Chapitre VIII
Suites et Séries de fonctions
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Dans ce chapitre, E et F' désigne un espace vectoriel normé de dimension finie sur K = R ou C. Toutes
les fonctions que I'on considere dans ce chapitre sont, sauf indication contraire, des fonctions définies sur
une partie A de F et a valeurs dans F'.

Partie A

Convergences des suites et des séries de fonctions

1. Convergence simple

a. Convergence simple d’une suite de fonctions

Définition 1. Convergence simple d’une suite de fonctions

Soit (fn)nen une suite de fonctions de A C E dans F.

On dit que la suite (f,)nen converge simplement sur A si, pour tout z € A, la suite
(fn(2))nen & valeurs dans F' est convergente.

Dans ce cas, la fonction f : z — lim, . fn(z) de A dans F est bien définie; on dit alors que
la suite (f,)nen converge simplement vers f ou encore que f est la limite simple de la

suite (fn)n€N~

Exemple 1.

La suite (fn)nen de fonctions de R dans R définie, pour n € N, par f, : t — t" converge
simplement sur [0, 1] vers la fonction

0 ite|0,1
fit— S? & [lo- 1
1 sit=1.

CVS sur [0,1] :

Soit t € [0,1]. Etudions la nature de (f,,(t))nen
La suite (fp(t))nen = (t")nen converge car elle est géométrique de raison ¢t € [0,1] C ] —1,1].
Par suite, (fy(t))nen converge simplement sur [0, 1].

De plus, on a :

lim f,(t)= lim t" =

n—-+oo n—-+oo

{0 sitelo1]

1 sit=1.

11 en résulte que la suite (fy,(t))nen converge simplement vers la fonction f annoncée.




Remarque 1.

L’exemple précédent nous montre que lorsqu’une suite de fonctions continues converge simple-
ment vers f, f n’est pas continue en général!

Remarque 2.

Quand on parle de limite d’une suite, cela présuppose sa convergence, et dans notre cas, il s’agit
d’une suite de fonctions. On pourrait donc s’attendre a pouvoir affirmer, lorsque qu’une suite de
fonctions converge simplement, que cette suite converge pour une certaine norme sur un espace
vectoriel qui contient ces fonctions, puisque c’est comme ¢a que nous avons défini la convergence
des suites dans ce cours!

Il n’en est rien! La convergence simple d’une suite ne correspond généralement pas a la conver-
gence de cette suite pour une certaine norme (voire exercice 29).

Mais, malgré cela, dans un cadre plus général que les espaces vectoriels normés - les espaces
topologiques - on peut donner un vrai sens de convergence a la convergence simple : on peut
ainsi tout de méme voir la limite simple d’une suite de fonctions comme une "vraie” limite de
suite !

Exercice 1.

Etudier la convergence simple de la suite de fonctions (fy)nen- définie, pour n € N*, par :

1+ nt?
a) fnit— % sur Ry. b) fn :t > sin”(t) cos(t) sur R.
€) Jn T InlT) = . sur
n 6n (@-@) Slx¢[—71“71l}

a) Etudions la convergence simple de la suite (f,,)nen- sur Ry :

CVS sur Ry :
Soit € R4. On étudie la nature de (fp(2))nen. On a :

1+ nx? 1 siz=0
fol@d) = ——8 ——— .
l+nxr notoo |t siz>0

Ainsi, la suite (f,(x))nen converge, et ce, pour tout x € Ry.

1 sit=0
Donc (f,,) converge simplement vers f : ¢ — 1 sur R.
t sit>0

b) Etudions la convergence simple de la suite (f;,)nen sur R.

CVSsur R :



Soit ¢t € R. On étudie la nature de (f,(t))nen. On a :

0 site{f +kr|kecZ}carcos(t)=0

fu(t) = sin”(t)cos(t) —— {0 sit ¢ {Z+kr|keZ} car|sin(t) < 1

Ainsi, la suite (f,,(t))nen converge, et ce, pour tout ¢ € R.
Donc (fn)nen converge simplement sur R vers la fonction nulle.

Etudions la convergence simple de la suite (fy)nen- sur R.

CVS sur R :

Soit « € R. On étudie la nature de (f,,(2))nen--
Traitons tout d’abord le cas x # 0. Alors ﬁ *—Jr—% 0, donc, a partir d’un certain rang
N n—-+00

N (par exemple N = E(1/|z|) + 1), pour tout n > N, z ¢ [—, 1], Par suite, pour tout
n>N,

fa(z) = 6n (sin(lnlx) B tan?n;)) '

Or, quand n — +00, on a :
1 1 B tan(-=) — sin(%)
sin(-L)  tan(X) sin(-L) tan(-L)
nila: + 371%{133 + 0(%) — (nila: — 671%933 + 0(%))

w7z +0(5s)

Qn%x‘q’ + O(%)
1

a7z T 0(5z)
1
ntoo  2nx
Remarque : on aurait pu obtenir ce résultat plus simplement, en utilisant tan = sin / cos :

1 1 1—cos(s) 71/(;”)2 1
sin(-X)  tan(t)  sin(:L) note 1/nz 20z

Ainsi, toujours pour x # 0 et n > N,

f,,@;):an( 11 ) 6n 3

sin(-=)  tan(L) nstoo 2nx | @

Il en résulte que :

fn(t) m

0 siz=0

3

— sizeR*

Ainsi, la suite (f,(z))nen- converge, et ce, pour tout z € R.

siz=0

0
Donc (fy,)nen+ converge simplement sur R vers la fonction f: x+— < 3 ) -

— slx €

x



Exercice 2.

1. Ecrire la définition de la convergence simple vers une fonction en termes ”epsilonesques”.

2. Pour (fn)nen €t (gn)nen des suites de fonctions qui converge simplement sur A vers des
fonctions f et g respectivement, étudier la convergence simple des suites de fonctions

()‘fn + Mgn)neN (Ofl )‘7M € K) et (fngn)n€N~

3. Soit (fn)nen une suite de fonctions qui converge simplement sur A vers une fonction f. Que
dire de f lorsqu’a partir d’'un certain rang, les f,, sont : positives ? croissantes ? dérivables 7
périodiques (de méme période T') 7 strictement positives ?

1. Soit (fn)nen une suite de fonctions de A dans F et f : A — F. Alors (f,)nen converge
simplement vers f sur A si, et seulement si,

Ve>0,Vee A, AN eN, Vn > N, | fu(z)— f(2)|r <e.

2. On suppose que (fn)nen €t (gn)nen convergent simplement vers f et g respectivement sur
A. Soit A\, u € K. Montrons que (\f,, + pgn)nen converge simplement sur A vers Af + pg
et que (frngn)nen converge simplement sur A vers fg.

CVS sur A :

Soit € A. On étudie la nature des suites (Afn, + pgn)(2))nen et ((fngn)(@))nen-
On a:

(Afn + 1gn) (@) = Afn(2) + Hgn(2) ——— Af(2) + ng(2) = (Af + ug)(2),

et
(fngn)(@) = fu(x)gn(z) — f(2)g9(2) = (f9)(@),

n—-+o0o

Ainsi, les suites ((Afn + pgn) (7)) nen €t ((fngn)(x))nen sont convergentes, et ce pour tout
x € A. Par suite, (A\f,, + gn) et (fngn)nen convergent simplement sur A et ce, vers les
fonctions \f + pg et fg respectivement.

3. Par les propriétés de la limite, on remarque que la positivité, la croissance et la périodicité
(avec une période commune) "passent” & la convergence simple.
Par contre, la dérivabilité ne passe pas (voire f,, : t — t" sur [0, 1]) et la stricte positivité
ne passe pas non plus (voire f,, : ¢ — " sur |0, 1]).

Exercice 3.

Soit f € C([0,1],R) une fonction qui vérifie, pour tout ¢ € ]0,1], 0 < f(t) < t.
On pose, pour n € N, f, = f* (= fofo---0f).

1. Pour n € N, déterminer f,(0).
2. Montrer que la suite (f,)nen converge simplement sur [0, 1].

3. Déterminer la limite de la convergence simple sur [0,1] de la suite (fy,)nen-



1. On a, pour tout t € ]0,1], 0 < f(¢) < t donc, en passant & la limite lorsque ¢ tend vers 0,
on obtient, d’apres le théoreme des gendarmes, f(0) = 0.
Ainsi, pour n € N, on obtient, de proche en proche :

Fa(0) = £7(0) = f*7H(£(0)) = f*7H(0) = - = f°(0) =1d(0) = 0.

2. CVS sur [0,1] :
Soit t € [0,1]. On étudie la nature de (f,,(¢))nen-
Sit =0, (fn(0))nen est la suite nulle d’apres la question précédente et donc est convergente.
On suppose t # 0. On a, pour tout n € N, f,11(t) = f(f"(t)) < f*(t) = fo(t) donc la
suite (fy,(t))nen est décroissante et minorée par 0. Ainsi, d’aprés la théoréme de la limite
monotone, (f,(t))nen converge.

Il en résulte que la suite (fy,)nen converge simplement sur [0, 1].

3. Notons ¢ la limite de la convergence simple sur [0, 1] de la suite (fy)nen-

Pour t € [0,1], comme f est continue sur [0, 1], par caractérisation séquentielle de la conti-
nuité, on a :

fr1(t) = f(fn(t) ——— flo(t)).

n—-+o0o

Ainsi, par unicité de la limite, f(¢(t)) = ¢(t); et donc ¢(0) = 0 car, pour tout = # 0,
f(z) # .

b. Convergence simple d’une série de fonctions

La définition suivante est une simple reformulation de la précédente dans le cas particulier des séries :
Définition 2., Convergence simple d’une série de fonctions

Soit > f,, une série de fonctions de A C E dans F. On dit que Y f,, converge simplement
sur A si la suite de ses sommes partielles converge simplement sur A i.e. si pour tout z € A,
> fn(x) est convergente.

Dans ce cas,

— on appelle fonction somme de la série Y f,, et on note S : A — F' la fonction :

+oo
S > ful@);

n=0

— pour n € N, on appelle fonction reste d’ordre n de la série Y f, et onnote R, : A — F
la fonction :

—+o0
Ry=8-S,:z— Y  fulx),

k=n-+1

ol Sy, = zn:fk.
k=0



Exemple 2.

— La série de fonctions Y f,, de terme général f,, : t — t" converge simplement vers S :
1

t — 1= sur | — 1,1] et, pour tout n € N, la fonction reste d’ordre n de cette série est
R, :x— tlnjtl

n

t
— La série de fonctions Y f,, de terme général f,, : t — — converge simplement sur R.
n

— CVSsur | —1,1].
Soit t €] — 1, 1[. On étudie la nature de > " = (Sy)nen. On a :

N
1_tN+1 1

Sy = = tl <1

N 7;) T e Gl U RS

donc Y f,, converge simplement sur | — 1, 1[ vers la fonction ¢ — 1.

De plus, pour tout n € N et tout ¢t €] — 1,1[, on a :

tn+1

+oo
Ru(t)= > t"= —

k=n-+1

— CVS sur R.
Soit t € R. On étudie la nature de tn—n,

En appliquant la régle de D’Alembert, on montre que % est une série absolument

. . /. n A
convergente et donc convergente. Ainsi, la série ) % converge pour tout t € R, d’out > f,,
converge simplement sur R.
De plus, on le montrera plus tard dans ce chapitre, sa somme vérifie

+o0 ,p
t_t

E — =€,
n!

n=0

donc Y f,, converge simplement sur R vers la fonction exponentielle.

Exercice 4.

Montrer que la série de fonctions > f, de terme général f, : t — ne™ "t converge simplement
sur RY .

CVS sur R
Soit t € R% . On étudie la nature de ) ne™"".

Pour tout n € N, ne™"" > 0 et on a, comme t > 0, par croissances comparées :

n? x ne”" =nde ™ ——— 0,
n—-+oo



1
dotine ™™ = o — o
n—+oo \ N
Alinsi, par comparaison de séries a termes positifs, Y ne™"* converge.

Remarque : on aurait également pu montrer la convergence de cette série avec la régle de D’Alem-
bert.

Par suite, la série ) | f,,(t) converge pour tout ¢t € R, d’ott ) f,, converge simplement sur R .

nt

Exercice 5.

Soit p € N*. On munit l'algebre E = M, (K) d’une norme sous-multiplicative || - ||.
Pour n € N*, on consideére la fonction f, : E — E telle que, pour A € E, f,(A) = ‘2—;.

Montrer que la série de fonctions ), -, fn converge simplement sur la boule unité fermée By de

(&1~ 1D-

CVS sur By.
Soit A € By. On étudie la nature de > _, -, ‘;‘L—Z.

La norme considérée étant sous-multiplicative, on a :

2l

A o
n2

=T33 = o3

. . N Los . A™
Ainsi, par comparaison & une série de Riemann convergente, anl <7 converge absolument et
donc converge car F est de dimension finie.
Par suite, la série >, -, fn(A) converge pour tout A € By, d’ott ) f, converge simplement sur
By.

Proposition 1.

Soit Y f, une série de fonctions de A C E dans F. Si ) f,, converge simplement sur A, alors
la suite des fonctions reste (R, )nen converge simplement sur A vers la fonction nulle de A dans
F.

On suppose Y f,, converge simplement sur A. Alors ) f,, converge simplement sur A vers la
fonction S : x ++ 3.+ f,(z). Pour n € N, on a fonction R,, = S — S, ott S, = S0, f-

CVS sur A.

Soit « € A. On étudie la nature de la suite (R, (z))nen.

Comme Y f,, converge simplement vers S sur A, la suite (Sy,)neny = D fn(2) converge vers S(z),
d’ott R, (x) = S(z) — Sn(z) P 0.

Par suite, la suite de fonctions (R, )nen converge simplement sur A vers la fonction nulle. O



c. Domaine de définition d’une limite de suite de fonctions

Méthode. On calcule domaine de définition Dy d’une fonction f définie comme la limite d’une
suite ou la somme d’une série de fonctions :

fixm— nll)r_{loofn(x) ouf:xw— ifn(m),

n=0
en déterminant :

— Densemble D de définition commun a tous les f,, ('intersection des domaines de définition) ;

— le plus grand sous-ensemble de D sur lequel la suite (f,)neny ou la série Y f, converge
simplement.

Exemple 3.

On se place dans le cas d’une variable complexe.
— Le domaine de définition de la fonction f : z — lir_{l 2" est Dy ={z € C||z| < 1}U{1}.
n—-+00

+oo
— Le domaine de définition de la fonction f : z — Z

n=1

] est Dy ={z € C||z| > 1}.
_ZTL

— Pour n € N, on pose f, : z+— z" qui est définie sur C.
CVS sur C.

Soit z € C. La suite géométrique (f(2))nen = (2")nen converge si, et seulement si,
|z| € 10,1 ou z = 1.

Par suite, la suite de fonctions (fy,)nen converge simplement sur {z € C | |z| < 1} U {1} et
ne converge pas simplement en dehors.

Il en résulte que Dy = {z € C | |2| < 1} U {1}.

— Pour n € N*, on pose f, : z — ljz"'

On note alors D = C \ |,y Un.

qui est définie sur C \. U,,.

CVS sur D.
Soit z € D.
* On suppose |z| < 1. Alors, pour tout n € N, |1 — 2" < 1+ |2|* < 2, d’ou :
1 1
.
[1—2n — 2

et donc ﬁ # 0.
Ainsi, Y fn(2) diverge (grossiérement).

* Si |z| > 1, alors, comme |z|" ——— 400 :
n—-+oo

1 1

[T =27 nrioo [l

qui est le terme général d’une série géométrique convergente car de raison ﬁ e]-1,1[.
Ainsi, par comparaison, Y f,(z) converge absolument et donc converge.



Par suite, Y f,, converge simplement sur {z € C | |z| > 1} et ne converge pas simplement
en dehors.
Il en résulte que Dy = {z € C | |z| > 1}.

Exercice 6.

Déterminer le domaine de définition de la fonction de la variable réelle :

= cos™(x)
frx— Z .
n=1

n

Pour n € N*, on pose f, : x — % qui est bien définie sur R.
CVS sur R.
Soit x € R.
* Si cos(z) = 1, alors Y., -, fa(z) = 31 diverge (d’aprés le critére de Riemann par
exemple) ;
* Sicos(z) = —1, alors Y, o fu(z) = (_i)” converge (d’apres le critére des séries alter-

nées par exemple) ;

cos™ ()

% Si|cos(x)| < 1,alors ) - converge (d’apres la regle de D’Alembert par exemple).

Ainsi, la série ), -, fn(x) converge si, et seulement si, cos(z) # 1 i.e. x # 0 [27].
Par suite, ) -, fn converge simplement sur R \ 27Z et pas en dehors.

Il en résulte que :
Dy =R\ 27Z.

2. Convergence uniforme
a. Définition et premiéres propriétés

Définition 3.) Convergence uniforme d’une suite de fonctions

Soit (fn)nen une suite de fonctions et f une fonction de A C E dans F.

On dit que la suite (f,,)nen converge uniformément vers f sur A si:
Ve>0,ANeN, Ve e A, Vn>N, |fulz)— flo)|r <e.

On dit que (fn)nen converge uniformément sur A §’il existe f telle que (f,)nen converge

uniformément vers f sur A.

10



Question 1.

Comparer les définitions des convergences simple et uniforme en termes epsilonesques! Quelle
est la différence ?

On rappelle la notation suivante :
Notation 1. Norme de la convergence uniforme

Soit Fp(A, F) (ou encore B(A, F)) 'espace vectoriel sur K des fonctions bornées de A C E dans
F. On note || || la norme de la convergence uniforme sur 7, (A, F) i.e. pour f € F(A, F) :

[flloc = sup [ f(z)]F.
z€A

Proposition 2.

Soit (fn)nen une suite de fonctions et f une fonction de A dans F. La suite (f,)nen converge
uniformément vers f sur A si, et seulement si :
i) Les fonctions f,, — f sont bornées sur A a partir d’un certain rang N € N et,

i) Ifn— flloo P 0.

e (=). On suppose que (f,) converge uniformément vers f sur A. Alors :
Ve>0,3INeN,Vaze A Vn>N, |fulz)—f@)|r<e.

Prenons € = 1. Alors il existe un rang N; € N tel que pour tout n > N, on a, pour tout

z €A, |[fulz) = f(@)llr <1.

Ainsi, a partir d’un certain rang, f, — f est bornée sur A par 1.
Montrons désormais que || fn, — f|lcc — 0.

n—-+oo
Soit € > 0. Alors
INeN,Vee A, Vn>N, |fulz)— f@)|r <e.
Par suite, comme I'inégalité précédente est vraie pour tout = € A, on a, pour tout n > N,

1fn = flloo = sup || fu(z) = f(z)|F <e.
€A

Il en résulte que ||f;, — flloo —— 0.
n—-+oo

e (<). On suppose i) et ii). Du fait de i), quitte & supprimer une nombre fini de termes de
la suite (f,,) on peut supposer que, pour tout n € N, f,, — f est bornée sur A. Ainsi, on
peut considérer, pour chaque n € N, la quantité ||f, — flloc = sup,c || fn(t) — f(1)||F-
Soit € > 0. D’apres 1), ||fn — flleo m) 0, il existe un rang N € N tel que pour tout

entier n > N,

[ = flloo < e

11



Soit n € Navecn > N et x € A. Alors on a :

[fn(@) = f(2)llF < sup [fn(®) = fFOllF = lfn = flleo <e.

Il en résulte que la suite (f,, — f)nen converge uniformément vers f.

Proposition 3.

Soit (fn)nen une suite de fonctions et f une fonction de A dans F'. Si (f,,)nen converge unifor-
mément vers f sur A, alors (f,,)nen converge simplement vers f sur A.

On suppose que (fn)nen converge uniformément vers f sur A. alors d’apres la proposition pré-
cédente, il existe un rang N € N tel que pour tout n > N, f, — f est bornée. Soit = € A. Pour
n>N,ona:

[fa(@) = F(@)] < fa = flloc 7= 0,

d’ou f,(x) — f(x). Il en résulte que (f,)nen converge simplement vers f sur A. O
— 400

Exemple 4.

— La suite (f,)nen telle que, pour n € N, f,, : ¢ — 4 /x +% converge uniformément vers

T = /z sur Ry.

En effet : soit n € N* et on note f : z — /z. On a, pour tout = € R,

fn = \/> < ﬁ =
)=l = |V = z+ L +f 0+1+v0

Par suite, les fonctions f, — f sont bornées sur R et :

1
[fa = flleo = sup |fn(z) = f(z)| £ == ———=0

I€R+ \/ﬁ n—+oo

— La suite de fonctions de terme général ¢t — " ne converge pas uniformément sur [0, 1[.

12



En effet, on remarque tout d’abord que (f,,) converge simplement vers le fonction
nulle sur [0, 1.

Soit n € N et on note f : x — 0. Comme f, : t — t" est strictement croissante sur
[0,1] (pour n > 0), on a :

| fn = flloo = sup t" = lim ¢" =1
tel0,1] t—1-

Par suite,
[fn=flo=1 =+ 0.

n—-+oo

Proposition 4.

Soit (fn)neN, (gn)nen des suites de fonctions de A dans F et A\, u € K. Si (fn)nen €t (gn)nen
convergent uniformément vers respectivement f et g sur A, alors (Af, + 1gn)nen converge
uniformément vers Af + pg sur A.

On suppose (fn)nen et (gn)nen convergent uniformément vers respectivement f et g sur A. Alors,
a partir d’un certain rang Ny (resp. Na), pour tout n > Ny (resp. n > Na), f, — f (resp. gn — g)
est bornée sur A. Par suite, comme ’ensemble des fonctions bornées sur A est un espace vectoriel,
a partir du rang N = max(Ny, Na), pour tout n > N, Af, + ugn — (Af + pg) est bornée sur A.
Et de plus, on a :

[Afr + t1gn — (Af + p9)llco < AN fr = flloo + 12lllgn — gllcec —— 0,
n—-+oo
car (fn)nen €t (gn)nen convergent uniformément vers respectivement f et g sur A. Il en résulte

que (Afpn + fgn)nen converge uniformément vers A\f + pg sur A. O

Méthode : Montrer qu'une suite de fonctions converge uniformément.

o Limite potentielle : On étudie la convergence simple de la suite (f,,)nen. S’il y a convergence
simple vers une fonction f sur A, on étudie alors la convergence uniforme vers f sur A.

e Convergence uniforme vers la limite : Pour montrer la convergence uniforme de (fy,)nen,
on cherche & obtenir une majoration de ||f, — f|lco qui tende vers 0 i.e. une majoration
indépendante de = € A du type (& partir d’un certain rang)

I £a(@) = F@ e < un ——0

ol (uy,) est une suite de réels positifs qui tend vers 0 (et qui ne dépend pas de x € A!!!).

La suite (u,,) s’obtient la plus souvent par une majoration simple, quand c’est possible, de
I fn(x) — f(2)||F ou par une étude des extrema de la fonction = — ||f, () — f(2)||Fr (& n
fixé).

13



Exercice 7.
Etudier la convergence uniforme des suites de fonctions de termes généraux suivants sur 'inter-
valle de définition indiqué :
1. pourn €N, f, : [-3,3] = R tel que f, :  — ™.
2. pour n € N, f, : [0,1] = R tel que f,, : . — z"(1 — x).
3. pour n € N*, f,, : R — R tel que f, : > sin(x + %)

4. pournEN*,fn:R+—>Rtelquefnime-

1. — CVSsur [-3,4]. Soit z € [-1,3]. On a:

car |z| < 2 < 1.
Par suite, (fn)nen converge simplement vers 0 (la fonction nulle) sur [—3, 1].

— CVU sur [-1, 1]. Soit n € N. Pour tout z € [-1, 1], on a:

" 1
|[fa(@) = f(@)] = |2 < 5,

D’ou f, — f est borné sur [—3, 1] et :

1
_ <
I = flloo < 57

n—-4o0o

Remarque : l'inégalité précédente est en fait une égalité.

1l en résulte que (f,)nen converge uniformément vers 0 sur [—3, 3].
2. — CVS sur [0, 1]. Soit € [0,1]. On a :

1—2)= i0< 1
fulz) = 2"(1 — ) O0x(l—2)=0 S?07$<
n—+oo |1 Xx0=0 siz=1

Par suite, (fn)nen converge simplement vers 0 (la fonction nulle) sur [0, 1].
— CVU sur [0, 1]. Soit n € N*. On étudie sur [0, 1] la fonction :
T = gn(m) = |fn(x) - f($)| = $n<1 - x)

La fonction g,, est dérivable, et on a g/, () = 2" '(n — (n + 1)z).

n
v 0 n+1 1
gn(x) 0 + 0 —
gn(757)
0 0
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Par suite, on a :

6o =l = a2 = () 1= 20— T x0=0,

n+1 n+1" no+too e
Il en résulte que (fy,)nen converge uniformément vers 0 sur [0, 1].

CVS sur R. Soit € R. On a, par continuité de la fonction sin sur R et donc en z :

fn(z) = sin(z + %) P sin(x)

Par suite, (f,)nen converge simplement vers f = sin sur R.
CVU sur R. Soit n € N*. Pour tout z € R, on a :

|[fa(z) = f(z)] = |[sin(z+ ;) —sin(z)]
| cos(z) sin(+) + sin(z) (cos(+) — 1) |
< | cos(a)l|sin(2)]| + |sin()|| cos(L) — 1]
< [sin(L)] + | cos(2) 1]
D’ou f, — f est bornée sur R et :

1 1
1 = oo < [sin( )]+ cos() = 1] ——>0.

n—-+o0o

car lim;_,o sin(¢) = 0 et limy_,o cos(t) = 1.
Il en résulte que (f,)nen converge uniformément vers sin sur R.

Remarque : on puvrait également utiliser la formule sin(a) — sin(b) = 2 cos(2£2 sin(%52)
ou encore l'inégalité des accroissements finis pour majorer || fr, — f|loo-

CVS sur R;. Soit x € R4. On a:

ful@) = a5 {O siz=0

n(l4a") notoo’ |0 siz > 0.

Par suite, (fy)nen converge simplement vers 0 (la fonction nulle) sur R, .
CVU sur R. Soit n > 2. On étudie sur [0, 1] la fonction :

T

z = gn(2) = |fulz) — f(2)| = m
La fonction g, est dérivable, et on a

() = n(l+az")—n?z” 1—(n—1)2" 1—(n—1)z"
InE) = n2(1+2z7)2 nl4+z7)2 n(l+2n)?
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1
X 0 Yn —1 +oo
gn () + 0 B
gn( "271)
0 0
Par suite, on a :
1 1 1
' flles = g1 — . 1x0=0.
”f f” g (C/n—l) {L/n_l 1 n—-+o0o
n(l+ 1 1)

Il en résulte que (fy)nen converge uniformément vers 0 sur R..

Remarque : on pouvait conclure plus rapidement en remarquant l’inégalité suivante :

(2) z <1
n(@) = —— < —.
& n(l+z") ~— n
En effet, pour 0 <x <1, = < <1

’ 1+x71 — 1+xn — ;

T
T
et pourxz > 1, 2" > x, doncmg Tim <1.

Méthode : Montrer qu'une suite de fonctions ne converge pas uniformément.

S’il n’y a pas convergence simple sur A, il n’y pas convergence uniforme.

Mais si on a déterminé une limite f pour la convergence simple, pour montrer que la suite (f},)
ne converge pas uniformément vers f, on peut :

e montrer que la fonction f,, — f n’est pas bornée sur A, ou

e exhiber une suite (2, )nen & valeurs dans A telle que la suite de terme général

| fn(xn) — f(xn)||F ne tend pas vers 0.

Exercice 8.

Etudier la convergence uniforme des suites de fonctions de termes généraux suivants :
1. pour n € N, fn:R%Rtelquefn:xH%.
2. pour n €N, f, : R — R tel que f,, : x —

nx
14+n2zx2"

3. pournGN*,fniRﬁRtelquefnixH(mJF%)Z'
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1. — CVS sur R. Soit x € R. On a :

@ =% o

n! n—o+oo

Par suite, (f,,)nen converge simplement vers 0 (la fonction nulle) sur R.
— CVU sur R. Soit n € N*. Pour z € R, on a :

_ e

|fn(2) = f(2)] = — —=—= +00,

n! z—+co

Par suite, pour tout n € N*, f,, — f n’est pas bornée sur R.
Il en résulte que (fy,)nen ne converge pas uniformément vers 0 sur R.

2. — CVS sur R. Soit z €¢R. On a :

@) na {0 siz=0

14 n222 no+oo |0 sinon.

nx 1
car, pour x # 0, T 2 o
Par suite, (f,)nen converge simplement vers 0 (la fonction nulle) sur R.

— CVU sur R. Soit n € N. On considére, pour x € R :

_ __ njz|
gn(@) = |falz) — f(@)] = T2
1
On remarque que pour £, = —, on a :
n
(o) = = ]
In () = Trnr(DE 2
Donc : i
_ — > —
i = 7 e igggn(w) 2 gn(Tn) 5 e U

Il en résulte que (f,)nen ne converge pas uniformément vers 0 sur R.

3. — CVS sur R. Soit z € R. On a, par continuité sur R et donc en x de la fonction carrée :
n n——+oo

fn(@) = <x+ 1>2 —

Par suite, (f,)nen converge simplement vers f : x — 22 sur R.
— CVU sur R. Soit n € N*. Pour x € R, on a :

2
o) = @ =1 (24 7) =2 =122 + 5] =0 oo

Par suite, pour tout n € N*, f,, — f n’est pas bornée sur R.
Il en résulte que (f,)nen ne converge pas uniformément vers f sur R.
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Exercice 9.

Soit (fn)nen €t (gn)nen des suites de fonctions & valeurs réelles qui convergent uniformément
vers f et g respectivement. Est-ce que (f,gn)nen converge uniformément ?

Non, car la suite (f,)nen, définie par f, : . — x + % pour n € N, converge uniformément vers
f:x+ xsur R et on a prouvé précédemment que la suite de terme général f2 : x — (z + %)2
ne converge pas uniformément vers x — 22 sur R.

b. Convergence uniforme des suites de fonctions bornées

Proposition 5.

Soit (fn)nen une suite de fonctions bornées sur A. Si (f,,)nen converge uniformément vers une
fonction f sur A, alors f est bornée sur A.

Soit (fn)nen une suite de fonctions bornées sur A. On suppose que ( f,,)nen converge uniformément
vers f sur A.

Par convergence uniforme, a partir d’un certain rang N € N, pour tout entier n > N f, — f est
bornée sur A. Par suite, pour tout € A, on a :

If@)r < fn@)lle+ 15 (@) = F@)lle < | fnlloo + 13 = fllo

Donc f est bornée sur A.

Question 2.

Cela est-il vrai dans le cas de la convergence simple ?

Non ! Considérons la fonction f : x — x et la suite de fonctions (fy,)nen définie, pour n € N, par :

0 sinon.

fnzzl_){f(x)::v si x € [-n,n]

Alors, (fn)nen est un suite de fonctions bornées sur R qui converge simplement vers f qui n’est

pas bornée sur R.
(Et bien-sur, il ne peut y avoir convergence uniforme vers f sur R en vertu de la proposition

précédente!)
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Proposition 6.

Soit (fn)nen une suite de fonctions bornées sur A. Alors (f,,)nen converge uniformément si, et
seulement si, (f,) converge dans I’espace vectoriel normé (Fy(A, F), || - |lco)-

Il s’agit simplement de deux formulations différentes de la méme propriété. O

Exercice 10.
Soit g : R — R tell T
oit g : elle que g : v — ———
g due g 1+ 2724
1. Calculer ||g]|co-

2. On considére la suite de terme générale f, : z — g(nz). Etudier les convergences simple
et uniforme de cette suite.

1. La fonction g est une fonction impaire et dérivable sur R. On effectue son étude sur R;.
Pour x € Ry, on a :

(14 27x%) — 1082* 1-—81z*

g'(@) = 1+272%)2 (1+ 27242
x 0 % 400
g (z) + 0 -
0 0

Par suite, comme ¢ est impaire, on a :

1
llgllc = sup|g(z)| = sup |g(z)| = T
z€R TER

2. — CVS sur R. Soit z €¢ R. On a :

14274zt notoo |0 siz #0,

nx 1
1+ 27n4z4 n—too 270323
Par suite, (f,,)nen converge simplement vers f : z — 0 sur R.

car pour x # 0,
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— CVS sur R. Soit n € N*. La fonction ¢ : x — nz est une bijection de R dans R, donc :

1
fn — = sup |g(nx)| = sup =- -
1= Sl = suplo(na)] = swplg@) = 7 2

Par suite, (f,)nen ne converge pas uniformément vers f sur R.

Exercice 11.

Soit (frn)nen et (gn)nen des suites de fonctions a valeurs réelles bornées qui convergent unifor-
mément vers f et g respectivement. Est-ce que (f,gn)nen converge uniformément ?

Cette fois-ci, ’hypothese "bornées” permet de conclure par I'affirmative.

En effet, d’aprés la proposition précédente, f et g sont bornées sur A. De plus, pour tout entier
n assez grand (& partir du rang ot toutes les fonctions f, — f et g, — g sont bornées sur A) et
pour tout x € A, on a :

|(fngn — f9)(z)|

|fn(@)gn(z) = f(@)gn(z) + f(2)gn(2) — f(2)9(2)]
|fn(@)gn () — f(@)gn(2)] + | f(2)gn(2) — f(x)g(z)]
|gn (@)|-[fn(x) = f(@)| + |f(@)]-Ign(z) — g
|gn (2)]-1fn(@) = f(2)] + £ (@)]-Ign(z) — g
gnlloollfr = Flloo + 1 fllocllgn — glloo

T

()]
()]

VAN VAN VAN VAN

Donc fngn — fg est bornée et on remarque que, par convergence uniforme de (gn)neN vers g, on
a :
[9nlloc = llgn — 9+ glloc < llgn = glloo + llglloc ——— llglloo-
n—-+oo

Ainsi, on a :

/g = folloe < lgnlloollfn = Flloo + I llsclign = glloe = llgloe X 0+ |l x 0= 0.

Donc (fngn)nen converge uniformément vers fg.

c. Convergence uniforme sur une partie

Dans ce paragraphe, on s’intéresse a la convergence uniforme d’une suite de fonctions sur des famille
de sous-ensemble du domaine de définition de ces fonctions.

Exemple 5.

Pour tout a > 0, la suite de fonctions de terme général f,, : t — ﬁ converge uniformément sur
[a, +oo[C RY.
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On remarque tout d’abord que (fn)nen ne converge pas uniformément sur R . En effet,
(fn)nen converge simplement vers f : z + 0 sur R mais on a, pour tout n € N :

)=1 —» 0,

— = su
I = flloo =sup( ) =12

car f, est décroissante sur R et lim; o Tont =1
n
Donc (fn)nen ne converge pas uniformément sur R .

Remarque : on aurait aussi pu utiliser le fait que, pour n € N* :

1 1
=——== = 0
1—|—n% 2 n—+oo

£ = flloe = Ifulloe 2 £a(:)

Soit a > 0. Etudions la convergence uniforme sur [a, +-00[.
Soit n € N. On a, pour tout z € [a, +0o0],

1 1
< .
1+nt — 1+ na

|fn(t) = F()] =
Ainsi, les f,, — f sont bornés sur [a, +o0o[ et :

0.

—
1+ na n—+oo

11 en résulte que (fy)nen converge uniformément vers f sur [a, +o00].

Exercice 12.

Etudier la convergence uniforme de la suite de terme général f, : & — e~ "® sin(nx) sur Ry puis
sur les intervalles de la forme [a, +-00[ avec a > 0.

— CVSsur Ry. Soit x € R4. On a:

0 siz=0car sin(0) =0
fula) —— 40 ©
n—+oo |0  sinon
car, pour x > 0, e — 0 et |sin(nx)| < 1.
n—

Par suite, (f,,)nen converge simplement vers f : x — 0 sur R.
— CVU sur R;. On consideére la suite (x,,)nen+ telle que, pour n € N*| z,, = % Alors, on a :

1

fa(@n) = f(@n)] = e sin(n%) — i),

Par suite,
£ = fllso = esin(1) - 0.

n—-+o0o
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Donc (fn)nen ne converge pas uniformément sur R .
— Soit @ > 0. CVU sur [a, +00[. Soit n € N. Pour tout z € [a, +00],

|[fn(z) — f(2)] = e7"*|sin(na)| < e™".

Par suite,
1 frn = fllo < e7™ > 0.
n—-+oo

Il en résulte que (fn)nen converge uniformément vers f sur [a, +00l.

Proposition 7.

Soit (fn)nen une suite de fonctions de A dans R et f une fonction de A dans R. Si (f,)nen
converge uniformément sur A vers f alors, pour tout B C A, (fn)nen converge uniformément
sur B vers f.

On suppose (fn)nen converge uniformément sur A vers f. Soit B C A. On a alors, pour tout
n € N assez grand, f,, — f est bornée sur A, donc f, — f est bornée sur B et de plus :

[fn = Flloo,B = sup [fu(x) = f(2)] < sup |fu(z) = f(2)] = [[fn = fllc.a —— 0.
zeB T€EA

n—-+oo

Il en résulte que (f,)nen converge uniformément sur B vers f. O

Définition 4. Convergence uniforme sur tout compact/segment

(fn)nen une suite de fonctions de A dans F. On dit que (f,)neny converge uniformément
sur tout compact de A si, pour tout compact K C A, (f,)nen converge uniformément sur
K. On parle alors de convergence uniforme sur tout compact de A.

Dans le cas ou A est un intervalle de R, on la convergence uniforme sur tout compact est
autrement désignée par convergence uniforme sur tout segment.

Exemple 6.

La suite de fonctions de terme général f, : t — t" converge uniformément sur tout segment de
]—1,1].
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CVSsur]—1,1]:

Soit t €] — 1, 1[. On étudie la nature de la suite (t")nen.

On a: " —— 0 car |t| < 1 donc (t™),en est convergente.
n—-+4oo

Ainsi la suite (fy,)nen converge simplement vers la fonction f : z+— 0 sur | — 1, 1[.
CVU sur [—a,a] avec a € [0,1] :

Soit n € N. On a f,, — f : t — t™ est bornée sur [—a, a] car continue sur un segment et,
comme |a| <1 :

[fn = fllo = sup [t"|=a" ———0
te[—a,al n—r+oco
Par suite, (f,)nen converge uniformément vers la fonction f sur tout intervalle de la forme
[—a,a] avec a € [0, 1].
Or, tout segment de | —1, 1] est inclus dans un intervalle de la forme [—a, a] avec a € [0,1] :
en effet, si [b, ¢] C] — 1, 1], alors, pour a = max(|b|, |c|) € [0,1], on a [b,¢] C [—a,a]; donc,
(fn)nen converge uniformément vers la fonction f sur tout segment de | — 1, 1].

Exercice 13.

Etudier la converge uniforme de la suite de terme général f,, : 2 — % sur tout segment de R.

JE 7’ A n .
On a déja prouvé que (fy)nen sur R ot f,, : x — %y pour n € N, converge simplement vers la
fonction nulle - notée f ici - sur R et on a prouvé que cette suite ne converge pas uniformément

sur R. Montrons qu’il y a tout de méme convergence uniforme sur tout segment de R.
Soit a > 0.

CVU sur [—a,a]. Soit n € N. Pour tout « € [—a,al, on a :

nle) = F@)] = fa()] = - <

Donc la fonction f,, — f est bornée sur [—a,a] et on a :
[fn = fllc = sup ]|fn(x) - f@)| < —=—>0.

z€[—a,a n! n—rtoo

Il en résulte que (fy,)nen converge uniformément sur [—a, a] vers la fonction nulle.

Comme tout segment de R est inclus dans un intervalle de la forme [—a,a] avec a > 0, (fn)nen
converge uniformément sur tout segment de R vers la fonction nulle.

3. Convergence uniforme des séries de fonctions

a. Généralités
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On donne la définition suivante qui n’en est pas vraiment une : il s’agit d’une répétition, dans le cas
particulier des séries, de la définition de la convergence uniforme pour les suites de fonctions.

Définition 5.

Soit > f,, une série de fonctions de A dans F. On dit que ) f,, converge uniformément sur
A si la suite (Sp,)nen de ses sommes partielles converge uniformément sur A.

Proposition 8. Caractérisation de la convergence uniforme pour les séries de fonctions

Soit > f,, une série de fonctions de A dans F. Alors > f,, converge uniformément sur A si, et
seulement si, les deux conditions suivantes sont satisfaites :

— la série Y f,, converge simplement sur A et,

— la suite (R, )nen des restes de Y f,, converge uniformément vers la fonction nulle sur A.

Si > fn converge simplement sur A, alors, pour tout @ € A, > f,,(x) converge et ainsi, la suite
(Ry(x))nen des restes de Y fr(x) est bien définie et converge vers Op.

Ainsi, pour tout n € N, la fonction R,, : © — R, (z) est bien définie et donc (R, )nen est une
suite de fonctions de A dans F' qui converge simplement sur A vers la fonction nulle.

Fort de cette remarque, passons & la démonstration proprement dite. Que ce soit dans le sens
I'implication directe, comme convergence uniforme implique convergence simple ; ou dans le sens
de l'implication réciproque, par hypothése; on a la convergence simple de »_ f,, sur A vers S :

T Z::f) fn(x). Ainsi, dans les deux implications, la suite (R, )nen de fonctions de A dans F est
bien définie et converge simplement sur A vers la fonction nulle. On conclut alors en remarquant

que :
la série > f,, = (Sn)nen converge uniformément vers la fonction S sur A si, et seulement si,
(Rpn)nen = (S — Sp)nen converge uniformément vers la fonction S — S = 0 sur A. O
Exemple 7.
La série de fonctions Y f,, de terme général f, : © — a™ converge uniformément vers = — T
—x

sur tout segment de | — 1, 1[ mais ne converge pas uniformément sur | — 1, 1][.
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D’apres I'exemple 2, Y- f,, converge simplement sur ] — 1,1[ vers S : z — .
Soit n € N. Pour tout z €] — 1,1[, on a :

xn—i—l

+oo
R.(z) = Z z* =

1—2
k=n-+1

CVU sur [—a,a] avec a € [0,1] :

an+1

l1—a "

Soit n € N. Pour tout = € [—a,a], ona [z" ™| < a"Tlet 1—z > 1—a donc |R,(x)| <
Par suite, la fonction R,, est bornée sur [—a,a] et on a, comme |a| < 1 :

n+1

a
[Bnlloo <

— 0.
—a n—+oo

11 en résulte que (Ry,)nen converge uniformément sur [—a, a] vers la fonction nulle et donc
> fn converge uniformément sur [—a,a] vers S.

De plus, tout segment de | — 1,1 étant inclus dans un intervalle de la forme [—a, a] avec
a € [0, 1], la série Y f, converge uniformément sur tout segment de | — 1,1[ vers S.

CVUsur | —1,1] :
Soit n € N. On a :

anrl

Bulo) =13 oo o

d’ot la fonction R,, n’est pas bornée sur | — 1, 1] et donc (R, ),en ne converge pas unifor-
mément sur | — 1, 1[.
1l en résulte que la série > f,, ne converge pas uniformément sur | — 1, 1].

Exercice 14.

n

Ry . - -1
1. Etudier la convergence uniforme de la série ) ﬁ sur R.

2. Etudier la convergence uniforme de la série > %T sur R puis sur tout segment de R.

1. Tout d’abord étudions la convergence simple de > f,, sur R ou f, : = +— " pour

n+1+x2
n € N.

CVS sur R. Soit € R. On consideére la suite (uy,)nen telle que, pour n € N, w,, =

1
n+1+x2"

Alors (un)nen est décroissante et tend vers 0 quen n — +oo donc, d’apres le critére des

n

ok ; (-1
séries alternées, > == converge.

+oo
—1)»
Il en résulte que > f,, converge simplement vers f : z — Z %
n T

n=0

sur R.

CVU sur R. Soit n € N. Pour tout € R, comme la somme d’une série alternées convergente
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est plus petite que son premier terme (en valeur absolue), on a :

1 1
<
Tn+2422  n+2

+oo
z)| =
=

Donc la fonction R,, est bornée et :

1
| Rn Hoo—sup\R (z)| < T2 o

Par suite, Y f, converge uniformément sur R (Vers f).

. On a déja prouvé que > f, sur Rou f, : z — Z; - pour n € N, converge simplement vers

exp sur R - et on a également montrer que ) fn Converge uniformément sur tout segment
de R.

Montrons que Y f,, ne converge pas uniformément sur R tout entier.
CVU sur R. Soit n € N. Pour tout z € R, on a :

+oo k

> m

k=n-+1

| R ()] =

Six >0, ona»—)””k—);>0pourtoutk2n+1. Ainsi, pour tout >0 :

n+1

Z K n+1)

k=n-+1

Or la fonction z — (n+1), n’est pas bornée sur R; en effet sa limite quand z — +oo est
400, donc la fonction R, n’est pas bornée sur R.

Il en résulte que > f,, ne converge pas uniformément sur R.

Comme il n’y a pas convergence sur R et que le "probleme” se situe en 400, on tente la
convergence uniforme sur tout segment de R. Soit a € R.

CVU sur [—a,a]. Soit n € N. Pour tout « € [—a,al, on a :

+oo n +oo n +oo
m@< Y |- X B <X G
k=n-+1 e k=n+1 ! =n+ '

Ainsi, la fonction R, est bornée sur A et on a |Ry||co < 7.

De plus, (rn)nen est la suite des reste de la série convergente ) | %7 donc elle converge vers

0.

Par suite, |Ry|lco R 0, d’ott (R,,)nen converge uniformément vers la fonction nulle.
n—-+0oo

Il en résulte, d’apreés la proposition 8, que Y f,, converge uniformément sur [—a,a] et ce,
pour tout a > 0.

Tout segment de R étant inclus dans un segment de la forme [—a, a] avec a > 0, on a donc
la convergence uniforme sur tout segment de R de Y f,, vers sa somme S : z — Zn o T; -
dont on va bientot montrer qu’il s’agit bien de la fonction exponentielle !

Remarque 1 : Cette preuve de la CVU sur [—a, a] repose simplement sur le fait que || ]| oo (=
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a™/nl ici) est le terme général d’une série convergente... cela va nous inspirer dans la suite !

Remarque 2 : Si on sait déja que S est la fonction exponentielle, on peut procéder de la

facon suivante pour la CVU :
Pour tout x € [—a, a], en faisant le changement d’indice ¥’ = k — (n + 1) et en remarquant
que, pour tout k € N, (k+n +1)! > k!(n + 1)!, on obtient :

too |1‘|k |n+1 |x|k ||t ol antl
R < = L —e®
| ”(x)l—k:zn;l [ n—l—l Z n—i—l)e _(n+1)!e
Donc la fonction R,, est bornée sur [—a,a] et on a :
an+1
R = R < @ 0.
[Balle = eup  1Ra(=)] < Zoie® s

On a donc bien la convergence uniforme sur tout segment de R de Y f,, vers la fonction
exponentielle.

b. Convergence normale des séries de fonctions

La deuxieme question de l’exercice 14 est treés instructive : on remarque que le raisonnement qui
o . n . .
nous a amené a prouver la convergence uniforme sur [—a,a] de ) 75 reposait seulement sur le fait que
n 7’ 7’ 7. i 7’ 7’ . . .
& = SUDP,c(_a.al | 57| st le terme général d’une série convergente. On veut donc généraliser cette situation
n! z€[—a,a] I'nl
pour éviter de répéter et répéter cette preuve dans les cas analogues!

Définition 6. Convergence normale

Soit Y f, une série de fonctions de A dans F'. On dit que ) f,, converge normalement sur
Asi:
i) pour tout n € N, la fonction f,, est bornée; et

ii) la série Y || fnllco est convergente.

Exemple 8.
cos(n3z)
La série ) W converge normalement sur R.
3
En effet, on a, pour f, : z — C(:LSS_TLI;CQ) :
cos(n3a:) 1
= <

Or d’apres le critere de Riemann, ﬁ est le terme général d’une série convergente.
Ainsi, Y f, converge normalement.
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Proposition 9.

Soit > f,, une série de fonctions de A dans F. Si Y f,, converge normalement sur A, alors, pour
tout x € A, la série Y fn(z) est absolument convergente i.e. > || fn(2)||F converge.

Si )" fn converge normalement, || f, |loo = sup,c 4 || fn ()| F est le terme général d’une série conver-
gente. Soit x € A. Comme pour tout n € N, on a :

Lfn(@)lF < [ falloo,

par comparaison, la série & terme positifs Y || fr(z)|| F est convergente i.e. > f,,(x) est absolument
convergente. O

Corollaire 1.

Soit Y f, une série de fonctions de A dans F' (qui est un espace vectoriel de dimension finie). Si
> fn converge normalement sur A, alors Y f, converge simplement sur A.

On suppose Y f, converge normalement.

CVS sur A. Soit z € A.
D’apres la proposition précédente, > f,,(z) converge absolument, ainsi, comme F' est de dimension
finie, > fn(x) converge.

Ceci étant vrai pour tout x € A, > f,, converge simplement sur A (vers sa somme). O

Proposition 10.

Soit Y f,, une série de fonctions de A dans F'. Si > f,, converge normalement sur A, alors >_ f,
converge uniformément sur A.

On suppose que Y f, converge normalement sur A. Montrons que »_ f, converge uniformément
sur A. Pour cela, on utilise la caractérisation de le convergence uniforme pour les séries donnée
par la proposition 8 :

CVSsur Ade Y fn:
Comme Y f,, converge normalement sur A alors, d’apres le corollaire 1, Y f,, converge simplement
sur A.

CVU sur A de (Rp)nen vers 0 :
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Soit n € N. Pour tout x € A, comme || f,(z)||r < || falloo :

+oo +oo
IBn@)lr < D 1fa@le < Y lfallo=mn
k=n-+1 k=n-+1

Ainsi, la fonction R, est bornée sur A et on a ||Ry||co < 7p-
De plus, (7, )nen est la suite des reste de la série convergente Y || fn|loo donc elle converge vers 0.
Par suite, ||Ry||oo e 0.

n—-+0oo

Il en résulte, d’aprés la proposition 8, que Y f,, converge uniformément sur A O
Remarque 3.

Attention, la réciproque est fausse : chercher parmi les exemples précédents une série de fonctions
qui converge uniformément mais pas normalement.

On a ainsi, pour une série de fonctions, le diagramme suivant :

CVN = CVU = CVS
< <&

Méthode : Montrer qu’une série de fonctions converge normalement

Pour montrer la convergence normale de Y f,,, on cherche & obtenir une majoration de || f||co qui
tende vers 0 i.e. une majoration indépendante de = € A du type (a partir d’un certain rang)

[fn (@)l < un

telle que Y u, est une série numérique convergente (et u,, ne dépend pas de z € A!!!).

Exercice 15.

—nx

, e
1. Etudier la convergence normale/uniforme/simple de > -, —5— sur Ry.
=t n
Lo i . 1 . 1
2. Etudier la convergence normale/uniforme/simple de Zn21 PR puis de ano PR

sur R.

nT
1. On pose, pour n € N*, f,, : ¥ — “——. Commengons par la convergence normale :

CVN sur Ry : Soit n € N*. On a, pour tout € Ry :

e—nx

fule) = o < =

n n2’
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2.

Donc f,, est bornée sur R et I'inégalité précédente étant une égalité pour z =0, on a

1
[fnlloo = =5

=
Or # est le terme général d’une série convergente d’apres le critére de Riemann (2 > 1);
par suite, Y || fn|lco converge et donc > f,, converge normalement sur R .
Comme pour une série de fonctions, CVN = CVU = CVS, la série > _ f,, converge unifor-
mément et simplement sur R .

e On pose, pour n € N*| f, : x — %W qui est bien définie sur R.
CVN sur R : Soit n € N*. On a, pour tout x € R :

1 1
<

| ()] = o ppc i
Donc f,, est bornée sur R et I'inégalité précédente étant une égalité pour z =0, on a :
1
falloe = =

Or # est le terme général d’une série convergente d’apres le critére de Riemann (2 > 1) ;
par suite, Y || fnllco converge et donc Y f,, converge normalement sur R.

Comme pour une série de fonctions, CVN = CVU = CVS, la série > f,, converge
uniformément et simplement sur R.

e On garde les mémes notations que précédemment et on pose fy : = +— I—g qui est définie
sur R*. On ne peut donc plus étudier les convergences sur R de > - f, du fait que fo
n’est pas définie en 0! On doit donc faire notre étude sur les intervalles R* et R . Les
fn étant tous des fonctions paires, on peut restreindre I’étude a R? .

CVN sur R : Soit n € N. On remarque que fo n’est pas bornée sur R* car fo(z) —
z—0

400 donc sa norme infinie n’est pas définie et donc ’étude de la convergence normale
n’est pas possible méme si cela semblait de prime abord étre exactement comme le cas
précédent.

II'n’y a donc pas convergence normale sur R a cause d’un ”détail” mais on se doute que
la convergence uniforme va stirement fonctionner puisque dans les restes, fy n’apparaitra
pas!

CVS sur R% : Soit € R% . On étudie la nature de ) f,,(x).

Ona f,(z) = ﬁ Nete 2> et 4 est le terme général d’une série convergente (critere
de Riemann avec 2 > 1), donc ) f, () converge, et ce, pour tout x € RY.

Ainsi, ) f,, converge simplement sur R .

CVU sur R : Soit n € N. Pour tout z € R, on a :

+oo 1 +oo 1
B@l= D s 2 =
k=n+1 k=n+1

Ari = Vi 1 n)neN* Vi Vv ° insi
Or la série )+, nl converge donc la suite (7, ),en+ de ses restes converge vers 0. Ainsi,
R,, est une fonction bornée et on a :

IR |oo < 1pp ——— 0.
n—-—4oo

Par suite, ), - fn converge uniformément sur R* (et donc également sur R* ).
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Exercice 16. Fonction Zéta de Riemann

La fonction ¢ de Riemann est définie, pour s €]1, +oo[ par :

+oo
1
C(s) = ne
n=1
Justifier la définition de la fonction ¢ sur 1,400 en étudiant la convergence simple de la série
de fonctions. Que dire de la convergence uniforme de la série vers la fonction ¢ 7

Pour n € N*, on pose f, : s — ni qui est bien définie sur R.
e Déterminons le domaine de la fonction . On remarque que ((s) existe si, et seulement si,
la série numérique Y f,,(s) est convergente. On se rameéne donc & trouver le plus grand
intervalle sur lequel la série de fonction »_ f,, converge simplement.

CVS sur R : Soit s € R. On a, d’apres le critére de Riemann,

fuls) = # est le terme général d’une série convergente si, et seulement si, s > 1.

Ainsi, la série Y f,, converge simplement sur |1, +o0o[ et ne converge pas simplement sur
] — o0, 1].

Il en résulte que le domaine de définition de ¢ est |1, +ool.

Remarque : En prenant s complexe, on peut, de la méme maniere que précédem-
ment, montrer que ¢ est bien définie sur DP = {s € C | Re(s) > 1}. On montrera
dans la suite que ¢ est de classe C* sur |1, 4+o00[ et de maniére similaire, on peut
montrer que ¢ est holomorphe (i.e. une fonction de la variable complexe dérivable...
pour sa variable complexe!) sur DP.

Par des méthodes que nous ne détaillerons pas ici, on peut montrer que la fonction
¢ peut étre prolongée de maniére analytique (nous parlerons de cela quand nous
aborderons les développements en séries entiéres) et donc en particulier, ¢ admet
un prolongement continu sur C \ {1}.

Ce prolongement (dont on peut prouver qu’il est unique) donne la valeur :

1
1) = ——
(1) =-—
+oo 1
d’ou la célebre confusion : E n = 12 !
n=1

Mais il ne faut pas s’y méprendre! Comme nous I'avons définie, la série & termes
positifs Y n diverge et donc tend vers +oo. La formule Zzz ni de la fonction ¢
n’est plus valable dans le sens "somme de série numérique” pour les complexes s
en dehors de DP et il faut utiliser une autre formule - une de celles qui permettent
de définir le prolongement - pour obtenir la valeur de ((s).

e On essaye la convergence normale dans un premier temps :
CVN sur |1, +o0[ : Soit n € N*. On a :

1 1
lulloo = sup ():
s€]1,+00[ \ T n
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qui le terme général d’'une série divergente, donc il n’y a pas convergence normale sur
|1, +o0l.

On voit que le probléme se situe en 1 puisque le ”%” est atteint en s = 1. On tente donc
d’isoler ce probleme :

soit a > 1.

CVN sur [a,4o00[ : Soit n € N*. On a :

1 1
[falloo = sup ():
s€la,4oo[ \ T n

qui est le terme général d’une série convergente d’apres le critere de Riemann car a > 1.
Ainsi, > f,, converge normalement et donc uniformément vers ¢ sur tout intervalle de la
forme [a,4+o0o[ pour a > 1. Nous verrons dans la partie suivante que cela nous satisfait
amplement pour en déduire la continuité de ¢ sur |1, 4o0].

Mais pour répondre a la question initiale, il nous reste a étudier la convergence uniforme
sur |1, +oo] :

CVU sur |1, 4o00[ : Soit n € N*. On a, pour tout s > 1 :

+o0 1
Ba(s)l = Y -
k=n+1

Or, par une comparaison série-intégrale que nous avons effectuée au chapitre précédent,

on a:
/+°°1 1 1 Dt
= X0 = o0
ne1 t° s—=1(n4+1)571 so1+

k= n+1
Donc, d’apreés le théoréme des gendarmes, |R,,(s)| —— 400 et ainsi, R,, n’est pas bornée
s—1+

sur |1, +ool.
Ainsi, Y f, ne converge pas uniformément sur |1, 4o0o].

32



Partie B

Théoremes d’étude de fonctions définies par des
limites/sommes de suites/séries de fonctions

1. Continuité

Proposition 11.

Soit a € A, (fn)nen une suite de fonctions et f une fonction de A dans F. Si la suite (f,)nen
converge uniformément vers f sur A et, pour tout n € N, f,, est continue en a, alors f est
continue en a.

Pour tout € A, on a pour tout n € N.

(@) = f(@)llr <[1f(2) = fa(@)llF + 1 fn(2) = fala)llr + | frla) = fla)llF-

Soit € > 0.
e Comme (f,)nen converge uniformément vers f sur A, alors il existe N € N tel que pour
tout z € A et pour tout n > N :

(@) = fa(@)llF < [lfn = Flloo <

et c’est donc en particulier vrai pour x = a également :

€
1£(@) = fu(@)llr < fn = flloo < 3-
e Soit n > N. Comme f, est continue en a, alors il existe § > 0 tel que pour tout x € A
avec ||z —al|lgp <9 :

€
1fn(2) = fula)llF < 5-
Ainsi, en choisissant n > N, on exhibe un ¢ tel que pour tout z € A avec ||z — a||g < 0,

() = f(@)llr <|If(2) = fn(@)llE + || fn(2) = fula)lle + || fnla) = fla)llr <e.

<

< <

wlm
wlo
wlm

Par suite, f est continue en a. O
Corollaire 2.

Soit (fn)nen une suite de fonctions et f une fonction de A dans F'. Si la suite (f,,)nen converge
uniformément vers f sur A et, pour tout n € N, f,, est continue sur A, alors f est continue sur
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Si la suite (fy,)nen converge uniformément vers f sur A et, pour tout n € N, f,, est continue sur
A, alors, pour tout a € A, f,, est continue sur A et donc, d’apres la proposition précédente, f est
continue en a. Il en résulte que f est continue sur A. O

Proposition 12.| Cas particulier des séries

Soit @ € A, Y f,, une série de fonctions et S une fonction de A dans F. Si la série ) f,, converge
uniformément vers S sur A et, pour tout n € N, f,, est continue en a (resp. sur A), alors S est
continue en a (resp. sur A).

On suppose que Y f, = (Sp)nen converge uniformément vers S sur A et, pour tout n € N, f,, est
continue en a (resp. sur A). Alors, la suite (S, )nen converge uniformément vers S sur A et, pour
tout n € N, S, = >"7_, fx est continue en a (resp. sur A) comme somme (finie!) de fonctions
continues en a (resp. sur A). Ainsi, d’apres la proposition 11 (resp. le corollaire 2), S est continue
en a (resp. sur A). O

Remarque 4.

— Ainsi, on peut, aprés avoir établi la convergence simple d’une suite/série de fonctions
continues, conclure directement & la non convergence uniforme si la fonction limite n’est
pas continue !

— Comme la convergence normale d’une série de fonctions implique la convergence uniforme,
une série de fonctions continues qui converge normalement converge vers une fonction S
continue.

Théoréme 1.

Soit a € A, (fn)nen une suite de fonctions et f une fonction de A dans F. Si la suite (f5)nen
converge uniformément vers f sur un voisinage de a et, pour tout n € N, f, est continue en a,
alors f est continue en a.

Soit a € A, > f, une série de fonctions et S une fonction de A dans F. Sila série Y f,, converge
uniformément vers S sur un voisinage de a et, pour tout n € N, f, est continue en a, alors S
est continue en a.
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On suppose que la suite (f,)nen converge uniformément vers f sur un voisinage V' de a et que,
pour tout n € N, f,, est continue en a. Alors d’apres le corollaire 2, f : V' — F est continue sur
V. Comme V est un voisinage (relatif de A) de a, alors f : A — F est continue en a.

De méme dans le cas particulier des séries en utilisant la proposition 12. O

,(Théoréme 2.) Théoréme de continuité des limites de suites/séries de fonctions

Soit (fn)nen une suite de fonctions et f une fonction de A dans F. Si la suite (f,,)nen converge
uniformément vers f au voisinage de tout point de A et, pour tout n € N, f,, est continue sur
A, alors f est continue sur A.

Soit > f, une série de fonctions et S une fonction de A dans F'. Si la série > f,, converge
uniformément vers S au voisinage de tout point de A et, pour tout n € N, f,, est continue sur
A, alors S est continue sur A.

On applique le théoreme précédent en tout point de A. O
Exemple 9.
g5 X gm
La série de fonction ) — converge uniformément sur tout segment de R vers S : x — Z —-
n! n!
n=0

On pose f, : x — ”;—T‘L Soit @ € R%..

CVN sur [—a,qa] :
Soit n € N. On a :

n

95
lalloo = sup (

z€[—a,a) n!

an
)Zm

Or, % est le terme général d'une série convergente (d’apres la régle de D’Alembert par
exemple) d’out Y f,, converge normalement sur [—a,a] et donc uniformément sur [—a, a
vers S et ce, pour tout a > 0.

De plus, tout segment de R est inclus dans intervalle de la forme [—a, a] avec a > 0 donc
n

€ g .
> — converge uniformément sur tout segment de R vers S.
n

n
Ainsi, la fonction S est continue sur R car ) — converge uniformément au voisinage de tout
n!

point de R.

En effet, chaque point 2y de R est inclus dans un segment [z¢o — 1,29 + 1] qui est un
voisinage de xy dans R.
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Exercice 17.

—+o0

L. Justifier que la fonction S:z — >~ — e est bien définie sur ]0, +oo[ et qu'elle est
n?+x

continue sur cet intervalle.

2. Montrer que la fonction ¢ de Riemann est continue sur |1, +o0].

} 1
1. Pour n € N, on pose f, : ¢ = 15325

simplement et uniformément sur R? .

On a montré dans V'exercice 15 que > f,, converge

+o0o
Comme ) f,, converge simplement sur R , sa fonction limite S : z — Z R est bien
n=0
définie sur R .
De plus, Y f, converge uniformément sur R’ vers S donc d’apres le théoréme de continuité
des limites de séries de fonctions (Theoreme 1), S est continue sur R .

1
2. On pose, pour n € Net xz € R, f,(x) = s Montrons que ¢ : x — Z:i% n(2) est définie

et continue sur |1, 4+o0].
— Domaine de définition de (.

CVS sur R :
1

Soit « € R. Alors, d’apreés le critére de Riemann, f,(z) = — est le terme général d’une
n

série convergente si, et seulement si, x > 1.

Ainsi, Y f, converge simplement sur |1, +oo[ d’ott ¢ est définie sur |1, +ool.

— On applique le théoreme de continuité de la somme d’une série de fonctions :

e les f, sont continues sur |1,+o00[ car f, : = — nif = =) est une fonction
continue sur R.

e CVU sur tout segment de R :
Soit a > 1. On établit la Convergence Normale sur [a, +o0].

Soit n € N. pour tout x € [a, +00],

1
donc | fullooe < — (c’est méme une égalité) qui est le terme général d'une série

convergente d’apres le critére de Riemann.
Ainsi, par comparaison, Y || fn]lco converge. Il en résulte que, pour tout a > 1, > f,
converge normalement sur [a,+oo[, et donc que Y f,, converge uniformément sur
tout segment de |1, +oo.
Par suite, d’apres le théoreme de continuité de la somme d’une série de fonction, ( est
continue sur |1, +00]

2. Limites

a. Interversion de limites
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,l Théoréme 3.) Théoréme de la double limite

Soit a € A et (f,)nen une suite de fonctions qui converge uniformément vers une fonction f sur
A. Si, pour tout n € N, il existe ¢,, € F tel que f,(x) — £, alors :
r—a

i) il existe £ € F tel que la suite (¢,,)nen converge dans F' vers / et,

Autrement dit,

lim f(z) = lim | lim fn(x)> = lim (hm fn(m))

r—a r—a (n—>+oo n—+o0o \r—a

Sous les mémes hypotheses, le résultat est valable dans les cas suivants :
— ACReta=+00;

— F =TR; a partir d'un certain rang, ¢, = lim,_,, f,(x) = +o0; et £ = +o0.

Cette démonstration est hors programme car nous n’avons pas le bon cadre permettant de la
démontrer ”joliment” : il nous manque la notion d’espace métrique complet. En fait, I’énoncé
reste vrai en supposant que F (l'espace d’arrivée des fonctions f, et f) est un espace métrique
complet. Dans notre cas, F' est bien complet car c’est un espace vectoriel normé de dimension
finie sur R ou C.

Un espace métrique est dit complet si toutes les suites a valeurs dans cet espace dont les termes
se rapprochent uniformément en l’infini - on appelle cela une suite de Cauchy - convergent. De
maniere imagée, un espace complet est un ensemble dans lequel il n’y a pas d’élement "manquant”,
de "trou”, métriquement parlant - penser a Q et R munis de la distance associée a la valeur
absolue : Q n’est pas complet et R 'est; les trous dans Q sont les irrationnels. Par exemple,
pour montrer la non-complétude de @@, on peut considérer la suite (Ul%#)n@\f qui est une suite
de Cauchy a valeurs dans Q mais qui ne converge pas dans Q car e est irrationnel (oui, e est

irrationnel ! Exercice : prendre la suite (S,) des sommes partielles de > % et la suite (Sp + n'ln!

) ; montrer
qu’elles sont adjacentes - et donc de limite e puis en déduire que e est bien irrationnel).

Comme dit précédemment, (R, |- |) est complet : pour le démontrer, il nous faudrait construire
proprement ’ensemble des réels, ce qui est completement hors programme. Selon la construction
effectuée (avec des suites de Cauchy justement ou les coupures de Dedekind par exemple), la
complétude ne s’obtient pas de la méme maniére.

Pour démontrer notre énoncé tout en restant dans le programme, nous allons "tricher” un peu,
en laissant sous silence la construction de R, et en nous inspirant d’une fagon de montrer la
complétude de R, sans en parler bien-siir !

Allons-y :

Soit @ € A et (f)nen une suite de fonctions qui converge uniformément vers une fonction f sur
A telle que, pour tout n € N, il existe ¢,, € F' tel que f,(x) — £,,.
Tr—a

i) Montrons que la suite (¢,,)nen converge.
Soit £ > 0. Comme (f,,)nen converge uniformément vers f sur A, il existe un rang N € N
tel que, pour tout entier n > N, || f,, — f|loc < §. Ainsi, pour tous p,q € N tels que p,q > N
et pour tout z € A, on a :

1 fp(z) = fo(@)lF < 1 fp(x) = fF@)F + [ fo(x) = F@)IF < MIfp = flloo +[1fg = fllo <.

Par suite, en passant & la limite quand « tend vers a, Papplication u + ||u||r étant continue
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sur F', on obtient :
1€p — £llF < e

C’est ici que nous devons nous compliquer la vie : avec ’hypothese F' complet, nous aurions
pu conclure directement que la suite (¢,),en converge car nous venons de prouver qu’il
s’agit d’une suite de Cauchy. Rusons pour nous en sortir dans le cadre du programme :
pour tout n > N, on a ||{y]|lr < [[€n — En|lr + 1¢n]lF < €+ [N | F, donc la suite (€y)nen
est bornée a partir du rang N et donc est bornée tout court !

Comme F' est un espace vectoriel normé de dimension finie (sur K = R ou C), le théoréme
de Bolzano-Weierstrass s’applique a la suite (£,)nen : il existe une sous-suite (g (n))nen
qui converge vers un certain {eF.

Soit &’ > 0. On pose € = 5 > 0.

Comme (£, (n))nen converge vers £, il existe un rang M € N tel que pour tout n > M,
l€o(n) —L||F < € et en reprenant le calcul initial, il existe N € N tel que pour tous p,q > N,
1€y — £qllr <e.

On pose N’ = max(N, M) € N. Pour tout n > N’ on a ¢(n) >n > N, d’ou :

1~ £l < 1n — Lol + i — Ellr < 26 =€

Par suite, (£,)nen converge.
ii) Notons ¢ la limite de la suite (¢,)nen et montrons que f(z) —— £. Soit € > 0.
T—a

— Comme (f,,)nen converge uniformément vers f sur A, il existe un rang Ny € N tel que,
pour tout entier n > Ni, ||fn — flloo < &

— comme (¢,,),en converge vers £, il existe un rang No € N tel que, pour tout entier
n> Ny, b —£F < 55

— pour N = max(Ny, N3), comme fn(z) —— £y, il existe 6 > 0 tel que pour tout

r—a

z€A, |z—alp<d=|fn)nlF < 3.

Par suite, pour tout « € A tel que ||z —al|g <, on a:

If(2) = tlr <|If(2) = In@)l|F+ | fn (@) = Inlle+|[en — L <e.
<

SN —Flleo<§ <

wlm
wlo

Ainsi, f(z) — £.
T—a

b. Cas des séries

,l Théoréme 4.) Inversion limite/somme

Soit a € A et Y f,, une série de fonctions qui converge uniformément sur A. Si, pour tout n € N,
il existe £, € F tel que f,(z) — ¢, alors la série > ¢,, converge et on a :
r—ra

+oo +oo
lim 3 fu(@) = > (Tim ful@)).
n=0 n=0

Sous les mémes hypotheses, le résultat est valable dans les cas ot A C R et a = +oc.
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Exercice 18.

1. Justifier 'existence et déterminer lim_, 1o ((s).

1

2. Justifier 'existence et déterminer lim, o+ 2>, _, PR
n?+zx

3. Intégration

Dans ce paragraphe, les fonctions considérées sont définies sur un intervalle d’intérieur non vide I de
R et sont a valeurs dans K = R ou C; de plus, a, b sont des éléments de I tels que a < b.

a. Intégration sur un segment

On rappelle la notation suivante :
Notation 2. Norme de la convergence en moyenne

Soit C([a, b], K) 'espace vectoriel sur K des fonctions continues de [a,b] dans K. On note || - |1
la norme de la convergence en moyenne sur C([a,b],K) i.e. pour f € C([a,b],K) :

b
Hﬂhz/lﬂm&-

Proposition 13.

Soit (fy) une suite de fonctions continues et f une fonction continue de [a, b] dans K. Si (f5,)nen
converge en moyenne vers f ie. ||f, — flh —+> 0, alors
n—-+0oo

lim /ab Fult)dt = /abf(t) dr.

n——+00

S fa®)dt = [ @) at] = | [ (falt) - £8)) at
< J; 1fa0) = £(2)]

= lfa = flh ——=0.
n——+00

Sur C([a, b],K), la norme de la convergence en moyenne est dominée par la norme de la conver-
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gence uniforme ; plus précisément, on a, pour tout f € C([a,?],K) :

[fllr < (b= a)[[f]loo-

Soit f € C([a,b],K). On a :

b b
/ FB] A<l / dt = (b — )|l
a SN—— a

<supiepa by [ ()]

A Théoréme 5.) Interversion limite/intégrale

Soit (fn)nen une suite de fonctions de [a, b] dans K et f une fonction de [a,b] dans K. Si :

e pour tout n € N, f,, est continue sur [a, ] et;

e la suite (fy,)nen converge uniformément vers f sur [a, b],

alors f € C([a,b],K) et :

mR[h@a=L:th@w:AU@&

n—-+oo

On suppose que (fn)nen converge uniformément vers f sur [a,b]. Alors, comme les (f,) sont
continues sur [a, b], alors f est continue sur [a, b]. Ainsi, pour tout n € N, f,, — f € C([a,b],K) et

on a, d’apres le lemme précédent :

Ifn = Flln < (b= @)l fr = Flloo ——= 0.

n——+00

Donc (f,) converge en moyenne vers f. Par suite, d’aprés la proposition précédente, on a :

mlfh@azlv@@

n—-+o0o

Exercice 19.
1

Déterminer lim nsin™(x) dz.
n—-+4oo 0
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Pour n € N, on pose f, : z — nsin™(z) qui est continue sur [0,1]. Etudions la convergence
uniforme de la suite (f,)nen-

CVS sur [0,1] :

Soit z € [0,1]. Etudions la nature de (f,())nen-

Comme [0,1] C [0, 5[, on a 0 < sin(x) < 1 donc, par croissances comparées :

fn(x) = nsin”™(z) —— 0.

n—-+o0o

Par suite, (fn)nen converge simplement sur [0, 1] vers la fonction nulle.
CVU sur [0,1] :

On a, par positivité et croissance de la fonction sin™ sur [0, 1] :

lfn — fllo = nsin™(1) —— 0.

n—-+4oo

Par suite, (fy)nen converge uniformément sur [0, 1] vers la fonction nulle.

Ainsi, d’aprés le théoréme d’interversion limite/intégrale, on a :

1 1 1
lim nsin”(z)dz = / ( lim nsin”(:v)) dz = / 0dz =0.
0 0 0

n—-+oo n—-+oo

b. Intégration des séries de fonctions

,(Théoréme 6.) Interversion intégrale/somme

Soit Y fy, une série de fonctions de [a,b] dans K. Si :

e pour tout n € N, f,, est continue sur [a,d] et;

e la série > f,, converge uniformément sur [a, b],

+o00 b b b [+
faydt) = [ S dt = ) ) at.
Z(/ (1) ) / (1) /(Z <>>

alors :

On note (Sy)nen = Y fn. Comme pour tout k € N, f, est continue sur [a,b], S, = > 1 _, fx est
continue sur [a, b] comme somme de fonctions continues sur [a, b] et (Sp,)nen = Y fr converge uni-
formément sur [a, b] vers S. Ainsi, on obtient le résultat en appliquant le théoréme d’interversion
limite/intégrale (Théoréme 5) & la suite de fonctions (S )nen- O

Exercice 20.

sin(nx
(2 ) est définie et continue sur [0,7], puis démontrer que

—+o0
Montrer que f : =z — Z
n=1 n
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i 7
/0 F(r)de = ()

c. Primitives

(Théoréme 7.)

Soit a € I, (fn)nen une suite de fonctions continues et f une fonction de I dans K. Si (f5)nen
converge uniformément vers f sur tout segment de I, alors pour tout x € I :

Jim [ p@a= [ i foda= [ o

Soit a € T et Y f,, une série de fonctions continues de I dans K. Si Y f,, converge uniformément

sur tout segment de I vers sa somme S, alors on a :

X /e @ @ [+o0
;(/a fn(t)dt) =/a S(t)dtz/a <nz_%fn(t)> dt

On applique le théoréme 5 sur le segment [a, z]. O

Exercice 21.

oo
x
Montrer que pour tout = €] — 1, 1], Z — =—In(1 —x).
n
n=1
Pour n € N, on pose f, :  — z™ qui est une fonction continue sur | — 1,1[. De plus, d’aprés
lexemple 7 la série > f,, converge uniformément sur tout segment de | — 1, 1[ vers la fonction

S:x— ﬁ
Ainsi, d’apres le théoréme 7, pour tout « €] — 1,1, on a :

—In(1 —z) /S i(/wt”dt>:§; e Z%

n=0

4. Dérivation

Dans ce paragraphe, les fonctions considérées sont définies sur un intervalle d’intérieur non vide I de
R et sont a valeurs dans K = R ou C; de plus, a, b sont des éléments de I tels que a < b.
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a. Dérivation des suites de fonctions

{ Théoréme 8.) Interversion dérivation/limite

Soit (fn)nen une suite de fonctions de I dans K et f, g des fonctions de I dans K. Si :

e pour tout n € N, f,, est de classe C' sur I;
e la suite (fy,)nen converge simplement vers f sur I et;
e la suite (f/,)nen converge uniformément vers g sur tout segment de 1.

Alors :
— la suite (fp)nen converge uniformément vers f sur tout segment de I ;

— la fonction f est de classe C! sur I et on a :

f’< lim fn> =g= lim f/.

n—-+oo n—-+oo

En fait, on peut affaiblir les hypotheses du théoréme sans changer sa conclusion : le résultat reste
valide si on remplace i) par : "il existe a € I et £ € K tel que (f,(a))nen converge vers £” et en
posant f :x fax g(x)dt + ¢. Montrons le :

Tout d’abord, remarquons que la fonction g est continue sur I d’aprés le théoréeme de continuité
des limites de suites de fonctions car les f! sont continues sur [ et la suite (f/)nen converge sur
tout segment de I vers la fonction g.

Ainsi, la fonction f: z — faz g(z) dt + ¢ est définie sur I et de classe C! sur I comme primitive
sur I de la fonction g continue sur I.

Comme les f,, sont C! sur I, les f! sont continues sur I et d’apres ii), la suite (f/,)nen converge
sur tout segment de I vers la fonction g. Ainsi, d’apres le théoreme 7, pour z € I, la suite

i
( / fn(®) dt) converge et on a :
® neN

f(x)—é:/:g(t)dt: lim /;f;(t)dt.

n—-+oo

De plus, d’apres le théoréeme fondamental de ’analyse, on a, pour tout n € N :

ful) = | ") dt+ fola).

Ainsi, comme par hypothese, (f,.(a))nen converge vers ¢, la suite (f,,(z))nen converge comme
combinaison linéaire de suites convergentes et on a :

fa(@) —— f(@) + L= f(2).

n—r-+oo

Il en résulte que (fy)nen converge simplement vers f sur I et on a :

(lim fn> =f =g= lim f.

n—-+o0o n—-+o0o

Il reste a montrer que la convergence est uniforme sur tout segment de I :
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Soit S un segment de I de longueur s et contenant a. Pour tout x € S, on a :

[ rwars s - ([ e}

Aﬂﬁw—ﬂm&+nwwﬁ

|[fn(z) = f(2)]

max(a,z)
< [ el - 90)] dt+ Ufula) - €
min(a,r) S——~—
<Ifh—9lles,s
< Jz—alllfy = 9llss,s + | fula) — ¢
< SHfrlz - g”oo,S + [fn(a) = £|.

Par suite, f, — f est bornée sur S (mais on le savait déja car f,, — f est continue sur le segment
S) et on a, par convergence uniforme sur S de (f},)nen vers g et par convergence de (fp,(a))nen
vers £ :

”fn - f”oo,S < Svalz - gHoo,S + |fn(a) - £| — 0.

n——+oo

Ainsi (f,)nen converge uniformément sur tout segment de I contenant a vers f. Or, tout segment
de I est inclus dans un segment de I contenant a, donc (fy,)nen converge uniformément sur tout
segment de I vers f. O

Remarque 5.

— Dans la conclusion, on ne peut pas espérer mieux que la convergence uniforme de (fy,)nen
sur tout segment de I, et ce, méme si on a convergence uniforme de (f})nen sur I tout
entier vers g. En effet, pour f,, : z — (x + %)2, on a (f] )nen converge uniformément sur
R vers g : x +— 22 mais (f,)nen ne converge pas uniformément vers f : x + 2 sur R
tout entier (mais converge bien siir uniformément sur tout segment de R) !

— Avec la notation de la dérivation %, la conclusion du théoréme précédent devient, pour

zel: d d

Corollaire 3. Cas des fonctions de classe C*

Soit k € N* et (fy)nen une suite de fonctions de I dans K. Si :
e pour tout n € N, £, est de classe C* sur I ;

e pour tout ¢ € [0,k — 1], la suite ( fT(Li))neN converge simplement sur [ et ;

e la suite ( f,S’“))neN converge uniformément sur tout segment de I.
Alors : )
— pour tout ¢ € [0,k — 1], la suite la suite ( f#))neN converge uniformément sur I ;
— la limite simple f de la suite (f,)nen est de classe C* sur I et, pour tout i € [0, k], on
a:
f@ = lim £,

n—-+o0o
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b. Dérivation des séries de fonctions

A Théoréme 9.) Interversion dérivation/somme

Soit Y fy, une série de fonctions de I dans K. Si :

e pour tout n € N, f,, est de classe C! sur I;

e la série > f,, converge simplement vers sa somme S sur I et;
e la série > f! converge uniformément sur tout segment de I.

Alors :
— la série Y f,, converge uniformément vers S sur tout segment de I ;

— la fonction S est de classe C' sur I et on a :

+oo " 4o

Remarque 6.

Avec la notation de la dérivation -, la conclusion du théoréme précédent devient, pour z € I :

+ood

dmzf" _Z dxf (@)-

Exemple 10.

—nx

+oo @
La fonction S : z — Z

n=1

est de classe C! sur R’ et on a, pour tout x € R7,

S(z)=—-In(1 —e™®).

En Sup’, la fonction exponentielle exp de R dans R* est définie comme étant la fonction réciproque
de la fonction logarithme népérien (I'unique primitive de x — % s’annulant en 1. On peut alors montrer
que la fonction exp est 'unique solution du probléme de Cauchy y' = y et y(0) = 1 (ce qui peut d’ailleurs
étre pris comme définition de l'exponentielle également). Le théoréme suivant propose une "nouvelle”
expression de la fonction exp comme somme de série de fonctions... bon, en fait, on en parle depuis
longtemps mais on va enfin le démontrer proprement !

Théoréme 10.

Pour tout x € R, on a :

+o0 o
explr) = > 2
n=0
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+oo
g . z .
Considérons la fonction S : x — E —. On pose, pour n € N, f,, : x — T7.
n! '
n=0

Vérifions les hypothéses du théoréme d’interversion dérivation / somme (Théoréeme 9) :

e Pour n € N, f,, est de classe C'' sur R car polynomiale et on a, pour tout € R :

0 sin=0
falz)=q a!

—— sin>1.
(n—1)! -

e Montrons la convergence simple de Y f,, sur R.
xn
CVS sur R : Soit z € R. En appliquant la régle de D’Alembert, on montre que — est le
n!
terme général d’une série numérique absolument convergente et donc convergente.
Ainsi, Y f,, converge simplement sur R.

e Montrons la convergence uniforme de > f/ (au moins) sur tout segment de R.

Soit a > 0.
CVN sur [—a,a] : Soit n € N. On a f) =0 et, si n > 1, pour tout x € [—a, al,

n—1 n—1
FAC | G
(n—1! " (n—1)!
n—1
donc [|f!]lee < 4 (Cest méme une égalité) qui est le terme général d’une série
n (n _ 1)'

convergente d’apres, par exemple, la régle de d’Alembert.

Ainsi, par comparaison, Y |/f;|lcc converge. Il en résulte que, pour tout a > 0, > f/
converge normalement sur [—a, a], et donc, > f/ converge uniformément sur [—a, a.
Tout segment de R étant inclus dans un intervalle de la forme [—a, a] avec a > 0, la série
> fl converge uniformément sur tout segment de R.

Par suite, d’apres le théoréme d’interversion dérivation/somme, S est de classe C* sur R et on a,
pour tout x € R :

d Ixn X g v IR ot X an
S'(x):—g —:g ——:E 7:5 — = S(x).
dz n! dz n! (n—1)! n!
n=0 n=0 n=1 n=0

Par suite, comme de plus on a S(0) =1, S est solution du probléme de Cauchy :

v =y

y(0) =1
dont l'unique solution est la fonction  — exp(zx).
Il en résulte que pour tout =z € R :

400 s
exp(z) = Z P
n=0
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Exercice 22.

+oo s
1
Montrer que la fonction S : z — Z ey est de classe C' sur | — 1,1].
Pour n € N, on note f, :  — 755=. Montrons que S est de classe Clsur]—1,1[.

x Pour tout n € N, f,, est de classe C'* sur | —1, 1] comme quotient de fonctions polynomiales
dont le dénominateur ne s’annule pas. De plus, pour tout €] — 1,1[, on a :

nz" (1 — z?")
(1+ 22n)2

x CVS sur ] —1,1[ : Soit €] — 1, 1[. Etudions la nature de ¥ f,,(z). On a :

Or |z|™ est le terme général d’une série géométrique convergente car || < 1, donc, par
comparaison, Y fn(z) converge absolument et donc converge.

* Etudions la convergence uniforme de 3 f/ (au moins) sur tout segment de ] — 1, 1.

Soit a €]0,1[.
CVN sur [—a,a] de > f} : Soit n € N. Pour tout = € [—a,al, on a :

/ nlz[" (1 — 22" n—1
= <
|f7 (@) Aoz =ne

Par suite, f], est bornée sur [—a,a] et on a, sur [—a,a] :
I£lloe < na™*

Or, comme a €]0, 1[, " na"~! converge (en utilisant la régle de D’Alembert ou par compa-
raison & une série de Riemann convergente par exemple), donc, par comparaison, Y || 7 |lco
converge i.e. > f! converge normalement sur [—a, a.

Ainsi, pour tout a €]0,1[, Y f; converge normalement et donc uniformément sur [—a, al.
Or, tout segment de | — 1, 1[ est inclus dans un intervalle de la forme [—a, a], donc Y f,
converge uniformément sur tout segment de | — 1, 1].

Il en résulte que, d’apres le théoréme d’interversion dérivation/somme :

— la série ) f,, converge uniformément sur tout segment de | — 1,1[;
— la fonction S est de classe C* sur | — 1,1] et on a, pour tout = €] — 1,1[ :
d <X gn " X a1 — z27)
S’ = :
(@) = dx Z 14 x2n Z dz 1+ 22n n;l (1 + x2n)2
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Corollaire 4.  Cas des séries de fonctions de classe C*

Soit k € N* et Y f,, une série de fonctions de I dans K de I dans K. Si :
e pour tout n € N, f, est de classe C* sur I;
e pour tout ¢ € [0,k — 1], la série > f,(f) converge simplement sur [ et
e la série ) f (k) converge uniformément sur tout segment de I,

alors :
— pour tout ¢ € [0,k — 1], la série > £ converge uniformément sur tout segment de I ;

— la somme S de la série Y f,, est de classe C* sur I et, pour tout i € [0,k], on a
) +o00 O too
- (S5) -
n=0 n=0

c. Suites et séries de fonctions de classe C*

,(Théoréme 11.) Cas des fonctions de classe C>°

Soit (fn)nen une suite de fonctions de I dans K.

i) Théoréme d’interversion dérivation/limite. Si :
e pour tout n € N, f, est de classe C*° sur [ ;
e la suite (f,)nen converge simplement sur 7 ; et

e pour tout k € N*| la suite ( ,(lk))neN converge uniformément sur tout segment de I,

alors :
— la suite (fy,)nen converge uniformément sur tout segement de I et,

— la limite simple f de la suite (f,)nen est de classe C* sur I et, pour tout k € N, on
a

n—-+oo

(k)
f(’“):( lim fn> = lim f®
n—-+oo

ii) Théoréme d’interversion dérivation/somme. Si :
e pour tout n € N, f,, est de classe C*° sur [ ;
e la série > f,, converge simplement sur I, et

e pour tout k € N*, la série Y fy(lk) converge uniformément sur tout segment de I,
alors :
— la série Y f,, converge uniformément sur tout segement de I et,

— la somme S de la série Y f,, est de classe C* sur I et, pour tout k € N, on a :

“+o00 (k) “+o00
- (Sn) ~S e
n=0 n=0

Exemple 11.

La somme S de la série de fonctions Y f,, de terme général f,, : z —
et, pour tout k € N, S*) = .

n
L est de classe C*° sur R

n
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Remarque : cet exemple est destiné a illustrer le théoreme précédent, donc nous allons l'utiliser
pour montrer l'affirmation proposée. On pouvait bien-sir la démontrer beaucoup plus rapidement
en utilisant le fait que S = exp d’aprés le théoréme 10!

Vérifions les hypotheéses du théoréme d’interversion dérivation/somme (version C') :

e pour tout n € N, f,, est de classe C* sur I car polynomiale et on a, pour tout k € N et

tout z € R :
f(k)(x) _ 0 o sin<k

e la série > f,, converge simplement sur I (voire Exemple 2)
e Soit k € N*. Etudions la convergence uniforme (au moins) sur tout segment de I de la série
(k)
> fn
Soit a > 0.
CVN sur [—a,a] : Soit n € N. Sin <k, on a f,, =0 et si n > k, pour tout = € [—a,al,

|f(k)(x)| _ |.'L'|”—k an—k
" (n—k)!' = (n—k)!
(k) an=* . , , - .
donc ||fn|leec < R qui est le terme général d’une série convergente d’apres, par

exemple, la régle de d’Alembert
Ainsi, par comparaison, 3 [|f\"||. converge. 11 en résulte que, pour tout a > 0, S fF

converge normalement sur [—a, a], et donc, > fn converge uniformément sur [—a, al.
Tout segment de R étant inclus dans un intervalle de la forme [—a, a] avec a > 0, la série

> f,(Lk) converge uniformément sur tout segment de R.

Par suite, d’apres le théoréme d’interversion dérivation/somme, S est de classe C*° sur R et on
a, pour tout x € R :

( dk +oo " +oo Zn—k +oo s
k _ _ — P
S dxkzn; dek n! _Z(n—k)!_zn! = S5().
=0 n=0 n==k n=0
Exercice 23.
1. Montrer que la série de fonctions Y f,, de terme général f,, : © — z™ est C*° sur | — 1,1][.

Pour k € N, en déduire une expression, pour tout z €] — 1,1[, de

+oo k+ .

2. Montrer que la fonction ¢ est C*° sur |1, +oo| et pour k € N déterminer ¢(*).

e*nm
3. Montrer que la fonction ¢ : z — 39 ] est continue sur Ry et C* sur R% . Montrer
n

que f est croissante et déterminer lim,_,o+ f(x). En déduire que f n’est pas dérivable en
0.
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1
2. Montrons que ¢ : z — Z:: — est de classe C* sur |1, +oo[. Pour cela, on vérifie les
n
hypotheses du théoréme d’interversion dérivation/somme (version C'*) :
i) Pour tout n € N*, f,, : @ — - est de classe C* sur ]1, +ool;

ii) pour tout k € N, la série ) fy(Lk) converge uniformément sur tout segment de |1, +00[.

i) Soit n € N*. On a, pour z €]1, +o00[, fn(x) = n% = e~ 2In(") Ajnsi, f, est de classe C>
sur R comme composée de la fonction exp et = — —zIn(n) qui sont C*° sur R. Ainsi,
en particulier, f, est de classe C* sur ]1,+o00[ et on a, pour k € N et z €]1,4+00] :

(=1)* In(n)*

noc

f(lc) _ (71)k1n(n)k67$ln(n) _

ii) Soit k € N. Soit a > 1. On étudie la convergence normale de ) 75 sur [a, +o0].
Soit n € N. On a :

_1)k k k
Hfr(zk)”OO _ sup '( 1) ln(n) < IH(TL) .
z€la,+oo| n* ne
In(n)" Al - -
— Pour k£ =0, = — est le terme général d’une série convergente d’apres le
ne ne

critére de Riemann car a > 1. Ainsi, Y f,, converge normalement sur [a, +00[.

=1
— Soit k € N*. Pour tout 3 > 0, In(n) = o(n?) ; ainsi, pour 8 = a4 0,ona:

2k
1 k
n(n) _ 0( 1 )
ne na—k,@
a1 a+1 . s 9
Ora—kB =a-% = 5 > 1 car a > 1; par suite, d’apres le critere de

Riemann, est le terme général d’une série convergente et donc

1 In(n)*
v flia) Pest
aussi par comparaison. Ainsi, »_ fy(Lk) converge normalement sur [a, +00]
Il en résulte que, pour tout k € N, > fT(Lk) converge uniformément sur [a, +0o0 pour
tout @ > 1 et donc sur tout segment de |1, +o00|.
11 en résulte que, par le théoréme d’interversion dérivation/somme, ¢ est de classe C*°
sur |1, +o0[, et on a, pour tout k € N et tout = €]1, +o0[ :

~+o0 () +o0 +oo ln(n)k
(W) = (Z fn> () =) @) =(-1* )y —
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Partie C

Approximation uniforme

Dans cette partie, les fonctions considérées sont définies sur un intervalle I de R d’intérieur non vide et
sont & valeurs dans un espace vectoriel F' sur K = R ou C de dimension finie. De plus, a, b désignent deux
réels de I tels que a < b.

1. Définitions

Définition 7. Subdivision d’un segment

Soit n € N* et 0 = (a;)ic[o,n] une famille finie & valeurs dans [a,b]. On dit que o est une
subdivision du segment [a, b] si

a=ay< a1 <...<@p_1<a, =0>b.

Définition 8.| Fonctions en escalier

Soit ¢ : [a,b] — F. On dit que ¢ est une fonction en escalier sur [a,b] s’il existe une
subdivision o = (ag, ..., a,) de [a, b] telle que pour tout ¢ € [0,n — 1], Pllasasinl est constante.

On note Esc([a, b], F') 'ensemble des fonctions en escalier sur [a, b].

Définition 9. Fonctions continues par morceauz

Soit f : I — F. On dit que f est continue par morceaux sur le segment [a,b] s'il existe
une subdivision o = (ao, ..., a,) de [a,b] telle que pour tout i € [0,n—1], f| . est continue

aj,a;41

et prolongeable par continuité sur [a;, a;4+1].

On dit que f est continue par morceaux sur ’intervalle [ si f est continue par morceaux
sur tout segment de 1.

On note Cp, (I, F') Vensemble des fonctions continues par morceaux sur 1.

Exercice 24.

1. Dessiner quelques graphes de fonctions en escalier et continues par morceaux sur un seg-
ment.

2. Montrer que Cpy, (I, F) est un sous-espace vectoriel de Fy,(I, F).

2. Approximation uniforme par des fonctions en escalier
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Théoréme 12.

Soit f € Cpm([a,b], F). Alors, pour tout £ > 0, il existe ¢ € Esc([a, b], F) telle que || f — ¢l < €.

Autrement dit, toute fonction continue par morceaux sur [a,b] est limite uniforme d’une suite
de fonctions en escalier sur [a, b].

Autrement dit, I'ensemble Esc([a, b], F') est dense dans (Cpm([a,b], F), | - o)

e On traite tout d’abord le cas f continue sur [a,b]. Alors, d’apres le théoréme de Heine, f
est uniformément continue sur [a, b].
Soit € > 0. Alors il existe § > 0 tel que, pour tout z,y € [a,b] avec |z —y| < 4, || f(x) —
f(@W)|lFr < e. On construit alors une subdivision de [a, b] de la fagon suivante :

—a —a
— comme la suite (—— ), en+ converge vers 0, il existe n € N* tel que <.
n
. b—a
— pour ¢ € [[O,n]], on pose a; = a +1
n
Ainsi, 0 = (ag, - . ., ay) est une subdivision de [a, b]. On définit alors la fonction en escalier

@ :la,b] = F, pour z € [a,b], par :

(p(x):{f(a) siz=a

flair1) sia; <z <ajpr,t €[0,n—1].
Pour z € [a, b], on a l'alternative :
— z =a. Alors ||f(a) — p(a)||lr =0<e.
— il existe i € ¢ € [0,n — 1] tel que z €a;, a;+1]. Alors |z — a;41] < 6, donc :

1f(2) = p@)llr = If(2) = flai)llr <e.
Dans tous les cas, || f(z) — ¢(z)||r < e. Par suite, ||f — @[l < e.

o Traitons maintenant le cas général f € Cp,([a,d], F'). On considére une subdivision o =
(ag,...,a,) adaptée a f et on note, pour tout ¢ € [0,n — 1], f; le prolongement par
continuité de f|1a7¢,a¢+1[ sur [a;, a;y1].

Soit € > 0. Comme pour chaque i € [0,n — 1], f; est continue sur [a;, a; 1], en appliquant

le point précédent & f;, on construit p; € Esc([a,b], F) telle que || f; — ¢illco < €.

On définit alors la fonction en escalier ¢ : [a,b] — F, pour z € [a,b], par :
fla; siz=ua;, t€[0,n
olz) =710 0.7
wi(x) sia; <z <ap, i€ [0,n—1].
Pour z € [a,b], on a lalternative :
— il existe ¢ € i € [0,n] tel que x = a;. Alors ||f(a;) — ¢(a;)||Fr =0 <e.
— il existe i € i € [0,n — 1] tel que = €]a;, a;11[. Alors, on a :
I1f(2) = e(@)llr = lfi(z) = pi(@)]|r < [Ifi = pillc <e.
Dans tous les cas, || f(z) — ¢(z)||r < e. Par suite, ||f — ¢|lo < €.

Pour démontrer ce point, on pouvait également remarquer que tout fonction continue par
morceaux sur [a,b] est la somme d’une fonction continue et d’une fonction en escalier.
On conclut alors en approximant, grace au premier point, cette fonction continue par une
fonction en escalier.

O
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Exercice 25.

Montrer que toute fonction continue sur le segment [a,b] est limite uniforme d’une suite de
fonctions affines par morceaux.

Exercice 26. Cas particulier du Lemme intégrale de Riemann-Lebesque

Soit f € Cp([a, b],C). Montrer que f; ft)emtdt = 0.

3. Approximation uniforme par des fonctions polynomiales : théoréme de Weierstrass

Notation 3.| Fonctions polynomiales

On note P([a, b], K) 'ensemble des fonctions polynomiales de R dans K restreintes au segment
[a,b] i.e. sip € P([a,b],K), il existe P € K[X] tel que, pour tout x € [a,b], p(x) = P(x).

,l Théoréme 13.) Théoréme de Weierstrass

Soit f € C([a,b],K). Alors, pour tout £ > 0, il existe p € P([a, b],K) telle que ||f — ¢|lco < &.
Autrement dit, toute fonction continue sur [a,b] est limite uniforme d’une suite de fonctions
polynomiales.

Autrement dit, Pensemble P([a, b], K) est dense dans (C([a, b],K), || - ||co)-

Voire le probleme 1. O

Exercice 27.

Soit f € C([0,1],R). Montrer que si, pour tout n € N, fol t"f(t)dt = 0, alors f est la fonction
nulle sur [0, 1].

Remarque 7.

Le théoréme de Weierstrass n’est pas valable en remplagant [a, b] par un intervalle non bornée,
comme R par exemple. On peut s’en convaincre en remarquant par exemple qu’une fonction
continue bornée non constante sur R ne peur étre approchée uniformément pas une suite de
polynoémes.

Et c’est méme "plus grave” que cela, comme en atteste I'exercice suivant :
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Exercice 28.

1. Soit p une fonction polynomiale de R dans R. Montrer que si la fonction p est bornée sur
R, alors p est constante sur R.

2. Soit f € C(R,R). On suppose qu'’il existe une suite (p,,)nen de fonctions polynomiales qui
convergent uniformément sur R vers f. Montrer que f est une fonction polynomiale.

1. Soit p: z — ZZ:O arz® une fonction polynomiale. On suppose que p n’est pas constante.
Alors n > 1 et a, # 0. Ainsi, on a p(x) ~ a,z™ ——— F00 donc p n’est pas bornée
T—>+00 T—>+00

sur R.
Ainsi, par contraposée, si p est bornée sur R alors p est constante sur R.

2. Soit f : R — R une fonction continue. Supposons qu’il existe une suite (p,)nen de fonctions
polynomiales qui convergent uniformément sur R vers f.
Ainsi, il existe N € N tel que, pour tout entier n > N, ||pp, — f|locc < 1.
Soit n € N avecn > N. Pour tout z € R, on a :

P (2) — p ()] < |pn(2) = f(2)] + |pn (2) = f(@)] <P = flloo + [lpn = flloo < 2.

La fonction p, — py qui est polynomiale comme combinaison linéaire de fonctions polyno-
miales, est donc bornée sur R. Par suite, d’apres la question 1., p, — py est une fonction
constante sur R. On note ¢,, cette constante.
D’apres le calcul précédent, on a |c,| = [[pn — PNl < 2 d’0U (c¢p)n>n est une suite a
valeurs réelles bornées et donc, d’apres le théoreme de Bolzano-Weierstrass, il existe une
sous-suite (Cy(n))n>N de (¢n)n>N qui converge vers une réel c.
Comme (py(n))n>n converge uniformément et donc simplement vers f sur R, on a, pour
z €Ret pourn e Navecn > N :

f(@) = pn(2) + (Pp(n) (x) = Pn(x)) + (f(2) = Pp(n) () ——— pr(2) + ¢

n—-+oo

=Cp(n) —>n_’+x 0

Ainsi f = py + ¢ et donc f est une fonction polynomiale.
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Exercices et problemes

Exercice 29.

On considere E 'espace vectoriel des fonctions de R dans R. On souhaite montrer qu’il n’existe

pas de norme || - || sur E telle que, pour toute suite (f,,)nen € EY, (fn)nen converge simplement
sur E vers Og si, et seulement si, (fy,)nen converge vers Og dans (E, | - ).
1. Soit || - || une norme sur E. Construire une suite de fonctions de norme 1 qui converge

simplement vers Op.
2. Conclure.

3. Montrer, si ce n’est déja fait !, que ’affirmation de 1’énoncé reste valable pour E = C(R,R).

1. Soit || - || une norme sur E.
1 sizel]o, -1
Pour n € N, on pose g, = 1jg _1_j: 2 — . ) ”*1] ; alors g, # Og et on note
PR 0  sinon
— _9n
Fn = ot
Montrons que (f,)nen converge simplement vers la fonction nulle.
CVS sur R.
Soit z € R. Si x <0, alors, pour tout n € N, f,,(z) = 0. Si > 0, alors, pour N = L%J eN,
+ <N+1, donc, pour tout entier n > N, x > Ni—l > n+1
Par suite, on a, pour tout entier n > N, g, (z) = 0 et donc f,(x) = Hg(m\) = 0. Ainsi,

o) P 0.

Il en résulte que (fy)nen converge simplement sur R vers la fonction nulle.
2. La suite (fn)nen de la question précédente ne converge pas vers Og dans (E, | - ||) car
| fn —Op| =1 —+> 1 # 0. Par suite, il existe une suite a valeurs dans F qui converge
n—-+0oo
simplement vers Op mais qui ne converge pas vers Og dans (E, || - ||) d’ou la véracité de

Paffirmation de 1’énoncé.

3. Soit || - || une norme sur E = C(R,R).
La suite de fonctions (fy)nen contruite dans la question 1. n’est plus a valeurs dans
FE et méme si essayait de rendre au moins affine par morceaux les f,, on perdrait la
convergence en 0 vers 0. On va donc éloigner 0 de la partie! Pour n € N, on pose

(n+2)x six €0, %—1—2]
1 € =
gn = T — L si [”“ i) ; alors, on vérfie que la g, est continue, que
tl(] — ) s1x€[n+1,1]
0 sinon.

gn # 0g et on note f,, = IIZ:H' La suite de fonctions (f,)nen converge simplement vers O
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(& vérfier par le lecteur!) et, comme précédemment, (f,)nen ne converge pas vers Og dans
(&1
Exercice 30. Fonction continue et dérivable nulle part

On consideére la fonction ¢ : R — R telle que ¢ est 4-périodique sur R et définie, pour z € [—2, 2],
par :

1—2 si0<x<2
p(x) = .
1+ si —2<2<0
92"
On pose, pour n € N*, f, : x> %
1. Montrer que ¢ est bornée par 1 et 1-lipschitzienne sur R.
+oo
2. Montrer que la fonction S : x — Z fn(x) est définie, 1-périodique et continue sur R.
n=1

3. Dans cette question, on cherche & démontrer que S n’est dérivable en aucun point de R.
Soit = € R.

(a) Montrer que pour tout n € N*, il existe a,, € Z et u, € {—1,1} tels que 22"z et
22"y + u, sont compris entre 2a,, et 2a, + 2.

(b) Soit N € N*. On pose hy = 2

22N

i. Calculer f,(x + hy) — fn(z) pour n = N puis pour n > N.
ii. Montrer que :

1
[Syv_1(z+ hy) — Sn-1(z)| < 52T

ou S, désigne la somme partielle d’ordre n € N de la série >~ -, fn.

(¢) Déduire de ce qui précéde que S n’est pas dérivable en x puis conclure.

1. On a |1 £ 2| < 1 pour tout & € [—2,2], donc, par 4-périodicité de ¢, ¢ est bornée par 1
sur R. Montrons qu’elle est 1-lipschitzienne sur R. Soit z,y € R avec z < y. Distinguons
plusieurs cas :

* Si |z —y| > 2: comme ¢ est bornée par 1, on a :

lo(x) —p(y)| <2 < |z —y|

* Si |z —y| < 2: ¢ étant 4-périodique, on peut supposer sans perte de généralité que

x €] —2,2].
— Siz,y €] —2,0[ ou z,y € [0,2] alors, ¢ étant affine de coefficient directeur +1 sur
ces intervalles, on a |¢o(x) — ¢(y)| = |z — y|.

— Sinon, si z €] — 2,0[, alors y € [0,2] d’ou :

[f(@) = f(y)l < |f(@) = FO[+]f0) = fW)] = || + |y| = =z +y = |z —y].

=[1+z—1] 1-(1-y)l
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— Sinon, si z € [0, 2], alors y €]2,4] d’ou :

|f (@)= f@W)| < |f(x) — F)|+ |f(2) — fy)| = [2—z|+]2—y| =2—z+y—2 = [z—y|
—j1—z+1]  |-1—(1+(y—4))]

Ainsi, dans tous les cas, |p(z) — ¢(y)| < |z — y|. Dot ¢ est 1-lipschitzienne sur R.
Remarque : on aurait pu montrer le fait plus général sutvant : si une fonction est continue, lipschitzienne
par morceaux sur R et telle que l’ensemble des constantes de Lispchitz sur les morceaux est majoré,

alors cette fonction est lipschitzienne sur R.

2. On considere la série de fonctions Y -, fn.

CVN sur R :
Soit n € N*. Pour tout € R, on a, comme ¢ est bornée par 1 sur R :

on
_ e w)| _ 1
| fn(2)| = < on
D D

Ainsi, || fulleo < 2% qui est le terme général d’une série convergente car série géométrique
de raison €] —1,1[.
Par suite, par comparaison >, <, || falloc converge et donc 3 -, f, converge normalement
sur R.
Il en résulte que anl fn converge uniformément et simplement sur R vesr S.
De plus, pour tout n € N*, f,, est continue sur R comme composée de la fonctions continues
x — 22"z et ¢ (continue car lipschitzienne), donc, d’aprés le théoréme de continuité des
sommes de séries de fonctions, S est définie et continue sur R.

On remarque que, pour tout n € N*, on a 2" > 2 d’ott 22" = 4q avec ¢ € N* et donc, par
4-périodicité de ¢ :

falz+1) =02 (x+1)) = (2% 2z +22") = 0(2*"2) = fo(a).

Par suite, f,, est 1 périodique. Ainsi, comme S est la limite simple de la série > - fn, S
est 1 périodique sur R.

3. Soit x € R.
(a) Soit n € N*. On pose y = 22" z. Pour a,, = {%J € Z,on a2a, <y < 2a, + 2.
— Si 2a, <y < 2ay, +1, alors 2a, < 2a, +1<y+1< 2a, + 2, dou, pour u, =1,
22"y = y et 22"y 4 U, =y + 1 sont compris entre 2a,, et 2a,, + 2.

— Si2a, +1 <y < 2a,+2,alors 2a, <y—1< 2a, +1 < 2a, + 2, d’ou, pour
up = —1, 22"z =y et 22"z + u,, = y — 1 sont compris entre 2a, et 2a, + 2.

(b) Soit N € N*. Pour n € N*, on a :

on on uUN on_oN

i. *x pourn=N :

Si apn est pair, alors 22V p et 227 1 + upy sont compris entre 4q et 4q + 2 ou

an = 2q;
Si ay est impair, alors 22"z et 22" z + uy sont compris entre 4 — 2 et 4q o
an =2q—1;
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donc, par 4-périodicité de ¢, on a :

(2" z +un) — (2% z)

B 1—(22Nx+uN—4q)—(1—(22Nx—4q)) si ay pair
B 1+(22Nm+uN—4q)—(1—|—(22Nx—4q)) si an impair

022"z +uy)— 022 z) = uy

d’ou : .
u
In(z+hy) — fy(z) = 2% =+

A
* pour n > N :

On a 2" — 2V = 2VN(2""N) > 2 car N € N* donc ¢ = 22" =22y, st un

entier et on a :
_9oN

22nh]\[ = 22n unN = 4q

Par suite, par 4-périodicité de ¢ :

Fa(@+hn)—fal@) = (2% 2422 hw) — (2% 2) = p(2*" T+49) - p(2*"x) = 0.
ii. Comme ¢ est 1-lipschitzienne sur R, on a, pour tout n € N* :

|<p(22"x + 22”hN) = @(22":13)| < 2?" hyn| = 92" 2"

Par suite, sin < N, on a 2" — 2V < 2N-1 _oN — _9oN—=1 qop
27L 2"1 2"1 1
lp(2° = +2% hy) — (27 )| < 2T
Ainsi, on a :
N-1
Sn-1(z +hn) = Sn1(@)] = | D (fale+hn) = fal2))
n=1
N-1
n=1
- N @ e 422" hy) — (27" a)|
B n=1 2n
-1 |
- v 2n
n=1
——
:172]%131
1
S 22N—1

o8



(¢) On a, d’apres les deux précédentes questions, pour tout N € N* :

Se+hy)=S@)| 1 |X -
= 22N ‘(SN_l(LE—i—hN)—SN_l(JJ)):E%‘

N 1
> 22 (2_1\7 —|Sn-1(z + hy) — SN—1(36)>

oN 1 1
> 2 (2_1\7 - 221\7—1> .
Ainsi, on a :

S(z + hy) — S(z)
hn

o~ (1 1\ v n 1
22 (Z_N_22N—‘l> =2 <1_22N‘1—N> N—+oo oo

Or, on remarque que la suite (h,)pen converge vers 0, donc la quantité

S(z + h) — S(x)

n’admet pas de limite finie quand h tend vers 0 i.e. S n’est pas

dérivable en .

Ceci étant vrai pour tout « € R, S n’est dérivable en aucun point de R et est continue
en tout point de R!

Apercu des fonctions : ¢ (en noir); Sy (en bleu); Se (en vert); Ss (en rouge).

On se propose, dans le probléme suivant, de démontrer le théoréeme de Weierstrass (Théoréme 13) a
I’aide des polynémes de Bernstein. La démonstration semble astucieuse mais nous verrons une reformu-
lation bien plus élégante de cette démonstration dans le chapitre sur les probabilités dont les outils sont
bien adaptés a 1’étude de ces polynomes.
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Probléme 1. Polynomes de Bernstein et démonstration du Théoréme de Weierstrass

Pour f € C([0,1],K) et n € N*, on considére le polynéme B, (f) € K[X] défini par :

n

=3 (3)7 (%) -z

k=0
Les polynomes B, (f) sont appelés polyndmes de Bernstein associés d f.
Pour i € N, on note f; : x>z et g: x> 2(1 — x).

1. Déterminer les polynomes de Bernstein associés aux fonctions fo, f1 et g.
2. Soit n € N*.

(a) Apreés avoir montrer que 'application f +— B, (f) définie sur C([0, 1], K) est linéaire,
déterminer B,,(f2).

(b) Exprimer de deux fagons le polynome B, (f2) — 2X B, (f1) + X?

B, (fo) puis montrer
que, pour tout z € [0,1] :

3. Soit f € C([0,1], K).

(a) Soit € > 0. Montrer qu’il existe § > 0 tel que, pour tout n € N* et pour tout = € [0,1] :

Ba()(x) ~ fla)) < e Ly 2

Indication : on pensera a utiliser le théoréme de Heine.

N
N

(b) En déduire que la suite de fonctions polynomiales (B, (f))nen+ converge uniformé-
ment sur [0, 1] vers f.

4. Démontrer le théoréme de Weierstrass.

1. Soit n € N*.

fo. On a, d’apres la formule du binéme de Newton :

n(fo) =i< )X’“l— X F=(X+1-X)" =1

k=0
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fi. On remarque que, pour tout k € [1,n], (Z)% = (Z:}) donc :

By (f1) zn: (:) Sxk(l _ x)nk

k=0

_ f: <Z - 1)){’“(1 — Rt

k=

=

_ = <n ; 1>Xk+1(1 _ X)(n—l)—k
0
= X(X+01-x)~ !
B,.(f1) = X.

3

b
Il

g. Sin=1, on a By(f) =0. Supposons n > 2.
On a, pour tout k € [2,n] :

(- (i)

Ainsi :
— - Z E k1 _ n—k
Bulg) = ];)(k)g<n)X(1 X)
l—n<~/n-—2 e
= — é(k1>xk(1—x) k
_ 1—n'$= (n—2 k411 _ yy(n—2)—k+1
” k_o( B )X (1-X)
= 1;nX(1fX)(X+(1fX))”*2
Bug) = X(X 1)

2. (a) On a, pour tous g1, 92 € C(]0,1],K) et tous A, p € K :

BaXpr +g2) = Zn: (Z) (Ap1 + pupa) (:) X*(1—x)n*

k=0

= £Q(n (D)1 () e
(

Z)‘Pl (ﬁ) Xk - X))k 4 é (Z)soz (f;) XF(1—x)n*

n(p2)-

[
>
Sy

=

A
_|_

=
Sy

B (Ap1 + pp2)

D’ou f +— B, (f) est linéaire.
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On remarque que fo = g+ f; d’ou, par linéarité :
n—1

Bu(f2) = Bulg) + Balf1) = "2 X(X 1) + X.
(b) On a, d’apres la question précédente :
Ba(f2) ~ 2XBa(fi) + XBalfe) = " IX(X 1)+ X —2X* + X?
= nT_llX(X—l)—X(X—l)
Bn(f2) —2XB,(f1) + X*B,(fo) = %X(l - X).

D’autre part, on a :

Bn(f2) —2XBn(f1) + X*Bn(fo) = zn: (k> (k2 ox® +X2) Xk(1 - Xk

k=0 n?
Batt) 258+ X8 = 3o (3) (B -x) xha -

k=0

Ainsi, en évaluant B,,(f2) — 2X B,.(f1) + X?B,(fo) en z € [0, 1], on obtient :
n 2
kz:% <Z) <Z — x) zF(1 —z)" 7k = %x(l —x)

De plus, I'étude de la fonction ¢ — ¢(1 — ¢) montre qu’elle admet 1 7 bour maximum
(atteint en ¢t = 1), d’ou :

ki_o (Z) (S B x>2‘”k(1 ot = a(l-n) < o

3. Soit f € C([0,1],K), € > 0 et n € N*.
(a) La fonction f est continue sur le segment [0, 1] donc, d’apres le théoreme de Heine,

elle est uniformément continue sur ce segment. Ainsi, il existe § > 0 tel que, pour tous
z,y €[0,1], [z —y[ <é = [f(z) = fW)I <5

Soit € [0,1]. On a :
kiio (Z) (f <:) - f(x)> 2k (1 — )"k

2 ()7 (5) -7l
k=0
On considére I'ensemble D = {k € [0,n] | |£ — 2| < 6} et son complémentaire D*

(-2
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1B (f)(@) = f(z)] =

(1—xz)" "k,

oy
3
—~
-
=
&
|

~
—~
8
el
\

dans [0, n]. On remarque alors que, pour tout k € D¢ 1 < et donc :

() - s

2
< 2| flloe = 2||f||001<2”f'°°.(n_x) .
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Ainsi, d’apres la question 2.b) :

IBa(f)(@) - f(2)] < M()\f(z f@)| o
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(b) Comme < + 0 et ”;“SIQ > 0, il existe un rang N € N* tel que, pour tout entier
n— OO
n > N, % < | fH . Ainsi, d’apres la question précédente, on a, pour tout n > N et
pour tout z € [0,1] :
e fllo 1 _e €
B, - << S<iyf_g
Bu(f)(e) ~ f@) < S+ Wl 222

Ainsi, on obtient, pour tout n > N, ||B,(f) — flloo < e&. Par suite, |B,(f) —
Flloo e 0 et donc (B (f))nen+ converge uniformément sur [0, 1] vers f.
n—-+0oo

4. Soit a,b € R avec a < b. On note « : z — (b — a)x + a. Alors « est une bijection continue
de [0,1] dans [a,b] et on a a~* ~1 sont des fonctions
polynomiales.

Soit f € C([a,b],K). On pose g = f o a. Alors, g est continue sur [0,1] comme composée
d’applications continues et ainsi, d’apres la question 3.b), il existe une suite (g, )nen de
fonctions polynomiales qui converge uniformément vers g (en loccurence, ¢, = B, 11(9))-
Pour n € N, on pose p,, = g,oa~!. Une composée de fonctions polynomiales est polynomiale,
donc, pour tout n € N, p,, est polynomiale et on a, sur [a,b], p, — f = (¢gn — g) o~ . Par
suite, on a :

sup |(pn — f)(@)| = sup |(gn —g)(@™'(2))| = sup |gn(t) — g(t)] ——— 0.
x€[a,b] z€[a,b] tefo,1] 0=r€S

Il en résulte que la suite de fonctions polynomiales (py, ),en converge uniformément sur [a, b]
vers f.
D’ou le théoreme de Weierstrass.
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