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Dans ce chapitre, n désigne un entier naturel non nul et F désigne un espace vectoriel sur K ou K est
un sous-corps de C. On se limitera dans les manipulations au cas K = R ou C.

Partie A

Rappels et compléments d’algebre linéaire

1. Somme finie de sous-espaces vectoriels

Dans ce paragraphe, on généralise la notion de somme de deux sous-espaces vectoriels vue en Sup’ au
cas d’un nombre fini de sous-espaces.

Définition 1. Somme finie de sous-espaces vectoriels

Soit m € N* et F, ..., F,, des sous-espaces vectoriels de F. On appelle somme de Fi, ..., F,, et

m
on note F; + ... + F;,, ou encore Z F;, le sous-ensemble de E :
i=1

i=1

i=1

Proposition 1.

Soit m € N* et I, ..., F,, des sous-espaces vectoriels de E. Alors

i=1 =1

m
En particulier, Z F; est un sous-espace vectoriel de F.
i=1

Onpose F =", F,et U=, F..
Montrons tout d’abord que F' est un sous-espace vectoriel de E :
On a F C F car pour tout ¢ € [1,m] et pour tout z; € F; C E, E étant stable par combinaisons
linéaires, z1 + ... + &, € E.
— OnaOg =), 0g €F car pour chaque i € [1,m], F; est un sous-espace vectoriel de
o
FE et donc contient Og.

— Soit A, p e Ketzx =14+ ... + T,y = Y1 + ... +Ym € F avec, pour tout ¢ € [1,m],



zi,y; € F;. On a :

m

Ao+ py =Y (Ami+pyi) € F

=1l cF,

car pour chaque i € [1,m], F; est un sous-espace vectoriel de E et donc est stable par
combinaisons linéaires.
Par suite, F' est un sous-espace vectoriel de E. On pouvait également montrer que F' est un sous-
espace de B2 comme l'image directe du sous-espace vectoriel Fy X ... X F,,, de E™ par l'application
linéaire f: (x1,...,Tm) — 1 + ... + T, de E™ dans E.

Montrons que F' = Vect(U). Soit « € U. Alors il existe j € [1,m] tel que = € F;. Pour chaque

0 D
1 € [1,m], on pose y; = { B S? l 7 ] Alors, pour tout ¢ € [1,m], y; € F; et donc
% sii=j

m
x:ZinF
i=1

Par suite, U C F.

Maintenant, soit G un sous-espace vectoriel de E' contenant U. Soit z = z1 + ... + x,,, € F avec,
pour tout ¢ € [1,m], z; € F;. Comme, pour tout ¢ € [1,m], ; € U C G et G est stable par
combinaisons linéaires, z € G. Par suite, F' C G.

Ainsi, F est le plus petit sous-espace vectoriel de E contenant U i.e. F' = Vect(U). O

Corollaire 1.

Soit m € N* et Fi, ..., F},, des sous-espaces vectoriels de E. Si pour chaque i € [1,m, F; est une
famille génératrice de F;, alors la famille F obtenue en concaténant (i.e. en mettant bout-a-bout)
les familles F, ..., Fy,, est une famille génératrice de la somme Fy + ... + Fj,.

Comme tout élément de F appartient & U = |J, F;, on a Vect(F) C Vect(U) = Fi + ... + Fp,.
Pour linclusion réciproque, on remarque que pour tout 7 € [1,m], tout élément de F; est com-
binaison linéaire d’éléments de la famille F; et donc de la famille F. Par suite, U C Vect(F) qui
est un sous-espace vectoriel de E. Or Vect(U) est le plus petit sous-espace vectoriel contenant U
donc Fy + ... + Fy,, = Vect(U) C Vect(F).

Par suite, F est une famille génératrice de la somme. O

Définition 2. Sous-espaces vectoriels en somme directe

Soit m € N* et F1, ..., F}, des sous-espaces vectoriels de FE.

On dit que F1, ..., F,, sont en somme directe si, pour tout y € 2211 F; -

il existe un unique m-uplet (z1,...,2;,) € F1 X ... X Fp, tel que y = 21 + ... + T ;

autrement dit, y se décompose de maniére unique sous la forme y = xz; + ... + z,,, avec, pour
tout i € [1,m], z; € F;.



m
Dans ce cas, la somme ZZ’; F; est appelée somme directe de F7, ..., F}, et on note @ F; =
i=1

iFi ou encore Fy & ... F,, = iFl

i=1 =1

Proposition 2.

Soit m € N* et F1, ..., F,, des sous-espaces vectoriels de E. Les assertions suivantes sont équi-
valentes :
i) FY,..., Fy, sont en somme directe ;

m

ii) pour tout y =1 + ... + T €Y .

1=

1 Fi avec, pour tout i € [1,m], ; € F; :
y = O implique, pour tout i € [[1,m], x; = Op.

iii) pour tout i € [1,m], ZFj NF;, ={0g}.
j=1
JF#i

iv) pour tout i € [2,m], (F1 + ...+ F;_1) N F; = {0g}.

i) = ii) On supposei). Soit y = x1+...+x, € Yo, F; avec, pour tout i € [1,m], z; € F;. On
suppose y = 0g. Comme les F; sont des sous-espaces vectoriels de E et donc contiennent
0, celui-ci admet la décomposition y = 0 = 2211 Og dansla somme F; + ...+ F},. La

o
somme étant directe, par unicité de la décomposition de y dans la somme, on a, pour tout
i€l,m], z; =0pg.

ii) = iii) On suppose ii). Soit ¢ € [1,m]. On pose F = ZFj. Soit x € F N F;. Comme

j=1
J#i
x € F, pour tout j € [1,m] avec j # ¢, il existe z; € Fj tels que z = Z;nzl xj. On pose
[
r; = —x € F;. Alors on a :
m m
ij :xi—i—ij =—x+z=0g
j=1 j=1
i
Ainsi, par hypothese, pour tout j € [1,m], z; = Og. En particulier, on a 2 = —x; =
—0g =0g.

Par suite, F N F; = {Og}.

iii) = iv) On suppose iii). Soit i € [2,m]. Alors Fy + ... + F;_1 C F = ZFj et donc

Jj=1
i#i

(Fl + ...+ Fi—l) NEF,C FNF;, = {OE} Par suite, (F1 + ...+ Fi—l) NF;, = {OE}



iv) = i) On suppose iv). Soit y € Y7" F; et y = 21 + . 4+ Ton, Yy = @4 + ... + 2, des
décompositions de z dans la somme Y., F; o, pour tout i € [1,m], z;,x} € F;.
Onalp=y—y=>Y . (x; —2}) donc, les F; étant des sous-espaces vectoriels de E et
ainsi étant stables par combinaisons linéaires, x!, — z,, € F,, et

m—1
T — T = Z (i —zi) €L+ ..+ Fpa
—_ T

F;

Donc z},, — m € (F1 + ... + Fin_1) N Fy, = {0g} par hypothése. Par suite !, = x,.

On réitere le méme raisonnement de proche en proche pour ¢ = m — 1, ..., 2 pour obtenir
x = x;. Puis pour ¢ = 1, on arrive alors & 1 — 2} = 0g d’ou 2} = ;.

Il en résulte que la décomposition de y dans la somme Fi + ... + F},, est unique.

Exemple 1.

— Dans R[X], les sous-espaces F; = Vect(X*) pour i = 0, ...,m € N* sont en somme directe
et

éFi = R [X].

— On considere E = F(R,R) et pour I C R, on note Fy = {f € E |V ¢ I, f(x) =0}
exercice : montrer que Fr est un sous-espace vectoriel de E. Alors les sous-espaces vectoriels F],ooyo],
F{1 8], et Fi33,100] sont en somme directe et

Fi_ 00 © Fl1,8) © Fl33,100) = F—o0,0]U[1,8]U[33,100]-

On a Fj_ 0 N Fj1,5) = {0} car si une fonction f appartient & cette intersection,
elle est nulle en dehors de | — 00, 0] et en dehors de [1,8] qui sont des intervalles
disjoints.

De plus, on a F|_ 0 + F1,8) = F]—c0,01U[1,8]-

En effet, si f = fi + fo € Fj_ ) + Fl1,g), alors, pour tout = ¢] — 0o,0] U [1, 8],
f(z) =0 car z ¢] — 00,0], dout fi(z) = 0 et z ¢ [1,8], dout fo(xz) = 0. Ainsi,
F_oo,00 + Fl1,8) C F—o0,00u[1,8)-

Et si f € F]_o,0)u[1,8], On poSe :

f(z) sizell,§
0 sinon

flsz{f(x) si z €] — 00, 0]

0 sinon

etfgzx»—>{

Alors f1 € Fl_oo0) €t fo € Fjy g et | —00,0] et [1,8] étant disjoints, f = f1 + f2 €
Fl_oo00 + Fl1,8)- Ainsi Fi_oo ojuf1,8] C Fl—co,0] + Fl1,8-

Maintenant, comme | — 0o, 0] U [1, 8] et [33,100] sont disjoints, comme précédem-
ment, on a :

(Fi—o0,0) + F11,8)) N F33,100] = F—o0,01u1,8] N F133,100) = {0}

Il en résulte que Fj_ o], F1,8], et F33,100) sont en somme directe.




Exercice 1.

On note :
Sp(R) = {M € M,(R) | '"M = M} (ensemble des matrices symétriques) et
e A,(R)={M € M,(R) |'M = —M} (ensemble des matrices antisymétriques).
Montrer que M, (R) = S,(R) & A, (R).

Exercice 2.

0 2 -1
On considere la matrice M = |3 1 —3]| et f € L(R3) I'endomorphisme canoniquement
2 2 -3

associé a M.
Montrer que les sous-espaces vectoriels Ker(f —Idg), Ker(f+1dg), Ker(f+2Idg) sont en somme
directe et déterminer leur somme.

On note B la base canonique de R®. Alors M = Matg(f). On pose Fy = Ker(f — Idg), I =
Ker(f +1dg), F3 = Ker(f + 2Idg).
Soit © = 21 + 29 + 23 € F1 + F» + F3 avec x; € F;. Alors on a :

f(@1) = z1; f(x2) = —x2 et f(x3) = —2x3.

et donc,
2(z1) = z1; fAz2) =x2 et f(x3) = 4xs.

Supposons x = Ogs. Alors, par linéarité de f, f(z) = 0g = f2(x). Par suite, on a le systéme :

1 + x + T3 = 0g
z1 + —xz2 + —2z3 = O
xr1 + X9 + 4x3 = 0g

On le résout pour trouver x; = xo = x3 = Op. Par suite, les sous-espaces sont en somme directe.
On peut remarquer qu’on n’a jamais utilisé la matrice M ... nous y verrons plus clair dans la suite
du chapitre !

Remarque 1.
Attention! On peut montrer que si Fi, ..., F;,, sont en somme directe, alors, pour tous i,j €

[1,m] avec i # j, F; N F; = {0g}. Mais la réciproque est fausse comme on peut s’en
apercevoir dans ’exercice suivant :

Exercice 3.

On consideére 'espace vectoriel R?. Soit F' = Vect((1,0)), G = Vect((0,1)) et H = Vect((1,1)).
1. Déterminer F'+ G + H.



2. (a) Déterminer les intersections deux & deux entre F, G et H.
(b) La somme F + G + H est-elle directe ?
(¢) Que dire de la derniére affirmation de la remarque précédente.

3. Montrer la premiére affirmation de la remarque i.e. si Fi,..., F,,, sont en somme directe,
alors, pour tous ¢,j € [1,m] avec i # j, F; N F; = {0g}.

1. Soit (z,y) € R%. On a:
(z,y) ==(1,0) +y(0,1) +0(1,1) e F+ G+ H

donc R? C F 4+ G + H. L’inclusion réciproque est vraie car F + G + H est un sous-espace
vectoriel de R2.
Par suite, F + G + H = R2.
2. (a) Siu € FNQG, alors il existe A\,v € R tels que u = (A,0) et uw = (0,v) d'ou A =0 et
v = 0. Par suite v = (0,0). Ainsi, F NG = {(0,0)}.
Par des raisonnements similaires, on trouve GN H = {(0,0)} = HN F.

(b) La somme F + G + H n’est pas directe car (1,1) admet dans F' + G + H les décom-
positions (1,1) = 0(1,0) +0(0,1) +1(1,1) et (1,1) = 1(1,0) + 1(0,1) + 0(1, 1) qui sont
différentes.

(c) Les intersections deux & deux des facteurs de la somme sont toutes réduites & 0 mais
la somme n’est pas directe. La réciproque de I'implication énoncée dans la remarque
précédente est donc fausse, comme annoncé!

3. On suppose Fi, ..., Fp, en somme directe. Soit i, j € [1,m] avec i # j. Quitte & les échanger,
on peut supposer j < i. D’apres le iv) de la proposition 2, on a (Fy +...+ F;_1)NF; = {0}
Or, comme j < i,ona F; CFi+..+F,_ydonc F;,NF, C (Fi+..+Fi_1)NF, ={0g},
d’ou Fj N Fz = {OE}

Gréace a 'unicité de la décomposition dans une somme directe, on peut définir les applications qui, a
un vecteur de la somme, associent chaque composante de sa décomposition :

Définition 3., Projecteurs associés d une somme directe

m
Soit m € N* et F1, ..., F},, des sous-espaces vectoriels de F en somme directe tels que F = @ F;.
=t
On appelle projecteurs associés a la décomposition en somme directe E = @Fl les
i=1

applications py, ..., pm OU, pour tout ¢ € [1,m],

pour x = 1 + ... + &, € E avec, pour tout j € [1,m], x; € F,
pi(x) = x;.



Proposition 3.

m

Soit m € N*, F1, ..., F,, des sous-espaces vectoriels de E en somme directe, tels que F = @ F;
i=1
et p1, ..., pm les projecteurs associés. Alors :

e pour tout ¢ € [1,m], p; est un projecteur; plus précisément, p; est la projection sur F;

m
parallelement a @ Fj.

j=1
i

® p1+ ... +p, =1Idg et, pour tout i,5 € [1,m] avec i # j, p; op; = 0.

Proposition 4.

Soit m € N*, I, ..., F},, des sous-espaces vectoriels de E. On a :

Et il y a égalité si, et seulement si, la somme est directe.

On considére application linéaire f de Fy X ... X Fy,, dans Fy + ...+ F,, tel que f : (z1, ..., Tpm) —
1+ oo + Ty -
Par définition de la somme, f est surjective, donc :

dim (Z F) < dim (Fy X ... x Fp) = Y _ dim (F}).
g=il

g=il

De plus, comme f est surjective, il y a égalité si, et seulement si, f est injective d’apres le théoréme
du rang (on est bien en dimension finie ici, car cet énoncé n’a aucun intérét en dimension infinie!).
Or, f étant linéaire, f est injective si, et seulement si, pour tout = (1, ..., T) € F1 X ... X Fpy,
21+ ...+ = f(z) = 0g implique © = (0g, ...,0g) i.e. pour tout ¢ € [1,m], x; = 0g ; d’apres la
proposition 2, ceci est équivalent a Fi, ..., F,,, sont en somme directe.

O

Définition-Proposition 4.| Base adaptée a une somme directe

Soit m € N*| F}, ..., F,,, des sous-espaces vectoriels de E' en somme directe.

Si, pour chaque i € [1,m], B; une base de F;, alors la famille B obtenue en concaténant (i.e. en
mettant bout-a-bout) les bases By, ..., By, est une base F; @ ... ® F,.

Une telle base B est appelée base adpatée a la somme directe F; & ... § F,.



Soit B la famille obtenue en concatenant By, ..., B,,. Montrons que B est une famille libre et
génératrice de F} & ... B F,.

m
Pour ¢ € [1,m], on note (e; ;)jes, la base B; de F;. On note I = U ({i} x J;) et on a :
i=1
B=(eis)er-
— Liberté : Soit (Xi ;)@ j)er une famille de scalaires presque tous nuls. On suppose
Z(Lj)e] /\i,jem =0g. Pour 7 € ﬂl,m]], on note z; = ZjEJi )\7;7]'61'73‘ € F;.

Alors on a :
m

ZZEZ' = Z )\i,jem ZOE

=i (i.5)el

Les F; étant en somme directe, on obtient, pour tout 7 € [1,m], ZjeJi Xijeij=a; =0g;
or, B; = (e; ;)jes; est une base de F; et donc une famille libre, donc, pour tout j € J;,
)\1‘7]‘ = 0.

Ainsi, pour tout (¢,7) € I, A\; ; =0, d’ou B est une famille libre.

— Génération : Soit © € F; @ ... ® F,,. Alors, pour tout i € [1,m], il existe z; € F; tels que
B = B3| AP o 0 o A Lo
Or, pour tout ¢ € [1,m], comme B; = (e; j)jes, est une base de Fj, il existe une famille
(Ai,j)jes; une famille de scalaires presque tous nuls telle que :

Zi= ) Aigei.
JEJ:

Par suite, la famille (\; ;) j)er est une famille de scalaire presque tous nuls comme conca-
ténation de m familles de scalaires presque tous nuls et on a :

m
i=1
m

D H NN

i=1jeJ;

z = E Aij€ij

(i.9)€l
d’ou x est combinaison linéaire d’éléments de la famille 5.
Ainsi, la famille B est génératrice de Fy & ... & F,,.

Il en résulte que B est une base de Fi & ... & F,,, comme famille libre et génératrice de F; & ...
E,,.

O

2. Matrices semblables

a. Matrices équivalentes



Définition 5. Matrices équivalentes

Soit A, B € M,(K). On dit que A et B sont équivalentes s'il existe P, Q € GL,(K) tels que

B=Q 'AP.

Exercice 4.

Montrer que la relation ”étre équivalentes” est une relation d’équivalence sur M, (K).

Proposition 5.

Soit A € M, (K). Alors rg(A) = r € [0,n] si, et seulement si, A est équivalente a la matrice
I, | 0
010

b. Matrices semblables

Définition 6. Matrices semblables

Soit A, B € M,,(K). On dit que A et B sont semblables s'il existe P € GL,(K) tels que

B=Pr AP

Exemple 2.

Soit B et B’ des bases de E et u € L(F). On note M = Matp(u) la matrice de u dans la base B
et M’ = Matp (u) la matrice de u dans la base B’. Alors M et M’ sont semblables; en effet, on a

M =P tMP

ou P est la matrice de passage de B vers B’.

Remarque 2.

— Deux matrices A et B qui sont semblables ont le méme déterminant.

— Deux matrices A et B qui sont semblables ont la méme trace. En vertu de cette remarque
et de 'exemple ci-dessus, cela permet de définir la trace d’'un endomorphisme : la trace
d’un endomorphisme est la trace d’une matrice de cet endomorphisme dans une base
quelconque.

3. Sous-espaces stables et endomorphismes induits

10



Définition 7. Sous-espace stable

Soit F' un sous-espace vectoriel de E et u € L(E). On dit que F est stable par u si u(F) C F,
i.e. pour tout x € F, u(z) € F.

Exemple 3.

— Les sous-espaces vectoriels {0} et F sont stables par tout endomorphisme de E.
— Une homothétie (i.e. AIdg ou A € K) stabilise tous les sous-espaces vectoriels de E.

— Une intersection ou une somme de sous-espaces stables par un endomorphisme u est un
sous-espace stable par u.

Exercice 5.

1. Soit uw € L(FE). On suppose que, pour tout x € E, la famille (x, u(x)) est liée. Montrer que
u est une homothétie.

2. En déduire que les seuls endomorphismes qui stabilisent tous les sous-espaces vectoriels de
FE sont les homothéties.

1. On suppose que, pour tout « € E, (z,u(x)) est liée. Alors, pour tout x # 0, il existe un
unique A; € K tel que u(z) = A;z. Montrons que, pour tous =,y € E non nuls, A, = \,.

— ler cas : x et y sont colinéaires. Alors il existe p € K tel que = = py, d’ou :
Ae = u(@) = puly) = pAyy = Aya;

donc Ay = Ay.
— 2nd cas : (x,y) est libre. Alors on a

Par suite,
(Az+y — Az)T + Aoty — Ay)y = O,
or (z,y) est libre donc Mgy — Ay =0 et Apiy — Ay =0. Et donc Ay = Az +y = Ay

Il en résulte qu’il existe A € K tel que, pour tout = € E, u(x) = Az (cette égalité étant
trivialement vraie pour = 0g). Ainsi v = AIdg est une homothétie.

2. Une homothétie stabilise tous les sous-espaces vectoriels. Réciproquement, si u est un endo-
morphisme qui stabilise tous les sous-espaces vectoriels, alors, pour tout x € F, u stabilise
Kz = Vect(x). Ainsi, pour tout « € E, u(z) € Kz i.e. (z,u(z)) est liée. Par suite, d’apres
la question précédente, u est une homothétie.

11



Proposition 6.

Soit F' un sous-espace vectoriel de E, (e;);er une famille génératrice de F et u € L(E). Alors F
est stable par w si, et seulement si, pour tout ¢ € I, u(e;) € F.

e (=). On suppose F stable par u. Alors pour tout € F, u(xz) € F, donc en particulier,
comme chaque e; € F' pour i € I, u(e;) € F.

e (<). On suppose que pour tout i € I, u(e;) € F. Soit € F. Comme (e;);c; est génératrice,
alors il existe une famille ()\;);er presque tous nuls telle que z = > . _; A;e;. Par suite, on

B ¢
u(x) = Z)\iu(ei),
iel pys

iel

donc, comme F' est un sous-espace vectoriel, u(x) € F. Il en résulte que F' est stable par
u.
O

Remarque 3.

Pour z € E, Kz est un sous-espace vectoriel de E. D’apres la proposition précédente, ce sous-
espace est stable par w si, et seulement si, il existe A € K tel que u(x) = Az.

Proposition 7.

Soit u,v € L(E). Si u et v commutent i.e. uov = vou, alors Ker(v) et Im(v) sont stables par .

On suppose que u et v commutent.
e Soit x € Ker(v). Montrons que u(z) € Ker(v). On a :
v(u(z)) =vou(r) =uowv(z) =ulv(z)) =u(0g) =0g

car vou =wuov et u est linéaire. Par suite, Ker(v) est stable par w.

e Soit v(z) € Im(v) on x € E. Montrons que u(v(x)) € Im(v). On a :

NN

u(v(z)) =uowv(z) =vou(r) =v(ulx)) € Im(v)

car uov =wvou et u(x) € E. Par suite Im(v) est stable par u.

12



Définition 8. FEndomorphisme induit

Soit F' un sous-espace vectoriel de F stable par un endomorphisme v de E. On appelle endo-
morphisme induit par u sur F et I'endomorphisme up € L(F) défini par up = up i.e. pour
tout x € F

Proposition 8.

On suppose F de dimension finie n. Soit v un endomorphisme de F' un sous-espace vectoriel de
E de dimension p et B = (eq,...,e,) une base adaptée a F ie. B’ = (e, ...,e,) est une base
de F.

Alors F est stable par u si, et seulement si, la matrice M = Matpg(u) dans la base B est

triangulaire supérieure par bloc, i.e.
A|B
= (1)
avec A € M,(K).

Dans ce cas, A est la matrice Matg: (up) de 'endomorphisme induit up par u sur F.

On note M = (mij)1<ij<n = Matg(u). Alors on a, pour i € [1,n], u(e;) = 375, mije;. On

note : A = (my;)1<i,j<p, B = (Mij)p+1<j<n, C = (Mij)pri<ij<n €t D = (Mij) 1<j<p -
1<i<p p+1<i<n

On remarque que (e1,...,ep) est en particulier une famille génératrice de F.
Ainsi,

F' est stable par u

si, et seulement si,

pour tout j € [1,p], u(e;) = E?Zl mije; € F

si, et seulement si,

pour tout j € [1,p] et i € [p+1,n], m;; =0

si, et seulement si,

D = (0) 1<j<p

p+1<i<n

si, et seulement si,

(3
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Partie B

Eléments propres

1. Eléments propres d’un endomorphisme

a. Définitions

Définition 9. Valeur/vecteur propre d’un endomorphisme

Soit u € L(E).
— On dit que X € K est une valeur propre de u s’il existe x € E non nul tel que

u(zx) = Ax.

— Soit A € K une valeur propre de u. On dit que =z € E est un vecteur propre de u
associé a \si:
x#0p et u(z)= A

Proposition 9.

Soit u € L(E), € Ket z € EX {0g}.
— Le scalaire A est une valeur propre de w si, et seulement si, Ker(u — Adg) # {0g} -
autrement dit, si, et seulement si, u — AIdg n’est pas injectif.

— Le vecteur z est un vecteur propre de u si, et seulement si, u(z) est colinéaire & x.

A est une valeur propre de u

si, et seulement si,

il existe x € E \ {0g} tel que u(z) = Az
si, et seulement si,
il existe x € E N {0g} tel que u — Aldg(x) = 0p
si, et seulement si,
il existe x € E\ {0g} tel que z € Ker(u — Mdg)(x)
si, et seulement si,

Ker(u — Aldg)(z) # {0g}.

x est un vecteur propre de u
si, et seulement si,
il existe A € K tel que u(z) = Az

si, et seulement si,

14



u(x) et x sont colinéaires.

Exercice 6.

Soit f € L(R?) tel que f : (z,y,2) — (2y, 22,2z). Montrer que (1,1,0), (0,0,1) et (1,—1,0) sont
des vecteurs propres de f. A quelle valeur propre chacun d’entre eux est-il associé?

Ona:
f(1,1,0) = (2,2,0) = 2(1,1,0)

f(0,0,1) = (0,0,1) = 2(0,0,1)
f(1,-1,0) = (=2,2,0) = (=2)(1,~1,0)

Donc (1,1,0) et (0,0,1) sont des vecteurs propres de f associés & la valeur propre 2 et (1, —1,0)
est un vecteur propre de f associé a la valeur propre —2. O

Définition 10.| Sous-espace propre d’un endomorphisme

Soit u € L(E) et A € K. Si A est une valeur propre de u, on appelle sous-espace propre de
u associé a la valeur propre )\ le sous-espace vectoriel de E noté F)(u) et défini par :

Ex(u) = Ker(u — Mdg) = {z € E | u(z) = Az}.

Autrement dit, F)(u) est ’ensemble contenant 0 et I’ensemble des vecteurs propres associés a
la valeur propre .

Définition 11., Spectre d’un endomorphisme

On suppose que E est de dimension finie. Soit v € L(E). Le spectre de u, noté Sp(u), est
I’ensemble des valeurs propres de u i.e.

Sp(u) ={AeK|Jz € Ex{0g}, u(x) = Az}.

Remarque 4.

— le vecteur nul Og n’est JAMAIS un vecteur propre! Par contre, il appartient a tout
sous-espace propre.
— 0 est valeur propre de w si, et seulement si, u n’est pas injectif. Dans ce cas, on a :

Eo(u) = Ker(u)

15



Exercice 7.

Soit u € L(E) et A € K. On suppose que A est une valeur propre de u.
1. On suppose que A # 0. Montrer que E)(u) C Im(u).

2. On suppose u bijectif. Montrer que A # 0 et que % est une valeur propre de v~ '. Que dire
de E% (ufl) ?

1. Soit z € Ey(u). Alors u(z) = Az et donc, par linéarité de u,
1
= u(Xx) € Im(f).

Par suite, E(u) C Im(u).

2. Comme Ker(u) = {Og}, 0 n’est pas valeur propre de u. Par suite, A # 0.
Soit x € Ey(u). Alors u(z) = Az et donc, par linéarité de u=t, x = u=(u(x)) = Mu~1(x).

Par suite, on a :
1

A
Or, A étant valeur propre de wu, il existe € E)(u) \ {Og} et donc, d’apreés ce qui précede,
1 1 1

3 est une valeur propre de u~l et  est un vecteur propre de u~" associé a e Ainsi,

E\(u) C Ey (u=1). Et réciproquement, si x € Ey (u~1), par un raisonnement similaire, on
obtient u(z) = Az. Il en résulte que

u(z) = =z,

Ei(u™h) = Ex(u).

>l

b. Exemples

On applique les transformations suivantes a la premiere image. Déterminons les valeurs propres et
leurs directions propres associées pour chacune des transformations. Une direction propre correspond a
une direction qui reste inchangée apres transformation et une valeur propre correspond a 1’échelle de
la modification (en tenant compte du changement de sens grace au signe) apres transformation dans la
direction propre qui lui est associée.
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Dilatation

Symétrie

Exemple 4.

— Soit A € K. Alors 'homothétie ANIdg admet A pour unique valeur propre et Ey(Aldg) = E.

— Une rotation non triviale (i.e. d’angle différent d’un multiple de 7) dans le plan euclidien
n’admet pas de valeur propre.

— Soit p € L(FE) un projecteur non trivial de E i.e. p> = p et p # 0,1dg. Alors p admet pour
valeurs propres 0 et 1 et on a :

Eo(p) = Ker(p) et Ei(p)=Im(p)

17



Si A est une valeur propre de p, alors pour x un vecteur propre de p associé a A,
on a :

Nz = p%(z) = p(z) = M.
Comme z # Og, on en déduit que A =0 ou A = 1.

Montrons que 0 et 1 sont bien valeurs propres de p :
— Comme p # 0, il existe x € E tel que p(z) # Og. Ainsi, pour y = p(x) # 0g,
ona:
p(y) = p(p(z)) =p(z) =y =1y carp’ =p
Donc, y étant un vecteur non nul, 1 est bien valeur propre de p.

— Comme p # Idg, il existe z € E tel que p(z) # x. Ainsi, pour y = p(z)—x #
O, on a, par linéarité de p :

p(y) = p(p(x)) — p(z) =05 =0y carp’=p

Donc, y étant un vecteur non nul, 0 est bien valeur propre de p.

Déterminons désormais les sous-espaces propres associés a 0 et 1 :

e )\ = 0. Pour tout endomorphisme qui admet 0 pour valeur propre, le sous-
espace propre associé a 0 est égal & son noyau, donc Ey(p) = Ker(u).

e A\ = 1. Pour tout endomorphisme u qui admet A # 0 pour valeur propre,
Ey(u) C Im(u). Par suite, Eq(p) C Im(p).

Réciproquement, pour y = p(z) € Im(p) avec z € E, on a :
p(y) = p(p(x)) = p*(z) = p(z) = y.

d’ou y € E1(p).
Par suite, Im(p) C E1(p).

Il en résulte que E;(p) = Im(p).

— Soit F, G deux sous-espaces supplémentaires non triviaux. La symétrie s par rapport a F'
parallelement & G admet pour valeur propre 1 et —1 et et on a :

Ei(s)=F e E_1(s)=G

Soit p le projecteur sur F' parallelement a G. Alors on a s = 2p — Idg, donc, pour

AeKetzxeE,
1+)\x

2

Par suite, comme p est non trivial, d’apres ’exemple précédent, s admet 1 et —1
pour valeurs propres et

s(z) = & p(z) =

E1(s) = E1(p) = Ker(p) = F

et
E_1(s) = Eo(p) = Im(p) = G.
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— Soit f € L(R?) tel que f : (z,y) — (2z,2 + y). Alors Sp(f) = {2,1}; et Eo(f) =
Vect((1,1)) et Eq(f) = Vect((0,1)).

On a, pour A € K :

2x

Az - (2—=MNzx =0
T + vy

(*)f(w,y)=/\(x,y)<:>{ . z + (1-Ny = 0

ler cas : A # 2 et X # 1. Alors (x) est équivalent a

z = 0

y = 0
Donc, dans ce cas, (z,y) = (0,0) est la seule solution de f(z,y) = A(z,y) donc A
n’est pas valeur propre de f.

2eme cas : A = 2. Alors
He{s — y =0

Donc, dans ce cas, ’ensemble des solutions de f(z,y) = 2(x,y) est {(x,y) |z—y =
0} = Vect((1,1)) # {0g} donc A = 2 est valeur propre de f et Ex(f) = Vect((1,1)).

2eme cas : A = 2. Alors
xe{z =0

Donc, dans ce cas, 'ensemble des solutions de f(z,y) = (z,y) est {(x,y) |z =0} =
Vect((0,1)) # {Og} donc A =1 est valeur propre de f et Eq(f) = Vect((0,1)).

— Soit E =C>®(R) et D € L(F) tel que D : f — f’. Alors pour tout A € R, X est une valeur
propre et x — e est un vecteur propre associé a A.

Soit A € R. Pour f € F, on a f € Ker(u — Aldg) si, et seulement si, f/ — Af =0,
c’est a dire, f est solution de I’équation différentielle homogene 3’ — Ay = 0. Cette

équation & pour ensemble de solution {z +— C.e** | C € R} # {0} ; donc \ est une
valeur propre de D et on a :
E\x(D) = {z+ C.e*® | C €R} =R.f

ol f est le vecteur propre de D associé & A défini par f : x — e*.

Exercice 8.

Ques dire des valeurs propres...

1. de 'endomorphisme nul 07 de 'identité Idg ?

2. d’une rotation dans R3?

3. de lapplication A : P — P’ de R[X] dans lui-méme ?
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1. Pour tout z € EX{0g}, on a 0g = 0(x) = Az si, et seulement si, A = 0, donc A est la seule
valeur propre de 0 et Fy(0) = E.
Pour tout € E \ {Og}, on a zIdg = Az si, et seulement si, A = 1, donc A est la seule
valeur propre de Idg et Ei(Idg) = E.

2. Une rotation de R? (d’angle différent d’un multiple de 7) n’admet qu’une seule valeur
propre. Il s’agit de la valeur propre 1 dont le sous-espace propre associé est 'axe de la
rotation.

3. Pour A € K*, P’ = AP implique deg(P) = deg(P’) = deg(P) — 1. Ainsi P = 0 est la seule
solution de P = AP’, donc si A # 0, A n’est pas une valeur propre de A.
Pour A = 0, P’ = 0 a pour solutions les polynomes constants. Ainsi, 0 est la seule valeur
propre de A et Eyg(A) = Ker(A) =P =aq | ap € K.

2. Propriétés des sous-espaces propres

Proposition 10.

Soit u € L(E) et A € K. Si A est valeur propre de u alors E(u) est un sous-espace vectoriel de
E et
dim (E)(u)) > 1.

On suppose que A est une valeur propre de u. Alors E)(u) = Ker(u — AIdg) est un sous-espace
vectoriel de £ comme noyau d’une application linéaire d’espace de départ E. De plus, par défi-
nition de A valeur propre, il existe z € E \ {Og} tel que u(x) = Az. Alors = appartient & E (u)
qui est un sous-espace vectoriel donc Vect(z) C Ey(u) car Vect(x) est le plus petit sous-espace
vectoriel de E contenant z. Or dim(Vect(x)) = 1 car z # O, d’otu :

dim (E(u)) > dim(Vect(x)) > 1.

Proposition 11.

Soit u,v € L(F). Si u et v commutent, i.e. uowv = vowu alors les sous-espaces propres de u sont
stables par v et les sous-espaces propres de v sont stables par .

On suppose que u et v commutent. Comme u commute avec Idg, alors, pour tout A € K, u
commute avec v — Idg. Ainsi, d’apres la proposition 7, Ker(v — AIdg) est stable par u. Par suite,
si A € K est une valeur propre de u, Ey(v) = Ker(v — Aldg) est stable par u.

On raisonne de méme pour la stabilité par v des sous-espaces propres de u. O
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Proposition 12.

Soit u € L(E) et A, u € K. Si A, o sont des valeurs propres distinctes de u, alors Ey(u) et E,(u)
sont en somme directe i.e.

Ex(u)NE,(u) = {0g}.

On suppose que A, i sont des valeurs propres de w qui vérifient A # p. Soit € Ex(u) N E,(u).
Alors on a :
u(z) = Az et u(z) = px.

Par suite, par linéarité de u
A=p)x = —pzr =u(r) —u(zr) =ulx —x) =u(0g) =0g

Or A — u # 0 donc x = O par I'axiomatique d’un espace vectoriel.
Ainsi Ex(u) N E,(u) C {Og} et donc Ex(u) N E,(u) = {0g}. O

Corollaire 2.

Soit u € L(E) et \,u € K. Si A\, u sont des valeurs propres distinctes de u, alors, pour tous
vecteurs propres et y associés & A et p respectivement, la famille (x,y) est libre.

On suppose A # p. Soit z € Ex(u)~{0g} et y € Ex(u)~{0g}. D’aprés la proposition précédente,
E\(u) et E,(u) sont en somme directe, donc (z,y) est libre.

Exercice : Soit F,G des sous-espaces vectoriels de F tels que F' et G sont en somme directe.
Montrer que toute famille (z,y) avec z € F \ {0g} et y € G\ {0} est libre. O

Proposition 13.

Soit u € L(E), k € N* et A1,..., Ay € K. Si Ay, ..., A\ des valeurs propres de u toutes distinctes,
alors les sous-espaces propres associés Ey, (u), ..., Ex, (v) sont en somme directe.

Montrons, par récurrence sur N\ {0, 1}, que pour tout k € N\ {0, 1}, la propriété P, ="pour
k-uplets (A1, ..., A\x) de valeurs propres distinctes de u, les sous-espaces propres associés sont en
somme directe”.

L’initialisation & = 2 est donnée par la proposition préccédente.

Hérédité : Soit k£ un entier plus grand que 2. On suppose Py, vraie.
Soit Ay, ..., A\g+1 des valeurs propres distinctes de u. Soit © = x1 + ... + Tpy1 € Zf;l E, (u) ou,
pour tout ¢ € [1,k + 1], z; € Ej,(u). On suppose & = 0. Alors, par linéarité de u, on a d’une
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part u(x) = 0g et d’autre part :

k+1 k+1
u(z) = Zu(xz) = Z ;.
i=1 i=1
Par suite, on a :
k
OE = u(x) — >\k+1517 = Z(/\Z — /\k+1)$i-
i=1

Or, pour tout i € [1,k], Ej,(u) étant un sous-espace vectoriel, (A\; — Ap11)x; € Ey, (u).

Alinsi, Zle()\if/\kﬂ)xi appartient a la somme @le E,, (u) qui est bien directe par hypothese de
récurrence. Ainsi, comme Zle()\i — Ak+1)2; = 0, on a pour tout ¢ € [1, k], (A\; — A\g+1)z; = Og,
d’ot z; = 0p car A\; — Agq1 # 0.

Et de plus, on a alors, 241 = « = 0g, d’ou, pour tout i € [1,k + 1], z; = 0.

Il en résulte que la somme Zfill E, (u) est directe.

Ce qui achéve le raisonnement par récurrence. Ainsi, pour tout entier k > 2, P, est vraie. O

Corollaire 3.

Soit u € L(E), k € N et A,..., A\ € K. Si Ay, ..., \y des valeurs propres de u toutes distinctes,
alors :

k
Z dim(Ey, (u)) < dim(E).

On suppose A1, ..., Ay valeurs propres de u deux & deux distinctes. Alors les sous-espaces propres
E), (u) sont en somme directe et on a :

k k
Z dim(E), (u)) = dim (@ E), (u)) < dim(E).

(Théoreme 1.)

On suppose E de dimension finie n. Tout endomorphisme u de E admet au plus n valeurs
propres distinctes ; autrement dit :

#Sp(u) < n.

Soit u € L(E). On suppose par ’absurde que #Sp(u) > n. Alors il existe n+1 valeurs propres de u
deux & deux distinctes Ay, ..., Ap41. Pour chaque sous-espace propre Ey, (u), on a dim(E}y, (u)) > 1,

22



donc :

k
n+1< Zdim(EAi(u)) <n.

i=1

Contradiction. Par suite #Sp(u) < n. O

Remarque 5.

Soit u € L(E) et F' un sous-espace vectoriel de E stable par u. Les valeurs propres de I’endomor-
phisme up € L(F') induit par u sur F sont les valeurs propres A de u telles que Ey(u)NF # {0}.
Dans ce cas,

E)\(’U,F) = E)\(u) NF.

3. Eléments propres d’une matrice carrée

a. Définitions

Définition 12.) Eléments propres d’une matrice

Soit A € M, (K) et A € K.
— On dit que A est une valeur propre de A s’il existe X € M,, 1(K) non nulle telle que

AX = \X.
— Si A € K est une valeur propre de A, on dit que X € M, 1(K) est un vecteur propre

de A associé a )\ si:
X #0,1 et AX =)X.

— Si A € K une valeur propre de A, on appelle sous-espace propre associé de A a A le
sous-espace vectoriel noté Ey(A) de M, 1(K) défini par :

E\(A) =Ker(A — \I,,) = {X € M,,1(K) | AX = \X}.

— On appelle spectre de A et on note Sp(A), 'ensemble des valeurs propres de A.

Remarque 6.

Soit A € M, (K). On remarque que A € Sp(A) si, et seulement si, A — A\I,, ¢ GL,(K).
Exercice 9.

Déterminer les valeurs, vecteurs et sous-espaces propresde A= | : . | € M,(K).
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— lercas:n=1
Ona A= (1)=1 € Mi(K) donc Sp(A4) = {1} et E1(A) = M;(K).

— 2&éme cas :n > 2

Pour i € [1,n], on note E; le i-ieme vecteur de la base canonique de M,, 1 (K) et S = | :

1
Alors on a, i € [2,n], AEy = S = AE; donc Eq — E; € Ker(A). La famille (B — E;)2<i<n
est une famille libre et, comme rg(A) = 1 (car Im(A) = Vect(S)), d’aprés le théoréme du
rang, dim(Ker(A4)) =n —1>=1; d’ou (E1 — E;)2<i<n est une base de Ker(A).
Ainsi, 0 est valeur propre de A car Ker(A —0I,,) = Ker(A) # {0,,1} et on a :

Eo(A) = KGT(A) = Vect (El - EQ, ey El - En) .

On remarque que les sommes de chaque ligne sont égales et valent toutes n donc la colonne
S # 0,1 est vecteur propre de A associé a n qui est donc valeur propre.

De plus, comme 0 et n sont des valeurs propres distinctes, leurs sous-espaces propres
respectifs sont en somme directe et donc :

n=n—1+1<dim(Ey(A4))+dim(E,(A)) < dim (M, 1(K)) =n.

=n—1 >1

Par suite, dim (E,(A)) =1 d’ou :
E,(A) = Vect (5),

et E,(A) et Eo(A) sont de somme M, 1(K) donc A ne posséde pas d’autre valeur propre.

Conclusion :
1 1
-1 0 1
Sp(A) = {0,n} et Eg(A)=Vect | | O [,...,] : E,(A) = Vect
: 0 1
0 -1

b. Propriétés du spectre d’une matrice

Proposition 14.

On suppose E de dimension finie n. Soit B = (ey,...,e,) une base de E, v € L(E) et A =
Matg(u) € M, (K). Alors on a Sp(A) = Sp(u).
De plus, pour tout A € Sp(u),
n Z1
T = inei € E)\(u) si, et seulement si, X = | | € E\(A).
i=1

Tn
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L’application ¢p : E — M, 1(K) tel que

n T
ng:x:inei'—)X:
i=1 Ty
est un isomorphisme.
Ainsi, 'équation M X = AX est équivalente & ’équation u(z) = Az d’otu le résultat. O

Proposition 15.

Soit A, B € M,(K). Si A et B sont semblables, alors Sp(A) = Sp(B) et pour tout A € Sp(A),
E\(A) = PE\(B) ou P € GL,(K) vérifie B= P 1AP.

On peut voir deux matrices semblables comme les matrices d’un méme endomorphisme dans deux

bases différentes. On obtient alors le résultat souhaité en appliquant la proposition précédente. [

Proposition 16.

Soit K’ un sous-corps de K et A € M,,(K'). Alors Spg, (A4) C Spg(A).

Soit A € K’ une valeur propre de A € M,,(K') € M,,(K) et X € M,, 1 (K’) un vecteur propre de A.
Comme M, 1 (K') € M, 1(K), alors X vu comme matrice & coefficients dans K vérifie I’équation
AX = XX. Donc X € Spg(4). O

Exercice 10.

Tllustrer le résultat précédent en déterminant les spectres dans R puis dans C de M = <_01 é)

Soit A € K. On a, pour <Zj) e M, 1(K),
1+ Az =0
M(5) =2 () = ot
Y Y 1+XM)y=0
Par suite, si K = R, 1+ X2 > 0, 'unique solution de ce systéme est (0, 0) (et ce, pour toute valeur
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de \). Donc Spg(M) = 0.

Dans le cas ot K = C, on a 1 + A2 = 0 si, seulement si A = %i. Ainsi, M (z,y) = A\X possede
des solutions non nulles si, et seulement si, A = £i. Les valeurs propres de M dans C sont donc
i et —i, d’ou Spe(M) = {i, —i}.

O
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Partie C

Polynome caractéristique

Dans cette partie, I'espace vectoriel E est supposé de dimension finie n.

1. Polynéme caractéristique

a. Polynéme caractéristique d’une matrice carrée

L’application M + det(M) est une fonction polynomiale en les coefficients de M. Ainsi, pour A €
M, (K) fixée, I'application A\ — det(AI,, — A) est une fonction polynomiale de la variable A ; ce qui justifie
la définition suivante :

Définition 13., Polynome caractéristique d’une matrice carrée

Soit A € M, (K). On appelle polynéme caractéristique de A et on note x ,4(X) l'unique
polynéme de K[X] tel que, pour tout A € K :

Xa(A) = det(A I, — A).

Remarque 7.
On notera directement x 4 (X) = det(XI,, — A). Pour justifier cette notation, il faudrait pouvoir
définir le déterminant d’une matrice a coefficients polynomiaux. Et c’est possible : au lieu d’uti-
liser le corps de base K pour les coefficients, on utilise le corps K(X) des fractions rationnelles.
La théorie reste la méme.

Proposition 17.

Soit A € M,,(K). Le polynéme caractéristique x 4 est un polynéme unitaire de degré n et on a :

Xa(X) = X" = Tr(A) X" 4 . 4 (—1)"det(A).

On a, pour A € K,

A—ain  —ai2 ... —G1,
xa(\) = det(\, — A) = |~ A — agg
—an1 —an2 D, Ann
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alj
En utilisant la base canonique B = (e1, ...,e,) de M, 1(K), on a, pour C; = | : e M, 1(K) :

)

Qnj
xa(A) =detp(Aer — Ch, ..., Aey, — Ch).

L’application detg est multilinéaire, donc en développant ’expression précédente on remarque
que ’on obtient un polynéme de degré au plus n et on a, pour 0 < k < n ou ¢,_x est le coefficient
de x 4()\) correspondant a A\

Cnk AV F = > detg(Aer, .o, —Ciyy ooy Xy oy —Clig s ooy Aey)

11<...<ir€[1,n]

= (—1)kAn_k Z detg(el,...,Cil,...,ej,...,C’ik,...,en).

i1<...<ig€[1,n]

Par suite, on obtient le résultat en évaluant, ¢, pour k =0,1 et n :
— ¢, =detg(eg,...,en) =1

— Cpo1 = — 3 detg(er, ...y Chy ooy ) = — > oiy @iy = —Tr(A).
— ¢o = (—1)"detg(Chy,...,Cy) = det(A).

Exercice 11.

Soit A = (a;;) € M3(K). Exprimer le coefficient ¢; du monéme de degré 1 dans x 4(X) en
fonction des a;;.

On utilise les notations de la démonstrations précédente :

@il = detB(Cl, CQ, 63) + detB(Cl, €2, Cg) I det[g(el, CQ, C3)

a1 aiz O a1 0 a3 1 a2 a3
=|a21 az2 0|+ jaz1 1 a3|+ |0 az a2

azr azz 1 az;1 0 ass 0 a3z ass
_ @11 a12 a11 413 Q22 A23

a1 a22 a3y ass asz2 Aass

Soit A € M,(K) et A € K. Le scalaire X est une valeur propre de A si, et seulement si, \ est
une racine du polyndéme caractéristique de A. Autrement dit :

A€ Sp(4) & xa(\) =0.
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A € Sp(A)

si, et seulement si,
Ker(A — \I,,) # {0}
si, et seulement si,
A— A, ¢ GL,(K)
si, et seulement si,
M, — A ¢ GL,(K)
si, et seulement si,
det(A\,, —A) =0
si, et seulement si,

Xa(A) =0.

Corollaire 4.

Soit A € M, (K).

— Si K =C, alors A a au moins une valeur propre.

— Si K =R et n est impair, alors A a au moins une valeur propre.

On note x4 le polynéme caractéristique de A.

— Si K = C, d’apres le théoreme de D’Alembert-Gauss, x4, possede au moins une racine,
donc d’apres le théoreme 2, A possede au moins une valeur propre.

— Si K =R et n est impair, on a deg(x,) = n. Par suite, en appliquant le théoréme des
valeurs intermédiaires ou en raisonnant en terme de facteurs irréductibles, on peut montrer
que x 4 possede au moins une racine, donc d’apres le théoreme 2, A posseéde au moins une

valeur propre.

Méthode : Calcul des éléments propres d’une matrice A € M, (K) dans le corps K.

e On calcule le polyndme caractéristique x , de A.

e On factorise dans K le polynéme caractéristique x 4 de A et on détermine toutes ses racines.

o Chaque racine A € K de x4 étant une valeur propre de x 4, on résout le systeme

MX = \X,



qui, NECESSAIREMENT, admet une infinité de solution (car A est une valeur propre de
A).

e Pour chaque racine A de x4, le sous-espace propre associé a \ est égal a I’ensemble des
solutions du systeme précédent :

Ex(A) = {X € M,1(K) | MX = AX}.

En pratique, on cherchera une base (X, ..., X) de 'ensemble des solutions de M X = A\ X
i.e. une famille libre maximale de vecteurs propres associés a A, afin d’écrire :

Ey\(A) = Vect(X1, ..., Xp).

Exercice 12.

Calculer les valeurs propres et les sous-espaces propres des matrices suivantes dans R puis dans

C:
L9 -1 0 0 2 0 2 0 2 -2
A<12>3121 C=(0 6 0] D=3 2 —4
2 10 -2 0 7 2 2 —4
1 2 2
E=(4 2 38
-2 2 —4
1. x4 = X? —3X, d’ott Sp(A) = {0,3} et on a:
1 1
Ey(A) = Vect((l)) et F3(A) = Vect((l))
2
2. xp=X?—X2-3X —1,douSp(B) ={-1,1-v2,1++2} et on a:
1 0 0
Ey(B) = Vect(| 35 |), By_ 5(B) = Vect( 1 ) et By, 5(B) = Vect( 1 )
—32 v2-1 -v2-1

3. xo = X3 —15X? 4+ 72X — 108, d’ott Sp(B) = {3,6} et on a :

1 0
E5(C) = Vect( ) et Eg(C) =Vect(|0],[1])
1 0

= O =

4. xp=X3+2X2+ X +2, dott Spg(D) = {2} et Sp(D) = {*i}. On a:
0

E_5(D) = Vect(|1])
1
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et dans le cas de C, on a de plus :

1 1
E;(D) = Vect( %(z‘1+2) ) et E_;(D) = Vect( —%(2-1+2) )

5 Xp = X3+ X2 30X, dou Sp(E) = {—6,0,5} et on a :

0 1 1
E_¢(E)=Vect(| 1 |), Eo(E) = Vect(| 0 |) et E5(E) = Vect( ?2—2 )
-1 —3 1

Exercice 13. Matrice compagnon

Soit n € N*, ag,...,a,_1 € Ket

0 0 0 —ap

1 0 0 —aq
A= 0 1

00 -+ 1 0 —ap_2

00 -+ 0 1 —ap

Montrer que x4 = X" + ap1 X" '+ ... + a1 X + ao.

En déduire que pour tout polynéme unitaire P € K[X], il existe une matrice A € M, (K) telle
que P = xy4.

Voici deux méthodes pour obtenir le résultat (on explicite ici seulement la deuxieéme) :

1) On développe le déterminant det(AI,, — A) par rapport a la derniére colonne.

X 0 - .- 0 ao
71 X O ay
2) On a det(Al,, — A) = 0 -l
0 o --- -1 X Ap_o
0 0O --- 0 -1 X+4a,
En faisant 'opération : Ly < Z?;Ol X*'L;, on obtient :
0 0 -+ --- 0 P(X)
_]_ X 0 a1
det(\,, — A) = 0 -l
0 o --- -1 X Ap_2
0 0 --- 0 -1 X+4an_
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ot P(X)=X"4+a, 1 XP 1+ .. +a1X + ao.
On obtient alors le résultat en développant par rapport a la lere ligne.
Pour P = X" +a,_1XP~ '+ ...+ a1 X +ap un polyndéme unitaire de K[X], la matrice compagnon

A de la question précédente a pour polynéme caractéristique le polyndéme P.
Proposition 18.

n

Soit A € M,,(K). Si A est triangulaire (supérieure ou inférieure), alors x4 = H(X — ;) ol

i=1
Qy, ..., o, sont les coefficients diagonaux de A.
On a, pour A\ € K,

A—a * c.. *

) =det(, —A)=| O AT
*
0 0 AX—a,

Dot x4 () = [Ty (A — ay). O

b. Polynéme caractéristique d’un endomorphisme

Soit A, B € M, (K). Si A et B sont semblables, alors x , = X -

On suppose A et B semblables. Alors il existe P € K[X] tel que B = PAP~!. Par suite, on a :

_det(P)
~ det(P)

xp = det(XI, — PAP™') = det(P(XI, — A)P™') det(A\, — A) = x4-

Définition 14.

Soit uw € L(E). On appelle polyndme caractéristique de u et on note x,(X) le polynéme
caractéristique de toute matrice représentant u, i.e. si B est une base de F et si A = Matp(u),

Xu = XA
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Remarque 8.

Le lemme précédent nous permet d’affirmer que le polynéme caractéristique d’un endomor-
phisme est bien défini : en effet, si A et B sont des matrices représentant u, elles sont semblables
et donc ont méme polynéme caractéristique.

Proposition 19.

Soit uw € L(E). On a, pour tout A € K :

Xu(A) = det(A\ldg — u) = A" — Tr(u)A" ! 4 ... + (—1)"det(u).

11 suffit d’écrire x,, = x4 avec A une matrice représentant u. On a alors
Xou=Xa =" —=Tr(AA"E 4 . 4 (=1)"det(A) = A" — Tr(u) A" + ... 4+ (=1)"det(u);
et de plus, la matrice AI,, — A est une matrice représentant \Idg — u, donc

Xu = Xa = det(AL, — A) = det(A\Ildg — u).

| Théoréme 3.

Soit u € L(FE) et A € K. Le scalaire A est une valeur propre de u si, et seulement si, A est une
racine du polynome caractéristique de u. Autrement dit :

A€ Sp(u) & x,(A)=0.

On écrit x,, = x4 avec A une matrice représentant u et on a, pour A € K :

A€eSp(u) & AeSp(A) & x4(N) =0 < x,(A)=0.

Remarque 9.

Comme pour le cas des matrices, on en déduit que si K = C ou si K = R avec dim(FE) impair,
alors tout endomorphisme de E posséde au moins une valeur propre.

c. Polynome caractéristique d’un endomorphisme induit
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Proposition 20.

Soit F' un sous-espace vectoriel de E et u € L(F). Si F est stable par u, alors le polynéme
caractéristique x,, de 'endomorphisme ur induit par u sur F' divise x,,

On suppose que F' est stable par u. Sot B = (ey,...,e,) une base de E adaptée a& F ou B’ =
(e1,...,ep) forme une base de F. On pose M = Matg(u) et A = Matp (up). Alors il existe
Be My, p(K)et Ce M,_pnp(K) telles que :

A|B
v (1)
Par suite, on a, en notant Q = det(X1,_, — C) € K[X] :

X, = det(XI,— M)
| x,-A| -B ‘
- 0 | XI,_, - C
=det(XI, — A).det(XI,—, — C)
=xa-Q

Xu = Xup®@-

Il en résulte que x,,,.[X,- O

Remarque 10.

— On a alors Sp(ur) C Sp(u);

— Si x, est scindé (resp. scindé a racines simples) alors x,,,. 'est aussi;
k

— Par une récurrence finie, on obtient que si E = EB F; et chaque F; est stable par u, alors
i=1

k
Xu = 1] Xur, = Xup, = Xug, -
=1

2. Ordre de multiplicité d’une valeur propre

Définition 15. Multiplicité d’une valeur propre

Soit u € L(E) et A € Sp(u). On définit 'ordre de multiplicité - ou plus simplement la
multiplicité - de la valeur propre A\ de u et on note m(\) l'ordre de multiplicité de A\ comme
racine du polynéme caractéristique x,, de u.

On définit de méme la multiplicité d’une valeur propre d’une matrice A € M, (K).
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Remarque 11.

— Autrement dit, si Sp(u) = {A1, ..., A} avec A1, ...\; deux & deux distinctes alors

k
Xu = PTTX =20,
i=1
ou P € K[X] n’a pas de racine dans K et on a, pour tout i € [1,%] :

m(A;) = my.

— On a donc :
deg(P) + m(A) + ... + m(Ax) = n.

— En particulier, pour A une valeur propre, on a : 1 < m(\) <n = dim(E).

Proposition 21.

Soit u € L(E) et A une valeur propre de u. On a :

1 < dim(Ex(u)) < m(N).

On note F = E)(u). Alors F est stable par u et ’endomorphisme induit up € L(F) de u sur F
est égal & homothétie AIdp. Comme F' est un sous-espace propre de u, on a p = dim(F) > 1 et
d’apres la proposition précédente, on a :

avec @ € K[X] et (X — \) premiers entre eux. Donc, d’apres le lemme de Gauss, (X — A)P|(X —
)\)m()\)_

Il en résulte que 1 < p = dim(FEx(u)) < m(A). O

Corollaire 5.

Soit u € L(E). Si A est une valeur propre simple de u, alors dim(E)(u)) = 1.

On suppose que A est une valeur propre simple de u, d’apres la proposition précédente, 1 <
dim(Ey(u)) < 1 donc dim(E)(u)) = 1.

O
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Partie D

Diagonalisation et trigonalisation

Dans cette partie, F désigne un espace vectoriel de dimension finie n € N*.

1. Endomorphismes et matrices diagonalisables

Définition 16.| Endomorphisme/matrice diagonalisable

— Soit w € L(E). On dit que u est diagonalisable s’il existe une base dans laquelle la
matrice de u est diagonale.

— Soit A € M,,(K). On dit que A est diagonalisable si elle est semblable & une matrice
diagonale, i.e. s'il existe D € M, (K) diagonale et P € GL,,(K) tels que :

A= PDP L.

Proposition 22.

Soit u € L(E). Alors u est diagonalisable si, et seulement si, il existe une base de vecteurs
propres de u.

e (=). Si u est diagonalisable, il existe une base B = (ey,...,e,) de E telle que A =
Matg(u) = diag(ay, ..., ). Par suite, on a, pour chaque ¢ € [1,]n, par définition des
coefficients de A,

u(e;) = aze; et e; # 0p.

Donc les éléments de B sont des vecteurs propres de wu.

e (<). Si B = (ey,...,e,) est une base de vecteurs propres associés respectivement a
ag, ..., a, € K, alors :

aq 0 oo 0 €1
0
Matg(u) = 0
0 0 fe7% en
uler) ... ... ulen)

Donc la matrice de u est diagonale dans la base B.
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Exercice 14.

1. Soit K,[X] lespace vectoriel des polyndmes de degré inférieur ou égal & n. L’endomor-
phisme de K,,[X], A, : P +— P’ est-il diagonalisable ?

2. Montrer que les projecteurs et les symétries de F sont diagonalisables.

1. A ne possede qu’une seule valeur propre 0, et les vecteurs propres associés a 0 sont les
polynoémes constants (non nuls). Ainsi, on ne peut pas obtenir une base de K, [X] formée
de vecteurs de propres de A, (sauf dans le cas n = 0).

2. Soit p un projecteur de E i.e. p € L(E) et p> = p. On rappelle qu’alors F' = Ker(p) et
G = Im(p) sont supplémentaires dans F et que G = Ker(p—Idg) (et alors p est la projection
sur F' parallelement a G). On note r = rg(p).

Considérons B = (eq, ..., €, €41, ..., €,) une base de E adaptée & E = F @ G. Alors, on a :

I, Orn—r
Matg(p) = ( 5 ‘ J )

n—r,r ‘ O’I'L—T’,’VL—T’

La matrice de p dans la base B étant diagonale, p est diagonalisable.

Soit s une symétrie de E. Alors s € L(E) et s> = Idg. En posant p = 3(s + Idg), on
vérifie que p est un projecteur de E (ce que le lecteur fera sans hésiter!). Or, d’apres ce qui
précede, p est diagonalisable donc il existe une base B telle que D = Matg(p) est diagonale.
Or on a s = 2p — Idg et Dapplication Matg : L(E) — M,(K) est linéaire et vérifie
Matg(Idg) = I, (cette application est méme un isomorphisme d’algebres), donc :

Matg(s) = Matp(2p — Idg) = 2D — I,
qui est une matrice diagonale comme combinaison linéaire de matrices diagonales. Par suite,

s est diagonalisable.

Plus précisément, en utilisant la forme exacte de la matrice de p dans la base B de E adpatée
a la somme directe de son image et de son noyau, on trouve, avec r le rang de p :

et = (] e )

n—r,r ‘ _Infr

Proposition 23.

Soit u € L(F) et A € M, (K) une matrice représentant « dans une certaine base de E. Alors A
est diagonalisable si, et seulement si, u est diagonalisable.

u est diagonalisable si, et seulement si, il existe une matrice D diagonale représentant u. Or A et D
représentent toutes deux u si, et seulement si, A et D sont semblables. Donc u est diagonalisable
si, et seulement si, A est diagonalisable. ]
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Corollaire 6.

Soit A € M,,(K). Alors A est diagonalisable si, et seulement si, ’endomorphisme de K™ canoni-
quement associé & A est diagonalisable.

On applique la proposition précédente au cas particulier : E = K", A = (a;;) € M,(K) et
u € L(K™) tel que :

n n
Ui (T1y ey Tyy) E a1 Ty, ..., § Qn,jTj
P j=1

Proposition 24.

Soit A € M, (K). Alors A est diagonalisable si, et seulement si, il existe D une matrice diagonale
tel que A = PDP~ ! ot P = ( Cy ‘ ‘ C, ) et C,...,C), constituent une base de M, 1(K)
formée de vecteurs propres de A.

On suppose A diagonalisable. Alors I'endomorphisme u de K™ canoniquement associé a A est
diagonalisable, donc il existe une base B’ = (e1,...,&,) de K" formée de vecteurs propres de
u. Soit P la matrice de passage de la base canonique B de K™ vers la base B’. La formule de
changement de base pour les matrices représentant un endomorphisme nous donne

Matg (u) = P~*Matg(u)P,
Or Matp(u) = A et Matg: = D = diag(Aq, ..., A\n) ot A; est la valeur propre associé & ¢;. Par

suite,
A=PDP L

2. Diagonalisation

Proposition 25.
Soit u € L(E) avec Sp(u) = {A1,..., A} avec A1, ..., \x deux & deux distincts. Les assertions

suivantes sont équivalentes :

i) w est diagonalisable;

k

k
iii) n = dim(E) = Z dim(Ey, (u)).
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On démontre ii)<iii), i)<=ii) puis 1)=-ii).

e ii)<iii). Les Ej, (u) sont en somme directe, donc on a
k k
dim(EP Ex, (w) =) dim(Ey, (u)).
i=1 =

Ainsi, @le E,,(u) = FE si, et seulement si, Ele dim(E}y, (u)) = n.

e i)<ii). On suppose u diagonalisable. Alors il existe une base de E formée de vecteurs
propres de w i.e. formée d’éléments appartenant aux sous-espaces propres de u. Par suite,
tout élément de F se décompose en somme d’éléments des sous-espaces propres qui sont
en somme directe; donc E est égal a la somme directe des sous-espaces propres.

e ii)<i). On suppose @le E),(u) = E. Si on considére une base B de E adapté a cette
somme directe, on a :

Aljdim(Exl (u)) 0 ... 0
Matg(u) = 0
: . 0
0 o 00 Aedaim(By, ()

qui est une matrice diagonale, donc u est diagonalisable.

Proposition 26.

Soit A € M,,(K) avec Sp(A4) = {A1, ..., A\g} avec Ay, ..., A\ deux & deux distincts. Les assertions
suivantes sont équivalentes :

i) A est diagonalisable;

k
i) M1 (K) =P Ex(A);
=1

k
iii) n =" dim(E),(A)).
i=1
On applique la proposition précédente a I’endomorphisme canoniquement associé a A. O

Exercice 15.

1. Soit A € M,,(K). On suppose que A posséde une unique valeur propre A € K.
Montrer que A est diagonalisable si, et seulement si, A = \I[,,.

2. Soit A € M, (K) une matrice nilpotente i.e. vérifiant qu’il existe k € N* tel que A* = 0,,.
Montrer que A est diagonalisable si, et seulement si, A = 0,,.
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1. On suppose que \ est la seule valeur propre de A. Si A est diagonalisable, alors il existe D
diagonale et P € GL,(K) tels que A = PDP~!. Comme A et D sont semblables, ils ont
méme polyndme caractéristique et donc méme spectre Sp(A) = {\} = Sp(D). Or D s’écrit
sous la forme diag(ay, ..., o, ) et donc son spectre vérifie :

Par suite, a; = ...a,, = X et donc D = AI,. Il en résulte que :
A= PDP™!=PA,P7! =)PP! =)I,.

Réciproquement, si A = AI,, alors A est diagonalisable car diagonale.

2. Soit A une matrice nilpotente. Alors il existe k& € N* tel que A* = 0,,. Alors A n’est pas
inversible car det(A)* = det(A*) = det(0,,) = 0 d’ou det(A) = 0. Par suite, 0 est valeur
propre de A.

De plus, si X # 0,1 est vecteur propre associé a une valeur prore A de A, on a, comme
AX = )X :

0p1 =0,X = AFX = \FX
d’ott \F =0 car X # 0,1 et donc A = 0.

Il en resulte que A possede 0 pour unique valeur propre. Ainsi, d’apres la question précé-
dente, A est diagonalisable si, et seulement si, A = 0[,, = 0,,.

Remarque 12.

Soit u € L(E) et sp(u) = {A1,...; A} avec A1, ..., A\ deux & deux distinctes. Si u est diago-
nalisable, alors E = @le E\,(u) et si on note py,, le projecteur sur E)  (u) parallelement a
@];:1 E), (u), alors
itm
w=A1px;, + ...+ Appa,

,l Théoréme 4.) Théoréme de diagonalisation d’un endomorphisme

Soit v € L(E). Alors u est diagonalisable si, et seulement si, il vérifie les deux conditions
suivantes :
i) le polynéme caractéristique x,, de u est scindé.

ii) la multiplicité de chaque valeur propre de u est égale a la dimension de son sous-espace
propre associé, i.e. pour tout A € Sp(u),

m(A) = dim(E) (u)).

e (=). On suppose u diagonalisable. On note A, ..., Ay ses valeurs propres (deux & deux
distinctes). Alors E = @?:1 Ey,(u) et 'endomorphisme u; induit sur Ej,(u) par u est
égal a 'homothétie u; = \Idg, (y)-
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De plus, en notant d; = dim(FEy,(u)) on a
Xu = Xuy Xy = (X = AP (X = M) %,
Donc, x,, est scindé et pour tout i € [1,k], m(\;) = d;.

e (<). On suppose i) et ii). D’apres i), on a x, = Hle(X — A;)™ ot les \; sont deux a
deux distincts. Donc Sp(u) = {A1, ..., A} et on a, d’apres ii) :

n=deg(x,) = > mi=Y m\)= ) dim(E,(u)).
=1 =1 =1

Donc d’apres la proposition 25, u est diagonalisable.

,(Théoréme 5.) Théoréme de diagonalisation d’une matrice

Soit A € M, (K). Alors A est diagonalisable si, et seulement si, il vérifie les deux conditions
suivantes :
i) le polynéme caractéristique x 4 de A est scindé.

ii) la multiplicité de chaque valeur propre de A est égale a la dimension de son sous-espace
propre associé, i.e. pour tout A € Sp(A4),

m(X) = dim(E5 (A)).

On raisonne de la méme maniére que pour le théoréme précédent. O

Corollaire 7.

Soit u € L(E) et A € M,(K). On rappelle que dim(E) = n.
— Si le polynoéme caractéristique de u est scindé a racines simples i.e. si u posséde n valeurs
propres distinctes, alors u est diagonalisable.

— Si le polynoéme caractéristique de A est scindé a racines simples i.e. si A possede n valeurs
propres distinctes, alors A est diagonalisable.

Si x,, est scindé a racines simples alors, pour tout A € Sp(u), on a 1 < dim(Ej(u)) < m(A) =1,
donc dim(E(u)) = m(A). On applique alors le théoréme précédent. O
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Proposition 27.| Forme de la matrice diagonalisée

Soit A € M,(K) ou Sp(A) = {A1,..., Ak} avec Aq, ..., A\, deux & deux distinctes. Si A est diago-
nalisable, alors A = PDP~! o :

My 0 o0
D = 0
: . . 0
0 o 0 Moy
et P est la matrice de passage de la base canonique B de M, (K) vers une base B = (Cy, ...,Cy)
k
adaptée a la somme directe @ E\, (A), ie.
i=1

P=(C|..|Cy)

Remarque 13.

Soit u € L(E) avec Sp(u) = {A1,..., Ak} ol A1, ..., A\ deux & deux distinctes et A sa matrice
dans une certaine base B. Si u est diagonalisable, alors A = PDP~! o1 D & la méme forme que

dans la proposition précédente et P est la matrice de passage de la base B de M, (K) vers une
k

base B’ = (C4, ..., Cy) adaptée a la somme directe @ Ey, (u).

=1

Méthode : Diagonaliser une matrice A € M, (K) dans K.

e On calcule le polynéme caractéristique x , de A. S’il est scindé dans K, on continue; s’il
ne l'est pas, A n’est pas diagonalisable.

e On calcule les éléments propres de A et on détermine la dimension de chaque sous-espace
propre de A. Si la multiplicité de chaque valeur propre est égale a la dimension du sous-
espace associé, alors A est diagonalisable et on continue ; sinon A n’est pas diagonalisable.

e On met A sous la forme A = PDP~! ol P est la matrice formée par les vecteurs propres
de A

Exercice 16.

Diagonaliser (si ¢’est possible) les matrices suivantes dans R puis C :

-1 1 1 2 1 10 0 -2 0
A=|1 -1 1 B=10 6 8 c=1[(1 0 -1
1 1 -1 0 0 -1 0 2 0
1 -1 1
D=0 1-3 -2
0 -4 143
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L x,=X3+3X2-2=(X—-1)(X +2)? douSp(A)={-2,1} et on a:

1 1 0
Ei(A) =Vect(|1]) et E3(A)=Vect(| 0 |;| 1 ])
1 —1 -1
d’ou A est diagonalisable et A = PDP~! avec
1 0 0 1 1 0
D=0 -2 0 P=1|1 0 1
0o 0 =2 1 -1 -1

2. xg = X3 —T7X?+4X +12= (X +1)(X —2)(X +6) donc B est diagonalisable (polynéme
scindé & racine simples) et Sp(B) = {—1,2,6} et on a :

62
E_1(B)=Vect(| 24 |), FEx(B)= Vect(
—21

)

OO =

1
Eg¢(B) = Vect(| 4 ]).
0

d’ou B est diagonalisable et B = PDP~! avec

-1 0 0 11
D=0 2 0 P=|24 0 4
0 0 6 0 0
3. Xe = X3 +4X = X(X?+4) = X(X —2i)(X +2i), dou C n’est pas diagonalisable dans R
(car son polynéme caractéristique n’est pas scindé dans R[X]) et Spg(B) = {0}. Par contre,
C est diagonalisable dans C (polynéme scindé a racines simples dans C[X]) et on trouve :

1
Ey(C) = Vect(|0]);
1
-1 -1
Ezi(o) = Vect( 7 ), E,Qi(C) = Egl(C) = Vect( —1 )
1 1
Donc C = PDP~! avec :
0 O 0 1 -1 -1
D=0 2. 0 P=10 ¢ —i
0 0 —2¢ 1 1 1

4 xp = (X —9)(X —(1—19)(X — (1 +14)), dou D est diagonalisable (polynéme scindé a
racines simples) et on trouve :

1
E;(D) = Vect(| 0 ]);
0
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0 1
El_i(D) = Vect( ? ), E1+i(D) = Vect( 7 )
1 2

Donc D = PDP~! avec :

] 0 0 1 0 =«
D=(0 1-—12 0 P=10 17 1
0 0 1+ 0 1 2

Exercice 17.

On consideére 'application « définie sur Ky[X] par :

u:P—u(P)=(X+1)P 4+ X*P (;)

1. Montrer que u est une application linéaire & valeurs dans Ky[X].

2. Chercher, si c’est possible, une base qui diagonalise u et, le cas échéant, donner sa matrice
dans cette base.

1. Soit P € K[X]. On a (X + 1)P' € K[X] € K(X) et P(1/X) € K(X); or X2 € R(X) et
R(X) est un anneau donc (X +1)P’ + X2P(1/X) € K(X). Ainsi, on a u : Ro[X] — R(X).
Montrons la linéarité de u :

Soit P,@Q € Ro[X] et A, u € R. On a, par linéarité de la dérivation et de I’évaluation, puis
par opérations dans 'anneau R(X) :

uAP+pQ) = (X +1DOP+pQ) + X2(\P + uQ) (;{)

= (X+DOP +uQ)+ X (AP ()1(> +rQ <)1(>>
= AMX+1DP +uX +1)Q +AX2%P (;) +uX?Q <)1(>

- ’\((X“)P/*XZP <)1()>+u<(X+1)Q’+X2Q <)1()>

u(AP + u@Q) Au(P) + pu(Q).

D’ou la linéarité de u.
Ainsi, u(0) = 0 € Ry[X] et, de plus, pour P € Ry[X] \ {0}, on a 0 < deg(P) < 2 et ainsi :

deg <X2P <)1()> =2 —deg(P) € [0,2]

et
deg (X +1)P’) =1+ (deg(P) — 1) = deg(P) € [0,2]
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donc X2P (1/X),(X + 1)P’' € Ry[X] qui est un espace vectoriel d’ott u(P) € Ry[X] par
combinaison linéaire.

Il en résulte que u est un endomorphisme de Ry[X].

2. Considérons la base canonique B = (1, X, X?2) de Ry[X]. Comme :
xu(l)=(X+1)0+ X% x1=X2;
*xu(X)=(X+11+X?x1/X =2X+1;

* u(X?) = (X +1)2X + X2 x1/X?=2X2+2X +1;
on obtient :
01 1
A=Matp(u)=[0 2 2

1 0 2

Ona x, = x4 =det(XI3—A) = X(X —1)(X — 3) qui est scindé a racines simples donc u

est diagonalisable. Déterminons une base qui diagonalise u.

On sait que, pour A € Sp(u) = Sp(A), ona P € Ej(u) si, et seulement si, Matg(P) € Ex(A).

On détermine alors les sous-espaces propres de A ; apres calculs, on trouve :

2 1 -1
Ep(A) = Vect 1 Ey(A) = Vect 2 et F3(A) = Vect -1
=1 =1 1

Par suite, on obtient :
* Eo(A) = Vect ((-X* + X +2));
* E1(A) = Vect ((-X*+2X +1));
* E3(A) = Vect ((X* — X —1)).

On obtient donc une base C = (—=X2+ X +2,-X? +2X +1, X2 — X — 1) de Ry[X] formée
de vecteurs propres de u i.e. C est une base qui diagonalise u et on a :

Matp(u) =

e e e
O = O
w o o

3. Endomorphismes et matrices trigonalisables

Définition 17.| Endomorphisme/matrice trigonalisable

— Soit u € L(E). On dit que u est trigonalisable §’il existe une base dans laquelle la
matrice de u est triangulaire supérieure.

— Soit A € M, (K). On dit que A est trigonalisable si elle est semblable & une matrice
triangulaire supérieure, i.e. s’il existe T' € M, (K) triangulaire supérieure et P € GL,,(K)

tels que :
A=PTP
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Proposition 28.| Forme d’une matrice trigonalisée

Soit A € M, (K) et Sp(A) = {A1, ..., A} avec Aq, ..., A\, deux & deux distincts. Si A est trigona-
lisable, alors A est semblable a :

0
A *
T =
0 hy
0 0 M

A et T ont méme polyndme caractéristique qui est scindé et dont les racines sont Aq,..., Ay de
multiplicités respectives m(A1),...,m(Ag). Or T étant triangulaire, les coefficients diagonaux de
T sont exactement les racines de x, et le nombre d’apparition d’un coefficient sur la diagonale
est exactement sa multiplicité dans x,. D’ol la forme annoncée pour 7. O

Proposition 29.

Soit u € L(FE) et A € M, (K) une matrice représentant v dans une certaine base de E. Alors A
est trigonalisable si, et seulement si, u est trigonalisable.

u est trigonalisable si, et seulement si, il existe une matrice 71" triangulaire représentant u. Or A et
T représentent toutes deux w si, et seulement si, A et T' sont semblables. Donc u est trigonalisable
si, et seulement si, A est trigonalisable. ]

Corollaire 8.

Soit A € M, (K). Alors A est trigonalisable si, et seulement si, ’endomorphisme de K" canoni-
quement associé a A est trigonalisable.

On applique la proposition précédente au cas particulier : £ = K", A = (a;;) € My(K) et
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u € L(K™) tel que :

n n
Ui (T1y ey Ty) E al,jxj7'~',§ Qn,jTj5
j=1 =il

4. Trigonalisation

,l Théoréme 6.) Théoréme de trigonalisation

— Soit A € M, (K). Alors A est trigonalisable si, et seulement si, son polynéme caractéris-
tique x 4 est scindé.

— Soit u € L(E). Alors u est trigonalisable si, et seulement si, son polynéme caractéristique
X, €st scindé.

On démontre la partie concernant les matrices. Pour les endomorphismes, il suffit d’utiliser 1’équi-
valence u € L(F) est trigonalisable si, et seulement si, une matrice représentant u est trigonali-
sable et de remarquer que u et sa matrice ont le méme polynoéme caractéristique.

e (=). Si A est trigonalisable, alors il existe une matrice triangulaire supérieure T semblable
a A. Par suite on a x4 = X et le polynéme caractéristique d’une matrice triangulaire est
scindé. Donc x 4 est scindé.

e (<). On consideére la propriété
Pn: WA € M,(K), x4 est scindé = A est trigonalisable.”

Montrons que, pour tout n € N* P, est vraie par récurrence n € N*.

— Initialisation. Pour n = 1, la propriété Py est triviale : toute matrice de dimension 1
est triangulaire !

— Hérédité. Soit n € N*. On suppose la propriété P, vraie.

Soit A € M,,+1(K). On suppose que on polyndme caractéristique x 4 est scindé. Par
suite, x 4, admet au moins une racine A qui est valeur propre de A. Soit C; € M, 41,1(K)
un vecteur propre de A associé & A\. On compléte C en une base B = {C1,Cs,...,Cpy1}
de Mp+11(K). Alors, en posant @ = ( Ci ‘ ‘ Chn+1 ) i.,e. @Q est la matrice de
passage de la base canonique de M, 4+1,1(K) vers B, on a

- (342)

ou B € M »,(K) et C € M,(K).
Alors on a :
XA = XQ-1AQ = (X = Nxe

Or comme X, est scindé et xo|x 4, alors x est scindé et ainsi, par hypothese de
récurrence, C' est trigonalisable. Par suite, il existe 77 € M, (K) triangulaire et R €
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GL,(K) tels que C = RT'R~'. Alors, si on pose :
(110 A
P = ( 0T R > et P=QP
on obtient :

A o—l A1 ) -1 AN| B , [ AN| BR
P lAP = PIQ T AQP = P (%W P = (2.

Donc T' = P~ AP est triangulaire ; d’ott A est trigonalisable. Par suite, P, est vraie.

Ce qui acheve la récurrence.
O

Corollaire 9.

— Toute matrice de M, (C) est trigonalisable.
— Si K = C, tout endomorphisme de F est trigonalisable.

Soit A une matrice de M,,(C). Alors son polynéme caractéristique x 4 appartient & C[X] donc
d’apres le théoreme de D’Alembert-Gauss, x4 est scindé. Il en résulte que A est trigonalisable
d’apres le théoreme précédent.

Méme raisonnement pour un endomorphisme. O

Proposition 30.

Soit u € L(E) avec Sp(u) = {A1, ..., Ak} avec A1, ..., \x deux & deux distincts. Si u est trigonali-
sable, alors :

Tr(u) = Zm()\i))\i et det(u) = H)\ZL(/\").
i i=1
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On suppose u trigonalisable. Alors il existe T triangulaire qui représente u et T" est de la forme :

0
A1
T =
Ak
S
0 0 A
d’ou le résultat. O

Méthode : Trigonalisation d’une matrice.
e On calcule le polynéme caractéristique de la matrice. S’il est scindé, la matrice est trigo-
nalisable, on continue.

e On détermine les sous-espaces propres; on compare la dimension de chacun de ces sous-
espaces et la multiplicité des valeurs propres correspondantes. Si chaque dimension est
égale & la multiplicité correspondante, on diagonalise ; sinon, on doit trigonaliser.

Dans le cas général, il n’y a pas de méthode a connaitre; mais nous allons voir comment
trigonaliser une matrice A dans les différents cas possibles en dimension 3 sur des exemples.
Dans la suite, v désignera I’endomorphisme canonique de K? associé & A.

Méthode : Trigonalisation d’une matrice de M3(K) non diagonalisable.

ler cas : Deux valeurs propres distinctes de multiplicité 1 et 2 et chaque sous-espace propre de
dimension 1.

Exemple représentatif :

A=|-1 2 0

On a x, = (X —1)(X —2)? et les sous-espaces propres sont :

1 0
E;(A) = Vect 1 et Es(A) = Vect 1
1 -1

e On forme une base B = (eg, €2, e3) de K2 en prenant e; = (1,1,1) et e3 = (0,1, —1) et en
choisissant e3 de maniére & compléter en une base la famille e, es.
e On obtient alors A = PTP~! ou :

T = Matp(u) =

S O =
o N O
[T

et P est formé des vecteurs e, e, e3 mis en colonne.
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Par exemple : On choisit e = e; Aea = (—2,1,1) et on a :

t

-2
ules) = |A| 1 = (—8,4,—8) = —4dey + Gey + 2e3.
1
1 0 —4 1 0 -2
d’ou, danscecas, T= |0 2 6 etP=1|1 1 1
00 2 1 -1 1

Méthode : Trigonalisation d’une matrice de M3(K) non diagonalisable.
2eme cas : Une valeur propre triple et le sous-espace propre associé de dimension 2.

Exemple représentatif :

10 O
A=10 0 -1
01 2

On a x4 = (X —1)? et le sous-espace propre associé & 1 est :

1 0
E;(A) = Vect 0], -1
0 1

e On forme une base B = (eg, €2, e3) de K2 en prenant e; = (1,0,0) et ex = (0,—1,1) et en
choisissant es de maniere a compléter en une base la famille eq, es.
e On obtient alors A = PTP~! ou :

T = Matp(u) =

SO =
o = O
— % %

et P est formé des vecteurs e, e, e3 mis en colonne.

Par exemple : On choisit e3 = (0,1,1) et on a u(e3z) = (8,4, —8) = 2e2 + 1.e3. d’on, dans

1 00 1 0 O
cecas, '=(0 1 2) etP=(0 -1 1
0 0 1 0 1 1

Méthode : Trigonalisation d’une matrice de M3(K) non diagonalisable.
deme cas : Une valeur propre triple A et le sous-espace propre associé de dimension 1.

On utilise ici la méthode de réduction de Jordan (par souci de simplicité) :
On cherche une base B = (e1, €2, e3) de K3 telle que :
e On cherche e3 ¢ Ker ((u — Adg)?) ;

e on pose es = u(eg) — Aes; (d’ou u(eg) = ea + Nes) ;

e on pose e; = u(eg) — Aeg; (ot u(ez) = e1 + Aea).
Et on prouvera plus tard qu’'on a nécessairement u(e;) = Aej grace au théoreme de Cayley-
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Hamilton. Ainsi, on obtient A = PTP~! ou :

T = Matp(u) =

S O >
S > =
> = O

et P est formé des vecteurs ey, ea, e3 mis en colonne.

Exercice 18.

Trigonaliser les matrices suivantes :

-1 0 0 i+i L 1 -1 0
A=|2 -4 1 B=| -3 —3+i —i|Cc=|2 -2 -1
2 -1 -2 0 0 i -1 1 1
100\ /-1 0 0)\/t 00"
A=([1 1 0[O0 -3 1]|1 10
11 1/\0 0o -3/ \1 11
=1l

-1

5. Endomorphismes nilpotents et matrices nilpotentes

On rappelle ici la notion de nilpotence évoquée dans le chapitre Structures algébriques usuelles :

Définition 18.) Endomorphisme nilpotent/Matrice nilpotente

— Soit u € L(E). On dit que u est nilpotent s'il existe k € N* tel que u* = 0. On appelle
alors indice de nilpotence le plus petit entier p € N* tel que uP = 0.

— Soit A € M, (K). On dit que A est nilpotente s'il existe k¥ € N* tel que A*¥ = 0,,. On
appelle alors indice de nilpotence le plus petit entier p € N* tel que AP = 0,,.

Exemple 5.

Une matrice triangulaire dont la diagonale est composée de 0 - on appelle ce type de matrices
des matrices triangulaires strictes - est nilpotente.
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Proposition 31.

Soit uw € L(E). On a équivalence entre les assertions :
i) w est nilpotent;
ii) x, = X" (ou n=dim(E));

On a le méme résultat pour A € M, (K).

e i)= ii). On suppose u nilpotent d’indice p. Soit A € M, (K) une matrice représentant u
dans une certaine base B de E. La matrice A est trigonalisable dans M,,(C). Soit A € C
une valeur propre de A et X € M,, 1(C) un vecteur propre associé. Alors on a, pour tout
keN:

ARX =2k X

Or AP = 0 donc A?X = 0 avec X # 0, d’ou \? = 0. Ainsi, A = 0, donc 0 est la seule valeur
propre de A. A étant trigonalisable, son polynéme caractéristique est donc x , = X™. Par
suite, x, = x4 = X"
ii)= i). On suppose x,, = X". (On peut conclure directement avec le théoréme de Cayley-
Hamilton mais on n'a pas besoin d’utiliser un si puissant résultat ici).
Comme Y, est scindé, u est trigonalisable et donc il existe une base B dans laquelle la
matrice T' de u est triangulaire stricte car 0 est la seule valeur propre de u. Or T est
nilpotente car triangulaire stricte, donc il existe k > 1 tel que Matg(u*) = T% = 0,,. Ainsi,
uf =0.

O

Corollaire 10.

— Soit u € L(E). Alors u est nilpotent si, et seulement si, u est trigonalisable et Sp(u) = {0}.

— Soit A € M,(K). Alors A est nilpotente si, et seulement si, A est trigonalisable et

Sp(4) = {0}.

On a u est nilpotent si, et seulement si, x, = X" si, et seulement si, v est trigonalisable et son

unique valeur propre est 0.

Proposition 32.

Soit u € L(E). Si u est nilpotent d’indice p, alors :
— pour tout = € E tel que uP~1(z) # 0, la famille (z,u(z),...,uP~1(x)) est libre;
— p<n=dm(FE).

52



— Soit ag, ...,ap—1 € K tels que Zf;ol a;ui(x) =0g. On a :
p—1
O = up_l(z aiu'(z)) = aguP ™ (z).
i=0
donc ag = 0 car uP~1(z) # Op, puis, on a :

O = up*Q(Z a;iu'(x)) = ayuP~ ().
i=1

d’olt a; = 0. On continue ainsi de proche en proche pour trouver finalement :
ap =a; = ... = 0p—1 = 0.

Donc (x,u(z), ..., uP~1(x)) est une famille libre.

— Comme p est le plus petit entier de N* tel que u? = 0, alors uP~! # 0. Par suite, il
existe © # Op tel que uP~1(x) # Op. Ainsi, en utilisant le point précédent, la famille
(z,u(z),...,uP~(z)) est une famille libre de E de p vecteurs, par suite, p < dim(E).

O
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Partie E

Polynomes annulateurs et réduction

Dans cette partie, ’espace vectoriel E est supposé de dimension finie n.

1. Rappels et compléments sur les polynémes annulateurs

a. Rappels

Soit P = Zf:o a; X" € K[X]. On rappelle que les polynémes P en u € L(E) et en A € M,(K)

sont définis par :
k

P(u) = Zaiui =aoldg + a1u + ... + apu® € L(E),
i=0

et
k

P(A) =Y aA" = aplp + a1 A+ ... + ax A € M, (K).
=0

On note, pour u € L(E) et A € M, (K) :
Klu] = {P(u) | P €K[X]} et K[A]={P(4) | P eK[X]}

On dit que P € K[X] est un polyndéme annulateur pour u (resp. pour A) si P(u) =0 (resp. si
P(A) =0,).

b. Polyn6émes annulateurs et éléments propres

Proposition 33.
Soit u € L(E).

i) Pour tous P, Q € K[X], P(u) et Q(u) commutent.
ii) Pour tout P € K[X], Ker(P(u)) et Im(P(u)) sont stables par u.

i) On a, pour tous 4,5 € N, u’ ou/ = u/ ou’ et u’ est linéaire donc en déduit que, pour tous
P,Q e K[X] :
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ii) Soit P € K[X]. On a u = Q(u) avec Q = X, d
d’apres la proposition 7, Ker(P(u)) et Im(P(u

nc u et P(u) commutent d’apres i). Donc,
) sont stables par u.

o

~—

O

Proposition 34.

Soit u € L(E), Ae M,(K), e Ket P e K[X].
— Soit z € E. Si u(z) = Az alors P(u)(z) = P(\)z.
— Soit X € M,,1(K). Si AX = \X alors P(A)X = P(\)X.

— On suppose u(x) = Az. Alors on a :

— On fixe une base B de E et on raisonne comme pour pour le point précédent en considérant
A et X comme les matrices dans la base B de u et x respectivement.
O

Corollaire 11.

Soit u € L(E), A € My (K), A € Ket P € K[X].
— Si A est une valeur propre de u, alors P(\) est une valeur propre de P(u) et

Ex(u) C Bpny(P(w)).
— Si A est une valeur propre de A, alors P(A) est une valeur propre de P(A) et

Ex(A) C Epy)(P(A)).
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Proposition 35.

Soit u € L(E), A € M,(K) et P € K[X].
— Si P est un polyndéme annulateur de u, alors toute valeur propre de w est une racine de
P ; autrement dit, pour A € Sp(u), P(\) = 0.

— Si P est un polynéme annulateur de A, alors toute valeur propre de A est une racine de
P; autrement dit, pour A € Sp(A), P(\) = 0.

On suppose que P est un polynome annulateur de u, i.e. P(u) = 0. Alors, pour A € K une valeur
propre de u, d’apres la proposition précédente, P(A) est un valeur propre de I’endomorphisme
P(u) qui est Pendomorphisme nul. Or 0 est I'unique valeur propre de 0 € L(E). D’ou P(A) =0
i.e. A est une racine de P. O

Remarque 14.

ATTENTION, la réciproque de la proposition précédente est fausse! Par exemple, X?(X — 1)
est un polynéme annulateur pour la matrice I,, mais 0 n’est pas valeur propre de I,,.

Exemple 6.

— Soit p un projecteur. Alors p? = p donc X? — X = (X — 1) X est un polyndéme annulateur
de p et on a bien Sp(p) C {0,1}.

— Soit s une symétrie. Alors s2 = Idg donc X? —1 = (X — 1)(X + 1) est un polyndme

annulateur de s et on a bien Sp(s) C {—1,1}.

Proposition 36.

Soit u € L(E), A € M,(K) et P € K[X].
— Si P est un polynoéme annulateur de u et P(0) # 0, alors u est injectif (et donc bijectif
car dim(E) est finie).
— Si P est un polynéme annulateur de A et P(0) # 0, alors A est inversible.

On suppose que P = Zf:o a; X* est un polynéme annulateur de u et que P(0) # 0. Alors ag # 0

et on a :
k

aoldp + (O a;u'™") ou = P(u) =0,
i=1

—1 k i—1 o . . g . —1 k i—1
donc (232, a;u'™") ou = Idg. Par suite, u est inversible et son inverse est 7> ;" ; a;u'"".

On raisonne de méme pour A € M, (K) pour démontrer que A est inversible et que son inverse
—1 vk CAi—1
est 2D i a; A7 O
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Meéthode : Calcul d’une inverse grace a un polynéme annulateur. La démonstration précédente
nous donne un moyen pratique de détermination de l'inverse d’un endomorphisme (en dimension
finie) ou d’une matrice quand on a un polynéme annulateur P tel que P(0) # 0. En effet, pour
P= Zf:o a; X" avec ap # 0 un polynéme annulateur de u (resp. de A), on a :

k
_ -1 i
ut=—Y aul
a
0 =1
respectivement,
k
_ -1 _
Al= = a; A1
ag

Exercice 19.
1. Déterminer 'inverse de f : (z,y) — (2 + y, x + 2y)

2. Déterminer 'inverse de A = <§ ?)

1. Ona f2 —3f = —3ldg, donc f~! = ZL(f — 31dg).
2. Ona A? — 24 =3I, donc A~' = 1(A - 31,).

Proposition 37.

Soit u € L(F) et P € K[X]. Si up est 'endomorphisme induit par u sur F = Ker(P(u)), alors
P est un polynéme annulateur de up.

Soit P = >, ax X" la décomposition de P dans la base canonique de K[X]. On suppose que up
est 'endomorphisme induit par u sur F' = Ker(P(u)). Alors, pour tout « € F, on a P(u)(xz) = 0g
et :

P(up)(z) =Y apufp(z) =Y aruf(z) = P(u)(z) = 0
k=0 k=0

Par suite, P(ur) = Oy i.e. P est annulateur de up.

2. Polynéme minimal

Dans le chapitre Structures algébriques usuelles, on a introduit la notion de polynéme minimal d’un
élément d’une algebre, on rappelle ici les principaux points de ce concept dans le contexte des algebres
de dimension finie L(E) et M, (K).
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Proposition 38.| [déal annulateur

— Soit u € L(E). L’ensemble I,, = {P € K[X] | P(u) = 0} appelé idéal annulateur de u
est un idéal de K[X] non réduit a {0}.

— Soit A € M,,(K). L’ensemble I4 = {P € K[X] | P(A) = 0,,} appelé idéal annulateur
de A est un idéal de K[X] non réduit & {0}.

On a déja démontré ce résultat dans la partie Algebres du chapitre Structures algébriques. On
rappelle tout de méme la démonstration dans notre contexte :

I,, est un idéal de K[X] comme noyau du morphisme d’anneaux f : P — P(u) de K[X] dans
L(E).
Montrons que u posséde un polynoéme annulateur non nul. Comme L(FE) est de dimension finie

égale A n?, la famille (Idg, u, ..., u"z) est liée car composée de n? + 1 vecteurs dans un espace de
dimension n? donc il existe Ag, ..., A,z € K non tous nuls tels que

n2
Z )\/dz =0.
=0

Par suite P = Z;io i X% est un polynéme annulateur non nul de u d’out I,, # {0}. O

Définition 19.| Polynéme minimal

— Soit u € L(E). On appelle polynéme minimal de u et on note 7, le générateur unitaire
de l'idéal annulateur I,, de u. En particulier, I, = m, K[X].

— Soit A € M, (K). On appelle polynéme minimal de A et on note w4 le générateur
unitaire de l'idéal annulateur 14 de A. En particulier, I4 = w2 K[X].

Proposition 39.

Soit u € L(E).
— Si E est de dimension n > 1, deg(m,) > 1.

— On a deg(m,) =1 si, et seulement si, u est une homothétie.

Proposition 40.

— Soit u € L(E) et d = deg(w,). La famille (Idg,u,...,u?!) est une base de I'algébre
Klu] = {P(u) | P € K[X]} engendré par u.

— Soit A € M,,(K) et d = deg(r4). La famille (I,,, A, ..., A%~1) est une base de I’algébre
K[A] = {P(A) | P € K[X]} engendré par A.
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On a déja démontré ce résultat dans la partie Algebres du chapitre Structures algébriques. On
rappelle tout de méme la démonstration dans notre contexte :

On suppose que u admet un polynéme minimal 7, avec d = deg(m,,). Montrons que (uk) ]
est une base de Klu]. -
d—1
o Famille libre : soit Ag,...,A\¢—1 € K des scalaires tels que Z)\kuk = 0. S'il existe i €
k=1
[0,d — 1] tel que A; # 0, ZZ: AL X" est un polynéme annulateur non nul de u de degré
< d = m,. Contradiction car m, est de degré minimal parmi les polynémes annulateurs.

Donc pour tout ¢ € [0,d — 1], A; = 0. Donc la famille (uk)0<k<d_1 est libre.

o Famille génératrice : Soit P(u) € K[u]. Alors P € K[X] et en faisant la division euclidienne
de ce polynéme par m,, on obtient qu'’il existe @, R € K[X] tels que P = m,Q + R et
deg(R) < d — 1. Par suite,

P(u) = mu(u) Q(u) + R(u) = R(u).

——
=04
d—1
et R est de degré < d — 1 donc il existe Mg, ...,A\g—1 € K tels que R = Z)\ka. Il en
k=1
résulte que :
d—1
P(u) = R(u) = Y \X"* € Vect (") g<poca1 -
k=1
Donc (u¥),_, -, , est une base de K[u]. O

Proposition 41.

— Soit u € L(E) et A € K. Alors A € Sp(u) si, et seulement si, 7, () = 0.
— Soit A € M,,(K) et A € K. Alors A € Sp(A) si, et seulement si, m4(A) = 0.

Autrement dit, les valeurs propres sont exactement les racines du polyndéme minimal.

e (=). Si A est une valeur propre de u, alors A est racine de tout polynéme annulateur de
u. Or 7, est un polynéme annulateur de u. Donc m, () = 0.
e («). On suppose m,(A) = 0. Alors on a la factorisation
7y = (X — NP,

ou P € K[X] et deg(P) = deg(m,) — 1 < deg(m,). Par suite,

0 =my(u) = (u—Adg) o P(u).
Supposons par I’absurde que A n’est pas valeur propre de u. Alors u — Aldg est injective
et donc bijective car E est de dimension finie; d’ott P(u) = 0. Ce qui est impossible par
minimalité du degré du polynéme minimal parmi les polynémes annulateurs de u.

Il en résulte que A est une valeur propre de .
O
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Corollaire 12.

— Soit u € L(E). Alors m, et x, ont les mémes facteurs irréductibles dans K[X]. En
particulier, ils ont les mémes racines.

— Soit A € M,(K). Alors m4 et x4 ont les mémes facteurs irréductibles dans K[X]. En
particulier, ils ont les mémes racines.

Traitons le cas matriciel. Soit A € M,,(K) C M, (C). D’apres la proposition précédente, les racines
de 74 dans C sont exactement les valeurs propres de u qui sont également les racines de x , dans
C. Les facteurs irréductibles de C[X] étant seulement les polyndmes de degré 1, il en résulte que
Ta et x4 ont les mémes facteurs irréductibles dans C[X].

Ainsi, si K = C, on a le résultat. Dans le cas K = R, il reste donc a traiter le cas ou P est un
facteur irréductible de degré 2 de m4 ou de x . Alors P = (X — A\)(X — ) avec A € C\ R
i.e. P posséde deux racines complexes non réelles conjuguées. Ces deux racines A, A sont donc
des valeurs propres de A vu comme une matrice a coefficients complexes. Par suite, ce sont des
racines communes de 74 et x4, d'ott P = (X — A)(X — \) est un facteur irréductible dans R[X]
commun & T4 et X 4. O

Corollaire 13.

Soit uw € L(E). Alors , est scindé si, et seulement si, x,, est scindé.
De méme dans le cas matriciel.

3. Lemme de décomposition des noyaux

,l Théoréme 7.) Lemme de décomposition des noyauz

Soit u € L(F) et Py,..., P, € K[X] deux & deux premiers entre eux. Alors, pour P = P;... Py,
ona:

k
KerP(u) = @ KerP;(u).

On montre le résultat par récurrence sur k € N, k > 2.

— Initialisation : k = 2 Soit A, B € K[X] premiers entre eux et P = AB. On procéde par
double inclusion.

Comme K[u] est commutatif, on a :
A(u) o B(u) = P(u) = B(u) o A(u),
d’ott Ker(A(u)) C Ker(P(u)) et Ker(B(u)) C Ker(P(u)). Par suite,
Ker(A(u)) + Ker(B(u)) C Ker(P(u))
D’apreés le théoréme de Bézout, il existe U, V € K[X] tels que AU + BV =1, donc
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A(w) oU(u) + B(u)oV(u) =Idg. (%)

e Montrons tout d’abord que la somme Ker(A(u))+Ker(B(u)) est directe i.e. Ker(A(u))N
Ker(B(u)) = {0g}.
Soit x € Ker(A(u)) NKer(B(u)). Alors on a, d’apres () et en utilisant le fait que K[u]
est une algebre commutative :

r=Uu) [ Alw)(z) | +V(u) | Bu)(z) | =0g.
—0 =0g

Par suite, Ker(A(u)) N Ker(B(u)) = {0g}.
e Soit x € Ker(P(u)). On note y = A(u) o U(u)(x) et z = B(u) o V(u)(x). D’apres (x),
xr =19y + z, et de plus, on a :

A(u)(2) = A(u) o B(u) o U(u)(2) = P(u) o U(u)(z) = U(u) | P(u)(z) | =0g

=0g

donc z € Ker(A(u)) et, par le méme raisonnement, on obtient y € Ker(B(u)).
Par suite, © = z + y € Ker(A(u)) @ Ker(B(u)).
Il en résulte que
Ker(A(u)) ® Ker(B(u)) = Ker(P(u)).
— Hérédité : Soit k > 2. On suppose le propriété vraie pour k. Soit P = P;...P;41 avec
Py, ..., P41 premiers entre eux deux a deux.
On pose A = P,...P; et B = Py41. Alors A et B sont premiers entre eux, P = AB. D’apreés

le raisonnement effectué pour initialisation, on a Ker(P(u)) = Ker(A(u)) + Ker(B(u)).
Par suite, d’apres ’hypothése de récurrence, on a :

k
Ker(P(u)) = Ker(A(u)) + Ker(B(u)) = @KerPi(u) @ KerPyy1(u).

Ce qui acheve le raisonnement par récurrence.

Corollaire 14.

Soit u € L(E) et Pp,..., P, € K[X] deux & deux premiers entre eux. Alors P = P;...P; est un
polynéme annulateur de u si, et seulement si,

k
E = @KerPi(u).
i=1
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On applique le lemme de décomposition des noyaux pour obtenir :
k
KerP(u) = @ KerP;(u).
i=1
Or P est un polynéme annulateur de u si, et seulement si, on a KerP(u) = F, d’ou le résultat. O

Remarque 15.

On retrouve que pour p un projecteur et s une symétrie, Ker(p) et Ker(p — Idg) sont supplé-
mentaires ainsi que Ker(s — Idg) et Ker(s 4+ Idg).

Exercice 20.

1. Soit a,b € R tels que a? + 4b > 0 et U 'ensemble des suites récurrentes doubles dont le
terme général vérifie u, 1o = au, 41+ bu,. Montrer que U est le noyau de 'endomorphisme
P(s) ou

P=X?—aX—-b et s:u=(un)nen = (Uni1)nen-

En déduire une expression explicite de U.

2. Soit a,b € R tels que a® + 4b > 0 et S I'ensemble des fonctions f de C°°(R) telles que
f”" =af +bf. Montrer que S est le noyau de ’'endomorphisme P(D) ol

P=X?—aX—-b et D:f~f.

En déduire une expression explicite de S.

1. On a, pour u = (u,) € RY,
P(s)(u) = s%(u) — as(u) — bid(u) = Upyo — QUp1 — by,

Donc on a bien U = Ker(P(s)) = {u € RN | P(s)(u) = 0}. On a A(P) = a® +4b > 0 par
hypothése, donc P posséde deux racines r1,79 € R distinctes. Ainsi P = (X —71)(X —r3)
et X —ry, X — ry sont premiers entre eux, donc, d’apres le lemme de décomposition des
noyaux :
U = Ker(P(s)) = Ker(s — r1id) @ Ker(s — raid).
Or, pour r € R,
Ker(s —rid) = {u = (up) | ¥n €N, upy1 =71un} = {(Ar")nen | A € R}.

Il en résulte que :
U= {(Ar] + Bry)nen | A, B € R}.

2. Par un raisonnement similaire, on obtient, pour r1,r les deux racines réelles distinctes de
P:
S={tr ae™t + Be™ | o, B € R},
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en remarquant que :

Ker(D —rid) = {f € C®°(R) | f' =rf} = {t = ae™ | a € R}.

4. Polynémes annulateurs et réduction

(Théoréme 8.)

Soit u € L(E). On a équivalence entre les assertions :
i) u est diagonalisable;
ii) w posséde un polynéme annulateur scindé a racines simples ;
iii) le polynéme minimal 7, de u est scindé & racines simples.

Le méme résultat est valable pour A € M, (K).

On démontre )= ii) = iii) = i)
e i)= ii). On suppose u diagonalisable et on note Sp(u) = {A1, ..., Ag} avec A1, ..., A\x deux a
deux distinctes. Alors on a

k k

E= @EM (u) = @Ker(u — NIdg).

=1 i=1

Par suite, d’apres le corollaire 14, le polyndéme scindé a racines simples P = Hle(X —\)
est annulateur de u.

e ii)= iii). Si u posseéde un polynéme annulateur scindé a racines simples P alors m,|P et
donc 7, est scindé a racines simples.

e iii)= i). On suppose que m, est scindé a racines simples i.e. m, = Hle(X — \;) avec
A1, ..., A\p deux & deux distinets. Alors Sp(u) = {\,..., \p} et d’aprés le corollaire 14, on
a: FE= Eszl Ker(u — \Idg) = @le Ey, (u). Par suite, u est diagonalisable.

O

Corollaire 15.

Soit u € L(F) et F un sous-espace vectoriel de E stable par u. Si u est diagonalisable, alors
I'endomorphisme up € L(F') induit par u sur F' est diagonalisable.

Si u est diagonalisable, alors 7, est scindé a racines simples d’aprées le théoreme précédent. Or
on a mu(up) = 0 : en effet, pour tout = € F, my(up)(x) = 7, (u)(z) = Op; par suite, up
posséde un polynéme annulateur scindé a racines simples. D’apres le théoréme précédent, up est
diagonalisable. O
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Exemple 7.

Soit u € L(E) tel que u® + 11u = 6u® + 6Idg. Alors u est diagonalisable.

En effet, le polynéme P = X3 — 3X2 4+ 11X — 6 est annulateur de u et on remarque que
P = (X—-1)(X —2)(X —3) est scindé & racines simples. Ainsi, v est diagonalisable d’apres
le théoreme précédent.

Exercice 21.

Soit n € N* et M € M, (R) telle que M3 — M? + M = I,,. Déterminer le déterminant de M et
montrer que sa trace est un entier naturel inférieur ou égal a n.

On remarque que P = X% — X2+ X — 1= (X — 1)(X —i)(X + 1) est un polynéme annulateur
scindé & racines simples de M. Par suite, M est diagonalisable dans C avec Spe(M) C {1,4, —i}
et ainsi, on a :

det(M) = 1mM 5 i™@ x (=)™ et tr(M) = m(1) + m(i)i — m(—i)i

ol, si A n’est pas valeur propre de M, m(\) = 0 et si A est valeur propre de M, m(\) désigne sa
multiplicité.

De plus, M étant a coefficients dans R, ses valeurs propres non réelles conjuguées (potentielles)
1 et —i ont la méme multiplicité i.e. m(i) = m(—:). Ainsi :

det(M) = (i x (—i))™D = 1m0 =1 et tr(M) = m(1) + m(i)(i — i) = m(1) € [0,n].

Exercice 22.

n+1 1 1
1.1 o
Soit n € N*. Onpose J = [ . | € M,(R)et A= 1 ' ' ' € M,(R).
1 1 oo 1
1 1 n+1

1. Exprimer .J? en fonction de .J.
2. Exprimer A en fonction de J et I,, puis en déduire un polynéme annulateur de degré 2 de

A.
3. En déduire que A est diagonalisable sur R.

1. Ona J? =nJ.
2. Ona A=J+nl, et comme J et I,, commutent, on a :

A? = (J+ nfn)2 = J? 4+ 2nJ + n?I, = 3nJ + n’l, = 3nA — 2n°I,

64



Par suite, P = X2 — 3nX + 2n? est annulateur de A

3. On remarque que P = (X —n)(X — 2n) est un polynéme annulateur de A scindé & racines
simples, donc A est diagonalisable.

Exercice 23.
Al A

0, | A
Montrer que si B est diagonalisable, alors A 1’est aussi puis, sous la méme hypothése, que A = 0,,.

Soit n € N*, A € M,(R) et B = ) € Ms,(R).

P(A) | AP'(4)
0. | P(4)

On remarque tout d’abord que pour P € R[X], P(B) =
Ak | kAR )

) car, pour tout

0, | A

On suppose B diagonalisable. D’apres la caractérisation de la diagonalisabilité par les polynémes
annulateurs, B possede un polynome annulateur P scindé a racines simples. Ainsi, d’aprées la
remarque précédente, P est donc également annulateur de A, d’ou A est diagonalisable, toujours
d’apres la caractérisation utilisée précédemment.

De plus, on a également X P’ qui est annulateur de A. Ainsi, les valeurs propres de A font partie
des racines communes de X P’ et de P. Or, comme P est & racines simples, P et P’ n’ont pas
de racine commune; donc les valeurs propres de A font partie des racines communes de X et
P... et ils en ont nécessairement au moins une en commun et il s’agit bien-stir seulement de
0, car A posseéde au moins une valeur propre! Ainsi, 0 est la seule valeur propre de A qui est
diagonalisable : par suite, A = 0,,.

keN*,Bk::(

Soit u € L(E). On a équivalence entre les assertions :
i) w est trigonalisable;
ii) w posséde un polynéme annulateur scindé;
iii) le polynoéme minimal 7, de u est scindé.

Le méme résultat est valable pour A € M, (K).

Démontrons i)< iii) :

i) : u est trigonalisable si, et seulement si, x,, est scindé (Théoréme 6) si, et seulement si, 7, est
scindé (Corollaire 13) : iii).

Et en remarquant que le polynéme minimal est un polynéme annulateur de u qui divise tout
polynéme annulateur u, on obtient ii)< iii).

Remarque : dans la suite, on propose une preuve de iii)=1) qui n’utilise pas la caractérisation de
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la trigonalisabilité en terme de polynéme caractéristique :

Pour n € N*, on consideére la propriété :
Prn: VA € M,(K), m4 est scindé = A est trigonalisable.”

Montrons que, pour tout n € N*, P, est vraie par récurrence n € N*.
— Initialisation. Pour n = 1, la propriété Py est triviale : toute matrice de dimension 1 est
triangulaire.
— Hérédité. Soit n € N*. On suppose la propriété P,, vraie.

Soit A € M,+1(K). On suppose que on polynéme minimal 74 est scindé. Par suite,
w4 admet au moins une racine A qui est valeur propre de A. Soit C; € M, 411(K) un
vecteur propre de A associé & A. On compléte Cy en une base B = (C1,Cy, ...,Cpy1) de
My4+1,1(K). Alors, en posant @ = ( Cy ‘ ‘ Ch+1 ) i.e. Q est la matrice de passage de
la base canonique de M,,+1.1(K) vers B, on a :

- (342)

ou B € M »,(K) et C € M,(K).
De plus, on a :
TA(@TAQ) = Q7' 14(A) Q = Opy1.
0
=Un+41

Or,

@40 = (1)) = (FARLE Y i a0,

Par suite, m4(C) = 0,, i.e. T4 est un polynoéme annulateur de C' qui est scindé par hy-
pothese ; donc le polynéme minimal o de C' est scindé car il divise w4. Ainsi, par hypo-
theése de récurrence, C' est trigonalisable. Par suite, il existe 77 € M,,(K) triangulaire et
R € GL,(K) tels que C = RT'R~!. Alors, si on pose :

P’:((l) g) et P=QP

on obtient :

—1 _ pl—-1n—1 / __ pl—1 A B !/ A | BR
P'AP=P'Q'AQP' =P (%W P = (517

Donc T = P~1AP est triangulaire; d’oit A est trigonalisable. Par suite, P, est vraie.
Ce qui acheve la récurrence.
Montrons maintenant I'implication iii) = i). Supposons 7, scindé. Soit B une base de F et
A = Matg(u). Comme 74 = m,, T4 est scindé, et donc, d’apres le résultat précédent, A est
trigonalisable, ce qui implique que u ’est aussi. O
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Corollaire 16.

Soit u € L(E) et F un sous-espace vectoriel de F stable par u. Si u est trigonalisable, alors
I'endomorphisme up € L(F') induit par u sur F est trigonalisable.

Si u est trigonalisable, alors 7, est scindé d’apres le théoréme précédent. Or on a my(up) = 0 :
en effet, pour tout x € F, m,(ur)(x) = my(u)(z) = Og; par suite, up posséde un polyndme
annulateur scindé. D’apres le théoreme précédent, upg est trigonalisable. O

5. Théoreme de Cayley-Hamilton

,(Théoréme 10.) Théoréme de Cayley-Hamilton

— Soit uw € L(F). Le polynéme caractéristique x,, de u est un polynoéme annulateur de u
ie.

Xu(u) =0.

Autrement dit, 7, divise x,,.

— Soit A € M, (K). Le polynéme caractéristique x 4 de A est un polyndéme annulateur de
Alie.

Autrement dit, 74 divise x 4.

On suppose u trigonalisable. Soit B = (ey,...,e,) une base de trigonalisation de w. On note
T = Matg(u) et on a, pour Ay, ..., A, les n valeurs propres de u (pas forcément distinctes donc) :

)\1 * *
T=(ty)=| " *

. . . *

0 ... 0 X\,

Par suite, on a x, = xp = [[/-1(X — X;). Pour i = 1,...,n, on note F; = Vect(eq,...,¢;),
Fo={0g}et P, =X — ;. Alors on a :

Xu(u) = Pi(u)o...0 Pp(u).
Montrons que pour i € [1,n], que P;(u)(F;) C F;_1.

e Casi=1.0mna
Py(u)(e1) = u(e1) — Arer = Adrer — Ajeg = O,
dott Py(w)(Fy) € {08} = Fo.
e Casie[l,n—1]. Pour z € F;,ona x = ae; + x;_1.
—~—

E€F;_1
Comme F;_; est stable par u, alors F;_; est stable par P;(u) d’ou P;(u)(z;—1) € F;_1. De
plus, on a :
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Pi(u)(e;) =ules) — e
= (Giszn 4= o Al 020 0 4= Gm @) = e
——
=5\
= tyie1 + ... +ti—1 61 € Fj_1.
Donc P;(u)(z) = oP;(u)(e;) + Pi(u)(xi—1) € Fj_1.

Alors, on a bien, pour tout i € [1,n], que P;(u)(F;) C F;_1.

Ainsi, on a :
Xo(W)(E) =Pi(u)o...oP,_1(u)o P,(u)(Fy)
C Pl(u) 0...0 Pn_l(u)(Fn_l)
C
C
C Py (u)(Fy)
C Fy = {OE}
Et donc :

Xu(u)(E) = {05} ie. x,(u) = 0.
Si u n’est pas trigonalisable, alors on considére une matrice A € M, (K) représentant u comme

une matrice de M,,(C). Alors A est trigonalisable dans M, (C) et donc ’endomorphisme v’ de
C™ canoniquement associé & A lest aussi. D’aprés ce qui précede, on a x, (u') = 0 et donc
X4(A) = 0,,. Le polynéme caractéristique de A est a coefficients dans K, donc on a également

Xu(u) = 0.

Dans tous les cas, on x,,(u) = 0. O

Pour ce corollaire, on rappelle qu'on a prouvé précedemment que les polynémes caractéristique et
minimal possédent les mémes facteurs irréductibles dans K[X].

Corollaire 17.

Soit uw € L(E). On a deg(m,) < n.

Plus précisément, si P, ..., P, sont les facteurs irréductibles distincts des polyndémes minimal 7,
k k

et caractéristique x,, de u avec m, = H PP et x, = H P™ leurs décompositions en facteurs

i=1 =1
irréductibles, alors, pour tout ¢ € [1,k] :

pi <m;

De méme dans le cas matriciel.

D’apres le théoreme de Cayley-Hamilton, on a m,|x,,

Ainsi on a deg(m,) < deg(x,) = n.
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Précisons! Soit ¢ € [1,k]. Alors P/™
vité, P
polyndmes irréductibles distincts; donc, d’apres le lemme de Gauss, P

H§:1 Pj"j =Ty = XulXu = Hle ijj ; donc par transiti-

Hle P, Or, pour tout j # i, P", P;nj sont premiers entre eux car P;, P; sont des
P™ doun; <m;. O

Exercice 24.

1 01
Soit A=| 1 1 1].Montrer que A est inversible et exprimer A~! en fonction de puissances
-1 0 1
de A.

Ona y, = X3 —3X?%+4X — 2, donc d’apres le théoréme de Cayley-Hamilton,
0p = x4(A) = A% —3A4% + 44— 2.

Par suite,
1
A7l = §(A2 — 3A +41I5).

Exercice 25.

Soit A € M,(R) une matrice nilpotente d’indice p € N*. Retrouver grace au théoréme de
Cayley-Hamilton, que p < n.

Comme A est nilpotente d’indice p, son polynéme minimal est m4 = XP. Celui-ci est scindé, donc
X 4 Vest aussi, et comme ils ont les méme facteurs irréductibles et deg(x4) =n, ona x, = X"
Or, d’apres le theoréme de Cayley-Hamilton, XP = m4|x 4, = X" d’ou p < n.

6. Sous-espaces caractéristiques

Tout les énoncés suivants sont directement transposables au cas matriciel.
Définition 20. Sous-espace caractéristique

Soit u € L(E). Pour A € K une valeur propre de u, on appelle sous-espace caractéristique
de u associé a \ et on note C)(u) le sous-espace vectoriel de E :

Cx(u) = Ker ((u — )\IdE)m(A))

ot m(A) désigne la multiplicité de la valeur propre .
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Exercice 26.

Déterminer les sous-espaces caractéristiques de

6 -6 5
A=|-4 -1 10
7T —6 4

Proposition 42.

Soit u € L(E) et A € K. Si A est une valeur propre de u de multiplicité m(\), alors :

dim(Cy(u)) = m(A).

On suppose que A € Sp(u). On note m = m(A) et p = dim(Cj(u)). Alors on a x, = P(X — \)™
ou (X — \) et P sont premiers entre eux. Comme y,, est annulateur de u d’apres le Théoréme de
Cayley-Hamilton, on a, d’apres le lemme des noyaux :

E =Ker(P(u)) ® Cx(u).

De plus, comme P(u) et (u—Aldg)™ commutent avec u, Ker(P(u)) et C(u) sont stables par u. On
considére alors les endomorphismes induits v et w par u sur Ker(P(u)) et Cx(u) respectivement.
Comme @ est un polynéme annulateur de v et que A\ n’est pas racine de @, alors A n’est pas
valeur propre de v. Ainsi, (X — A) et x,, sont premier entre eux.

Comme (X — A\)™ est annulateur de w, alors A est la seule racine de w et donc x,, = (X — A)P.
Par suite, on a P(X — A)™ = X, = Xo-Xo = Xo-(X — A)P. Comme (X — A\)P et P sont premiers
entre eux, (X — A)P|(X — A)™ d’olt p < m puis, comme (X — \)P et x, sont premiers entre eux,
(X = N)™|(X =A)P dou m < p.

Il en résulte que m = p. [

Proposition 43.

Soit u € L(F) tel que x,, est scindé. Si m,, = Hle(X — ;)P olt Aq, .., A\, sont exactement toutes
les valeurs propres distinctes de w, alors, pour tout 7 € [1,k] :

Ker (1~ Adds)") = Oy, (u) (= Ker ((u - Aldg)"0))

D’apres le théoréme de Cayley-Hamilton, m,|x,, donc pour tout i € [1,k], p; < m();). Par suite,
Ker ((u — \Idg)Pi) € Cy,(u); en effet, pour f € L(E), si p < q, Ker(fP) C Ker(f?).
En notant d; = dim(Ker ((u — A;Idg)??)), on a donc d; < m(A;) = dim(Cy, (u))
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De plus, comme m, et x,, sont annulateurs de u, on a, d’apres le lemme des noyaux :

k k
@Ker ((u—NIdg)P") = FE = @C/\,- (u).
i=1 i=1
Ainsi,
k k
Zdl =n= Zm(/\z)
i=1 =1

Par suite, on a pour tout ¢ € [1,k], d; = m()\;) : en effet, comme pour tout i € [1,k], d; <
m(A;), si, par Pabsurde, il existe ig € [1,%] tel que d;;, < m(A;,), alors Zle d; < Zle m(A;),
contradiction.

Ainsi, pour tout i € [1, %], comme Ker ((u — A;Idg)P?) est un sous-espace vectoriel de Cj, (u) et
qu’ils ont la méme dimension (finie), on en déduit Ker ((u — A;Idg)Pi) = Cy, (u).

Théoreme 11.

Soit u € L(F) et m, son polyndéme minimal. Si 7, est scindé de racines (pas forcément simples)
deux & deux distinctes A1, ..., A\x € K| alors, pour i € [1, k],

ucy, (w) = Aildey, (u) + 14,

ot n; est un endomorphisme nilpotent de Cy,(u). De plus, dans une base B adaptée de E a la

somme directe @le Cy,(u), on a :

M) + N1 0
Matg(u) =
0 AkLim(ag) + Nk

ou pour tout ¢ € [1, k], N; est la matrice de n; dans la base de Cy,(u) extraite de la base B.

Dans le cas matriciel, cet énoncé se résume a : toute matrice de polynéme minimal scindé est
semblable & une matrice de la forme précédente.

On suppose que 7, = Hle(X — A\;)Pi. Alors, comme 7, (u) = 0, d’aprés le lemme de décompo-
sition des noyaux, on a :

k
E = Ker(m,) = @Ker ((uw — X\ Idg)P?).

i=1

Pour i = 1,...,k, on pose F; = Ker ((u — \;Idg)P?). Soit ¢ € [1,k]. Alors F; est stable par u car
u et le polynéme en u, (u — A\;Idg)P* commutent.
On note alors up, 'endomorphisme induit par u sur F;. On a, pour tout x € F; :

(uFl. — )\JdFl)pl (.’E) = (’LL - )\ZIdE)pZ (:L') = OE

donc (up, — NIdg,)P* = 0 € L(F;). Par suite n; = up, — A\Idg, € L(F;) est nilpotent et on a
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bien :

Exercice 27. Projecteurs Spectraux

A%

k
Soit u € L(E). On suppose que son polyndéme minimal 7, est scindé de la forme m,, = H(X —
i=1
b T
— On note, pour i € [1,k], P; = jl;[l(X —\)% = m
i

— On note pq, ..., px les projecteurs associée a la somme directe des sous-espaces caractéris-

1.

tiques; ceux-ci sont appelés les projecteurs spectraur de u.
Montrer que, pour tout ¢ € [1, k], il existe U; € R[X] tel que

ULPI = 1 mod (X — )\l)q’

2. En déduire que (U; P;)(u) = p;.
k U
3. Avec un "bon” choix de chaque U;, montrer que P = ; m
Application : On pose u € L(R*) I'endomorphisme canoniquement associé & A =

21 0 0

020 O

00 2 0

0 00 -1

1. Déterminer m, puis effectuer la décomposition en éléments simple de T%
M

. En déduire une expression des projecteurs spectraux de v comme sous forme de polyndémes

en u.

. Comme les \; sont distincts, P; et (X — A;)% sont premiers entre eux. Par suite, d’apres le

théoréme de Bézout, il existe U;, V; € K[X] tels que :
UP+Vi(X = \)% =1

Par suite,
UiPi = 1 mod (X — )\l)q’

. On va utiliser le fait que, pour p1,...,px € L(E) et Fy, ..., Fj, des sous-espaces vectoriels de

FE en somme directe :
k

Pp1,..-Pr sont les projecteurs associés a @ F; si, et seulement si,
i=1
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— i1 pi =1dg; piop; = 0 pour tous i # j ef,

k
— pour tout 4, Im(p;) = F;; Ker(p;) = @Fj.
j=1
i

Allons-y :
— Pour tous j # 4, on a U;P; = 0 mod (X — \;)%, donc

k
S=Y U;P; = 1 mod (X — \)*
j=1

D’oti, pour tout ¢ € [[1, k], (X — A;)%]S — 1. Or les (X — X\;)% sont premiers entre eux,
donc leur produit, qui vaut m, divise S — 1 et ainsi :
k
ZUij =S = 1 mod m,
j=1
Il en résulte qu’il existe @ € K[X] tel que :
k

> Ui =1+m.Q
j=1
donc :
k
(U;P;)(u) =Idg + my(u) oQ(u) = Idp

De plus, pour tous ¢,j € [1,k] avec i # j, on a :
k
(U:P)(U;P;) = UiU;Rry ot R= [ (X = Am)om

m=1
m¢{i,j}

Par suite,
(UiP;)(u) o (U P;)(u) = (UU; R)(u) o mu(u) = 0.
=0
— Soit ¢ € [1,k]. Notons f; = (U;P;)(u). Rappelons que Cy,(u) = Ker(u — \Idg)%
(proposition 41).
e Montrons Im(f;) = Cy,(u) par double inclusion.
Soit y € Im(f;). Alors il existe « € E tel que y = fi(z). On a :
(u=Aildg)* (y) = (u—Aildg)* o fi(z) = (X=X)“UiF)(u)(z) = Us(u)omy(u)(x) = Op.
D’ou y € Cy,(u). Ainsi Im(f;) C Cy, (u).
Réciproquement, soit € C,(u). Alors, comme pour tous j # i, (X — ;)% divise
P; et donc U;P;, on a :
(U;P)(u)(xz) = 0 car z € Cy,(u) = Ker(u — \;Idg)%.

Or, d’aprés ce qui précede, on a Idg = Zle(Uij)(u), donc :

k
z =Y (U;P;)(u)(z) = (UiP;)(u)(x) € Im(f;)

Jj=1

Ainsi Cy, (u) C Im(f;).
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e Montrons Ker(f;) @ C», (u) par double inclusion.

J#l
Soit z € Ker(f;). Comme dans le point précédent, on a Idg = Z§:1(Uj P;)(u) donc :

k k
= (U;P))(u Z ) e Py, (w)

Jj=1

oS,
S =
<.
|
—

fes

car pour tous j, Im(f;) C Cy,(u). Ainsi Ker(f;) C @CAJ. (u)

Jj=1
i

Soit j € [1, k] tel que j # i. Soit x € Cy,(u). On a (X — ;)% divise P; et donc U; P,
d’ou :
(Ui P;)(u)(w) = 0 car x € Cy;(u) = Ker(u — \;Idg)¥

Par suite, pour tous j € [1,k], Cy;(u) C Ker(f;) et ainsi, @C’A ) C Ker(f;).

Jj=1
J#i

Il en résulte, d’apres la caractérisation des projecteurs associés a une somme directe,
que, pour tous i € [1, k],

(UiP;)(u) = pi.

On a montrer précédemment qu'’il existe @ € K[X] tel que :

k
Y UP =1+m.Q
j=1

Et comme U; P; = 1 mod (X — \;)%, quitte & prendre le reste de la division euclidienne
de U; par X — X\;)%, on peut supposer que deg(U;) < ¢;.
Ainsi, on a :
k
deg(d_UjF;) < max (deg(Us)+ deg(Py) ) < deg(m)
= ok N — ——
<4j =deg(mu)—q;

Ainsi, par comparaison des degré dans ’égalité précédente, on obtient ) = 0 et donc :

S

Remarque : on aurait également pu obtenir cette relation et donc les bons U; dés le début
en utilisant le théoréme de Bézout appliqué aux polynémes P; qui sont premiers entre
euz (dans leur ensemble mais pas deux d deuz!

Ainsi, on obtient le résultat :

Ty

D> Sy Z’“: U;
e

i=1
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Application :
1. Onam, = (X —2)%(X + 1) et ainsi :

= (X —2)%, P, = (X + 1) puis,

2. En utilisant les notations de la partie précédente, on a P,
avec les calculs précédents, Uy = féX + g et Us = %. Par suite, on obtient :

p1 = (U1 P)(u) = 1(fu +5Idg) o (u — 2IdE)2 et po = (UaP2)(u) = §(u +1Idg)
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Annexe

Matrices symétriques et théoreme spectral

On énonce ici le théoréme spectral que nous ne démontrerons que plus tard, dans le chapitre relatif aux
endomorphismes des espaces euclidiens : cela nous permettra d’anticiper un peu quelques exercices ot on
doit voir ”a 'oeil nu” la diagonalisabilité d’une matrice!

,l Théoréme.) Théoréme spectral

Soit A € M, (R) une matrice & coefficients réels et symétrique i.e. A = A.

Alors il existe P € GL,(R) orthogonale i.e. P = P~! et une matrice diagonale D € M, (R)
telle que :

A= PDP.

Ainsi, en particulier, A est diagonalisable.

Remarque.

Attention ce résultat est faux pour les matrices a coefficients complexes.

Exercice 28.

Diagonaliser & ’aide d’une matrice orthogonale la matrice

N DN DN
N DN DN
NN DN

On sait que A est diagonalisable car A est symétrique a coefficients réels d’apres le théoreme
spectral. Mais redémontrons le tout de méme en déterminant les sous-espaces propres.

1
On remarque tout d’abord que | 1 | est un vecteur propre associé a la valeur propre 6 dont le
1
sous-espace propre Eg(A) est donc de dimension au moins 1. De plus, les 2éme et 3éme colonnes
Ay et Az de A étant égale & la premiere A, le rang de A est égal & 1 et donc son noyau est de
dimension 2 d’apres le théoréme du rang. Ainsi, 0 est valeur propre et le sous-espace propre associé
Ey(A) est de dimension 2 car il est égal au noyau de A. La somme des dimensions des sous-espaces
1
propres étant inférieure a 3, on en déduit que dim(Eg(A)) = 1 et donc Fg(A) = Vect 1
1
Comme dim(FEg(A))+dim(Ey(A)) = 3, alors A est diagonalisable. Il ne reste plus qu’a déterminer
Ey(A) en déterminant deux vecteurs qui ’engendrent (et si, qui plus est, ils sont orthogonaux,
ga arrange nos affaires pour la suite!).

76



0 2

On remarque que A 1 = A2 — A3 = 03,1 et A| -1 = 2A1 — A2 — A3 = 0371 et ainsi,
il ~1
0 2
Eo(A) = Vect 1],]-1
=1l =1l

Ces trois vecteurs propres formant une famille orthogonale de Ms1(R) (muni de son produit
scalaire canonique), il suffit alors de les normer pour former une bon de M3 1 (R) et ainsi produire
une matrice de passage P qui est orthogonale. Ce qui nous donne au final :

A=PDPou D= et P =

O OO
o O O
o O O
Shsksk
Sk <
SILslish

7



E&P

Exercices et problemes

Probléme 1. Racines carrées d’une matrice

Soit n € N* et K =R ou C. On note :
— Ri(A) ={R e M,(K) | R? = A} pour A € M, (K);
— Dp(K) ={M € M,(K) | M est diagonalisable dans M,,(K)}.

1. Quand on est diagonalisable.
(a) Soit A € D, (C). Montrer que Rc(A) # 0.

(b) Soit A € D,,(R). Justifier rapidement, en s’appuyant sur la réponse a la question la,
I'implication suivante : si Sp(A) C R4, alors Rg(A4) # 0.

Que dire de la réciproque ?

(c) Déterminer une matrice explicite R € Rg(A) ol

7T =3 =3
A=1(3 1 =3
3 -3 1

(d) Soit A € D, (C) telle que 0 ¢ Sp(A). Montrer que R¢(A) C D, (C).
2. Quand on n’a pas de racine !

(a) Soit A € M,,(R). Montrer : si det(A4) < 0, alors Rg(A) = 0.
3 —4

(b) On considere A = <2 _3

I’est pas.
(¢) On suppose n > 2. Soit A € M, (K) nilpotente d’indice n. Montrer que R¢(A) = 0.
3. Quand R¢(A) est infini.
Montrer que R¢(A) est infini dans chacun des cas suivants :
(a) n=2et A= L.
(b) n=2et A=0,.

) € M>(R). Montrer que Rr(A) est vide et que R¢(A) ne

(¢) A € D, (C) posséde une valeur propre de multiplicité au moins 2.

4. Quand Rc(A) est fini.

(a) Soit A1,..., A\, € K deux & deux distincts. Déterminer R¢(A) et son cardinal pour
A = diag(A1, ..., An)-

(b) Soit A € M,,(C) telle que Card(Sp(A)) = n. Montrer que Rc(A) est fini de cardinal
a déterminer.

5. Quand Rk (A) est topologique.
(a) i Soit A € M, (K). Montrer que Rg(A) est un fermé de M, (K).
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ii. Montrer que Rk (1) est compact dans M, (K) si, et seulement si n = 1.

Application : Montrer qu'’il n’existe pas de norme || - || sur-multiplicative sur
M, (K) i.e. telle que, pour tous M, N € M,(K), |[MN]| > || M|.|N]|
En général,

(b) Intérieur de Rg(A). Pour k € N*| on note :

K[X1,..., Xx] = Z ainl...X,i’“ (ai);ens Presque nulle
i=(i1,...,ix ) ENF

I’ensemble des polynoémes a k indéterminées et a coefficients dans K (par famille presque
nulle, on entend famille dont les termes sont tous nuls sauf pour un nombre fini d’indices).
De plus, pour P € K[X7, ..., Xx], on pose :

Z(P)={z = (21, ..., z1) € K" | P(z) = P(x1,...,x1) = 0}.

ol la méme notation P désigne la fonction polynomiale de K* dans K associée au
polynéme P.

L’intérieur d’une partie X d’un espace vectoriel normé est notée X dans la suite.

i. Pour k € N*, on note P, ="pour toutes parties infinies I1,.., I de K et tout
P eK[Xy,...,Xg],si [1 X ... x I, C Z(P) alors P =07. Par P =0, on entend que
tous les coefficients de P sont nuls.

Montrer que, pour tout k € N*, Py, est vraie.

o

En déduire que, pour P € K[Xq, ..., Xi], si P # 0, alors l'intérieur Z(P) de Z(P)
est vide.

o

ii. Soit A € M,,(K). Montrer que I'intérieur Rg(A) de Rx(A) est vide.

On rappelle trois faits connus mais importants pour toute la suite :
i) Pour tout zy € C, '’équation 22 = 2y d’inconnue z € C admet, :
— si zg # 0, exactement deux solutions z = j:\/f"e’g ou 7 est le module de 29 et 6 un
argument de 2y ;
— si zg = 0, une unique solution z = 0.
Dans toute la suite de cette correction, une solution de 1’équation z
appelée une racine carrée de zg.

2 = 2, dans C est

ii) pour tout aq,...,a, € C:
diag(ay, ..., an)? = diag(a?, ..., a2).

iii) Pour tous M, P € M,,(K) avec P € GL,(K),

(PMP~ )2 = pMm2p~!

1. Quand on est diagonalisable.

(a) Soit A € D, (C). Comme A est diagonalisable, il existe A1, ..., A\, € Ket P € GL,(C)
tel que A = PDP~! avec D = diag(A1, ..., \n)-
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Pour chaque i € [1,n], on note r; € C une racine carrée de \; (voire rappel i)) ; ainsi,
on a, d’apres le rappel ii) :

diag(ry, ...,7)? = diag(r?, ...,r2) = diag(az, ..., an)? = diag(A1, ..., A\n) = D.
D’oil, en posant R = Pdiag(ry,...,m,)P~1 € M,,(C), d’aprés le rappel iii) :
R? = Pdiag(ry, ...,m,)?P~1 = PDP~! = A,
Il en résulte que R € Rc(A) et ainsi Re(A) # 0.

Comme dans la question précédente, on cherche une matrice diagonale D’ telle que
D’? = D dont les coefficients diagonaux sont des racines carrées des éléments coeffi-
cients diagonaux de D. Or, dans R, ’équation 22 = xy admet des solutions réelles si,
et seulement si, xp > 0, donc, les \; étant positifs, on peut réitérer le raisonnement de
la question précédente pour trouver R dans Rg(A).

2

La réciproque est vraie si n = 1 (toujours car I’équation z* = z¢ admet des solutions
proq ] q 0

réelles si, et seulement si, zo > 0).

Sin > 2, la réciproque est fausse. En effet,
— si m = 2, on peut trouver un contre-exemple en pensant “rotation” : une rotation
d’angle 7 est le carré d’une rotation d’angle 7. En terme matriciel :
. . . . -1
la matrice —I5 est diagonalisable dans M5(R) et la matrice Rz = (? 0
RQ% = —IQ. AillSi7 R]R(_IQ) 75 [Z) et Sp(—[z) §Z R+.

— sin est pair, on a R € Rg(A4) # 0 et Sp(A) ¢ R, pour :

) vérifie

R

SE)

A=—I,et R=

R=x
2
— si n est impair, on a R € Rr(A) # 0 et Sp(A) ¢ R, pour :

1
R
A:(ﬂﬁ> et R=
—in—-1

On vérifie que A est diagonalisable (ici dans M, (R)) et on applique la méthode de
la question précédente dans ce cas précis. On trouve, avec les techniques usuelles,
A=PDP!ou:

S

Rz
2

4.0 0 1 0 1 2 -1 -1
D=0 4 0|; P=|0 1 1]; P=[1 o0 -1
00 1 1 -1 1 -1 1 1

Puis, en posant R = Pdiag(2, —2,1)P~! € M3(R) par exemple, on a, comme dans le
raisonnement de la question précédente, R € Rr(A). Et apres calculs, on trouve :

3 -1 -1
R=|-3 1 3
5 -1 -3
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(d)

Notons Ay, ..., Ay € C les valeurs propres distinctes de A. Comme A est diagonalisable,
son polynéme minimal 74 est scindé a racines simples, et plus précisément :

k
ma =X =)
i=1
Soit R € Rc(A). On remarque que 0,, = m4(A) = wa(R2) = [[F, (R* — \;) et donc,
le polynéme @Q = Hle(X 2 — \;) est annulateur de R.
De plus, pour tout i € [1,k], \; # 0 et donc posséde deux racines distinctes dans C
que l'on note r; et s; et ainsi, le polynéme @ est scindé a racines simples car :

k

Q=[x —r)(X —s)

=il

Il en résulte que R est diagonalisable par caractérisation de la diagonalisabilité en
terme de polyndémes annulateurs.

2. Quand on n’a pas de racine !

(a)

(b)

Soit A € M, (R). Procédons par contraposée. On suppose Rr(A) # 0. Alors il existe
R € M,(R) tel que R? = A. Par suite, on a :

det(A) = det(R?) = det(R)* > 0.

3 —4
Pour A = <2 _3
la question précédente ; et on vérifie de plus que A est diagonalisable dans M, (C) (de
valeurs propres —1 et 1) ainsi, d’aprés la question la, R (A) # 0.

) € M, (R), on vérifie det(A) = —1 < 0 donc Rgr(A4) # 0 d’apres

On peut vérifier également par le calcul que :

1
1 1\ [i o\ (1 1\' [2-i -2+
R_<1 ;) (0 1) (1 ;) _(1—2' —1+2i)ER‘C(A)'

Supposons par I’absurde qu’il existe R € Rc(A). Alors R?" = (R?)" = A" = 0,, donc
R est nilpotente et notons p € N* son indice de nilpotence.
Alors, d’apres le cours (Proposition 32) p < n. Or, comme n > 2, ona 2n—2 > n > p,

donc :
On — R2n72 —_ (R2)n71 — Anfl ?é On

Contradiction !
Il en résulte que Re(A) = 0.

3. Quand Rx(A) est infini.

(a)

Considérons R = <Oct Z) € M5(K). On a R € Rg(I2) si, et seulement si,

a’?+bc  bla+d) _g_p (L0
cla+d) d+bc) T 270 1
ce qui est équivalent a

R=1I;(casa+d>0)ouR=—Iy (cas a+d < 0)
ou

R = (a b>aveca2+bc:1(casa+d20).

c —a
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Par suite, pour tout z € K, en prenant a =1, b=z et ¢ =0, on a :

1 =z
donc Rk (A) est infini car les R, sont tous différents.

On pourrait procéder par équivalence comme précédemment mais, d’expérience, on
0 1\°
0 0

les R, sont différents, Rk (02) est infini.

sait que N = = 04 done, pour tout z € K, R, = 2N € R(03). Comme tous

Soit A € D,,(C) telle que A posséde une valeur propre A € K de multiplicité au moins 2
(alors dans ce cas, n > 2). Comme A est diagonalisable, alors il existe P € GL, (C) telle
que A = PDP~! ot D = diag(\, A\, A1, ..., A\y_2) avec ); € C pour tout i € [1,n — 2].

On note r € C une racine de A et, pour ¢ € [1,n — 2], r; une racine de A;.

On pose alors, pour tout = € C,

et :

r_
D, =
0p—21

Soit # € C. D’apreés les questions 3a et 3b, R/? = A, d’ott D> = D et donc, pour
R, = PD/ P!, on obtient R = A.

Les R, étant tous différents (car les D! le sont), Rc(A) est infini.

Soit A1,..., A, € K deux & deux distincts et A = diag(Ay,...,\,). Soit M =

(mij)i<ij<n € Myp(C). On spoose M € R¢(A). Alors MA = M3 = AM donc A
et M commutent. Ainsi, on a :

(Ajmij)i<ij<n = MA =AM = (\im; j)1<i,j<n-

Par suite, pour tous 4,5 € [1,n] avec i # j, on a (A\; — A\;)m;; = 0 d’ott m; ; = 0 car
)\z' 7é /\j. Dou M = diag(mm, ...,mnw).
De plus,

diag(mil, ...,mi’n) = M? = A =diag(\1, ..., An),

d’ou, pour tout ¢ € [1,n], m;,; est une racine carrée dans C de \;.
Ainsi, en notant, pour ¢ € [1,n], u; une racine carrée dans C de \;, on obtient :

Eillq
RC(A) = (sla ~-~35n) € {_L 1}n

Enln

82



Les A; étant tous différents, au plus 'un deux est nul. Or tout nombre complexe non
nul admet exactement 2 racines carrées et 0 admet exactement une racine carrée donc :
{2” siVie[l,n], \s #0

Card(Re(D)) = 2"=1  sinon

On suppose que A possede n valeurs propres non nulles et distinctes. Comme
Card(Sp(A)) = n alors A est diagonalisable car la somme des sous-espaces propres
est de dimension au moins n et donc n.

Ainsi, en notant Ay, ..., A\, € K* les valeurs propres de A, il existe P € GL,(C) tel que
A =PDP~! avec D = diag(\1, ..., \n).

Soit R € M,,(C). On note D' = P~1RP. Ainsi, R? = PD"?P~! et donc :

R € R(A)
54

R2=A
=4

D?=D
=4

D' € R(D)

Par suite, si on note ¢: M — PMP~! ona:
R(A) = ¢(R(D))

Or, comme Ay, ..., A, sont deux & deux distinctes, d’apres la question 4a, on a R(D) =
{diag(e1pt1y -y Entin) | (1,-.-yen) € {0,1}"} ott, pour tout ¢ € [[1,n] p; est une racine
carrée de \; et de plus, Card(R(D)) = 2" si les \; sont non nuls ou 2"~ sinon.

Ainsi, ¢ étant un automorphisme de M, (C), on a :

A si 0 n’est pas valeur propre de A

2n=1  ginon.

Card(Rc(A)) = {

5. Quand Rg(A) est topologique.

(a)

i. Soit A € M, (K). L’application f : M — M? de M, (K) dans lui-méme est conti-
nue sur M, (K) comme composée de application linéaire M — (M, M) et de
lapplication bilinéaire (M, N) — MN toutes deux continues car M, (K) est de
dimension finie. Ainsi, Rx(4) = f~1({A}) est un fermé de M,,(K) comme image
réciproque du fermé {A} (car singleton) par I'application continue f.

ii. — Sin=1, Rg(A) est fini (de cardinal 1 ou 2) donc compact dans K.
Si n > 2, comme vu précédemment, pour tout = € K,

1 =z
0 -1
D/r: 1 GRC(In)
1
Or, on a |[|Dillec = |z H—> +o0o pour la norme définie par
x|——+o0

l(mij)1<ij<nllc = supP1<; j<n(|mij|) donc Rx(I,) n’est pas borné et donc
n’est pas compact.
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iii. Supposons par absurde qu’il existe une norme || - || sur M, (K) telle que, pour
tous M, N € M,(K), |[MN| > || M].||N||. Comme Rk (I,) n’est pas compact, il
existe une suite (Ry)ren & valeurs dans R(I,,) telle que ||Rg|| > k.

Par suite, pour M = Ry = N, on a, pour tout k € N :

Il = IMN|| > [|M|-[N]| = | Be]|* = k* —— +o0
k—+4o00

Contradiction !
Par suite, une telle norme n’existe pas.

(b) i. — On procede par réccurence sur N*.

o Initialisation. Soit I une partie infinie de K et P € K[X]. Si I C Z(P),
alors le polyndme P a une indéterminée possede une infinité de racines
dans K et donc est le polynéme nul.

Par suite, P; est vraie.

e Hérédité. Soit k € N*. On suppose Py, vraie.
Soit  Iy,...,lg41 des parties infinies de K et P =

Dic(ia ik)eNkHainl...X;’rf € K[X1,..., Xk+1]. On suppose

.....

I x ... x Ik+1 C Z(P)
On remarque que, pour tout © = (x1,...,Tg+1) € Kk .

+oo
P(z) = ZPj(xl, vy TR)TY 1 -
j=0

ou P; = > ai X1t X+ € K[Xq, ..., Xg] pour j € N.
i=(i1,...,ix) ENF
Soit (21, ...,2x) € KP. On note, pour j € N :

bj = Pj(.’El, ..,.’Ek) e K.

Comme la famille (a(; j)) @, j)entxn est presque nulle, il existe N € N tel
que, pour tout i € N* et pour tout j > N, a ;) = 0 et donc b; = 0.
Par suite, on peut considérer le polynéme de K[X] :

+oo
Q(X) =) b;X
=0
qui vérifie donc, pour tout x = (21, ..., zp11) € KFFL .
00 ] +o00 )
Qz) = Z bjzh | = ZPj(xl, o T)Th = P(x).
3=0 3=0

Soit (z1,...,2x) € I X ... X I. Pour tout A € Ip4q1, on a, comme
((El, ..,{Ek,)\) e€l; x..x Ik+1 C Z(P) 3

“+oo
Q) =Y _biN = P(x1,.., 7, A) = 0.
=0

Or, It est infini donc le polynéme @ € K[X] admet une infinité de racines,
d’ott @ = 0 et donc la famille (b; = P(z1, ..., %)) en est nulle.
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ii.

Ceci étant vrai pour tout (x1,...,x5) € Iy X ... X I, pour tout j € N,
I x ... x I, C Z(Pj) et donc, comme P; € K[X, ..., X}], par hypothese de
récurrence, P; = 0 i.e. (a(y j))ient est nulle.
Il en résulte que (a;)ienn+1 = Ujen(a(i 5))irent est la famille nulle et donc
P=0.
Ainsi, Pj41 est vraie.
Ce qui acheve le raisonnement par récurrence. Par suite, pour tout k € N*, Py
est vraie.

— Soit k € N* et P € K[X1, ..., Xi]. Procédons par contraposée. On suppose que
Z(P) #0.
On munit K? de la norme infinie || - ||o. Alors il existe @ = (21, ..., zx) € Z(P)
et 7 > 0 tel que [[*, = D(xi,7) = B(z,r) C Z(P) ot D(z,R) = {2 €
K| |z — 20| < R}.
Or, comme r > 0, pour tout ¢ € [1,k], D(x;,r) est une partie infinie de K;
par suite, d’apres Py, P = 0.

Soit A = (ai,j)lgi’jgn € Mn(K) Alors on a R = (ri,j)lgi,jgn S RK(A) si, et
seulement si, pour tous ¢,j € [1,n] :

n
@ij — E TikTk,j =0
k=1

On identifie M, (K) et K", On considére alors, pour tous i, j € [1,7n], le polynéme
Pi,j € K[Xl,h ~-~7Xn,n] défini par :

n
Pij(X1,0, - Xnyn) = @i = D Xi e X g
k=1

Et on obtient ainsi :

D’apres la question précédente, pour tous i, j € [1,n], Z(P; ;) est d’intérieur vide
et ainsi, comme l'intérieur d’une intersection est incluse dans l’intersection des
intérieurs, Rx(A) est d’intérieur vide.
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