ [0, 1] :

|Bn(f)(x)− f(x)| ≤ ε

2
+

‖f‖∞
2δ2

.
1

n
≤ ε

2
+

ε

2
= ε.

Ainsi, on obtient, pour tout n ≥ N , ‖Bn(f) − f‖∞ ≤ ε. Par suite, ‖Bn(f) −
f‖∞ −−−−−→

n→+∞
0 et donc (Bn(f))n∈N∗ converge uniformément sur [0, 1] vers f .

4. Soit a, b ∈ R avec a < b. On note α : x 7→ (b − a)x + a. Alors α est une bijection continue
de [0, 1] dans [a, b] et on a α−1 : x 7→ x−a

b−a . On remarque que α et α−1 sont des fonctions
polynomiales.
Soit f ∈ C([a, b],K). On pose g = f ◦ α. Alors, g est continue sur [0, 1] comme composée
d’applications continues et ainsi, d’après la question 3.b), il existe une suite (qn)n∈N de
fonctions polynomiales qui converge uniformément vers g (en l’occurence, qn = Bn+1(g)).
Pour n ∈ N, on pose pn = qn◦α−1. Une composée de fonctions polynomiales est polynomiale,
donc, pour tout n ∈ N, pn est polynomiale et on a, sur [a, b], pn − f = (qn − g) ◦ α−1. Par
suite, on a :

sup
x∈[a,b]

|(pn − f)(x)| = sup
x∈[a,b]

|(qn − g)(α−1(x))| = sup
t∈[0,1]

|qn(t)− g(t)| −−−−−→
n→+∞

0.

Il en résulte que la suite de fonctions polynomiales (pn)n∈N converge uniformément sur [a, b]
vers f .
D’où le théorème de Weierstrass.
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