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Dans ce chapitre, n désigne un entier naturel non nul et E désigne un espace vectoriel sur K où K est
un sous-corps de C. On se limitera dans les manipulations au cas K = R ou C.

Rappels et compléments d’algèbre linéaire
Partie APartie A

1. Somme finie de sous-espaces vectoriels
Dans ce paragraphe, on généralise la notion de somme de deux sous-espaces vectoriels vue en Sup’ au

cas d’un nombre fini de sous-espaces.

Définition 1.Définition 1. gSomme finie de sous-espaces vectorielsSomme finie de sous-espaces vectoriels

Soit m ∈ N∗ et F1, ..., Fm des sous-espaces vectoriels de E. On appelle somme de F1, ..., Fm et

on note F1 + ...+ Fm ou encore
m∑
i=1

Fi, le sous-ensemble de E :

m∑
i=1

Fi =

{
m∑
i=1

xi | ∀ i ∈ J1,mK, xi ∈ Fi

}
.

Proposition 1.Proposition 1.

Soit m ∈ N∗ et F1, ..., Fm des sous-espaces vectoriels de E. Alors

m∑
i=1

Fi = Vect
(

m⋃
i=1

Fi

)
.

En particulier,
m∑
i=1

Fi est un sous-espace vectoriel de E.

Démonstration.

On pose F =
∑m

i=1 Fi et U =
⋃m

i=1 Fi.
Montrons tout d’abord que F est un sous-espace vectoriel de E :
On a F ⊂ E car pour tout i ∈ J1,mK et pour tout xi ∈ Fi ⊂ E, E étant stable par combinaisons
linéaires, x1 + ...+ xm ∈ E.

— On a 0E =
∑m

i=1 0E︸︷︷︸
∈Fi

∈ F car pour chaque i ∈ J1,mK, Fi est un sous-espace vectoriel de

E et donc contient 0E .
— Soit λ, µ ∈ K et x = x1 + ... + xm, y = y1 + ... + ym ∈ F avec, pour tout i ∈ J1,mK,
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xi, yi ∈ Fi. On a :

λx+ µy =

m∑
i=1

(λxi + µyi)︸ ︷︷ ︸
∈Fi

∈ F

car pour chaque i ∈ J1,mK, Fi est un sous-espace vectoriel de E et donc est stable par
combinaisons linéaires.

Par suite, F est un sous-espace vectoriel de E. On pouvait également montrer que F est un sous-
espace de E comme l’image directe du sous-espace vectoriel F1× ...×Fm de Em par l’application
linéaire f : (x1, ..., xm) 7→ x1 + ...+ xm de Em dans E.

Montrons que F = Vect(U). Soit x ∈ U . Alors il existe j ∈ J1,mK tel que x ∈ Fj . Pour chaque

i ∈ J1,mK, on pose yi =

{
0E si i 6= j

x si i = j
. Alors, pour tout i ∈ J1,mK, yi ∈ Fi et donc

x =

m∑
i=1

yi ∈ F

Par suite, U ⊂ F .
Maintenant, soit G un sous-espace vectoriel de E contenant U . Soit x = x1 + ...+ xm ∈ F avec,
pour tout i ∈ J1,mK, xi ∈ Fi. Comme, pour tout i ∈ J1,mK, xi ∈ U ⊂ G et G est stable par
combinaisons linéaires, x ∈ G. Par suite, F ⊂ G.
Ainsi, F est le plus petit sous-espace vectoriel de E contenant U i.e. F = Vect(U).

Corollaire 1.Corollaire 1.

Soit m ∈ N∗ et F1, ..., Fm des sous-espaces vectoriels de E. Si pour chaque i ∈ J1,m, Fi est une
famille génératrice de Fi, alors la famille F obtenue en concaténant (i.e. en mettant bout-à-bout)
les familles F1, ...,Fm, est une famille génératrice de la somme F1 + ...+ Fm.

Démonstration.

Comme tout élément de F appartient à U =
⋃m

i=1 Fi, on a Vect(F) ⊂ Vect(U) = F1 + ...+ Fm.
Pour l’inclusion réciproque, on remarque que pour tout i ∈ J1,mK, tout élément de Fi est com-
binaison linéaire d’éléments de la famille Fi et donc de la famille F . Par suite, U ⊂ Vect(F) qui
est un sous-espace vectoriel de E. Or Vect(U) est le plus petit sous-espace vectoriel contenant U
donc F1 + ...+ Fm = Vect(U) ⊂ Vect(F).
Par suite, F est une famille génératrice de la somme.

Définition 2.Définition 2. gSous-espaces vectoriels en somme directeSous-espaces vectoriels en somme directe

Soit m ∈ N∗ et F1, ..., Fm des sous-espaces vectoriels de E.
On dit que F1, ..., Fm sont en somme directe si, pour tout y ∈

∑m
i=1 Fi :

il existe un unique m-uplet (x1, ..., xm) ∈ F1 × ...× Fm tel que y = x1 + ...+ xm ;
autrement dit, y se décompose de manière unique sous la forme y = x1 + ...+ xm avec, pour

tout i ∈ J1,mK, xi ∈ Fi.
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Dans ce cas, la somme
∑m

i=1 Fi est appelée somme directe de F1, ..., Fm et on note
m⊕
i=1

Fi =

m∑
i=1

Fi ou encore F1 ⊕ ...⊕ Fm =

m∑
i=1

Fi.

Proposition 2.Proposition 2.

Soit m ∈ N∗ et F1, ..., Fm des sous-espaces vectoriels de E. Les assertions suivantes sont équi-
valentes :

i) F1, ..., Fm sont en somme directe ;

ii) pour tout y = x1 + ...+ xm ∈
∑m

i=1 Fi avec, pour tout i ∈ J1,mK, xi ∈ Fi :
y = 0E implique, pour tout i ∈ J1,mK, xi = 0E .

iii) pour tout i ∈ J1,mK,
 m∑

j=1
j ̸=i

Fj

 ∩ Fi = {0E}.

iv) pour tout i ∈ J2,mK, (F1 + ...+ Fi−1) ∩ Fi = {0E}.

Démonstration.

i)⇒ ii) On suppose i). Soit y = x1+...+xm ∈
∑m

i=1 Fi avec, pour tout i ∈ J1,mK, xi ∈ Fi. On
suppose y = 0E . Comme les Fi sont des sous-espaces vectoriels de E et donc contiennent
0E , celui-ci admet la décomposition y = 0E =

∑m
i=1 0E︸︷︷︸

∈Fi

dans la somme F1 + ...+Fm. La

somme étant directe, par unicité de la décomposition de y dans la somme, on a, pour tout
i ∈ J1,mK, xi = 0E .

ii)⇒ iii) On suppose ii). Soit i ∈ J1,mK. On pose F =

m∑
j=1
j ̸=i

Fj . Soit x ∈ F ∩ Fi. Comme

x ∈ F , pour tout j ∈ J1,mK avec j 6= i, il existe xj ∈ Fj tels que x =
∑m

j=1
j ̸=i

xj . On pose

xi = −x ∈ Fi. Alors on a :
m∑
j=1

xj = xi +

m∑
j=1
j ̸=i

xj = −x+ x = 0E

Ainsi, par hypothèse, pour tout j ∈ J1,mK, xj = 0E . En particulier, on a x = −xi =
−0E = 0E .
Par suite, F ∩ Fj = {0E}.

iii)⇒ iv) On suppose iii). Soit i ∈ J2,mK. Alors F1 + ... + Fi−1 ⊂ F =

m∑
j=1
j ̸=i

Fj et donc

(F1 + ...+ Fi−1) ∩ Fi ⊂ F ∩ Fi = {0E}. Par suite, (F1 + ...+ Fi−1) ∩ Fi = {0E}.
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iv)⇒ i) On suppose iv). Soit y ∈
∑m

i=1 Fi et y = x1 + ... + xm, y = x′
1 + ... + x′

m des
décompositions de z dans la somme

∑m
i=1 Fi où, pour tout i ∈ J1,mK, xi, x

′
i ∈ Fi.

On a 0E = y − y =
∑m

i=1(xi − x′
i) donc, les Fi étant des sous-espaces vectoriels de E et

ainsi étant stables par combinaisons linéaires, x′
m − xm ∈ Fm et

x′
m − xm =

m−1∑
i=1

(xi − x′
i)︸ ︷︷ ︸

Fi

∈ F1 + ...+ Fm−1

Donc x′
m − xm ∈ (F1 + ...+ Fm−1) ∩ Fm = {0E} par hypothèse. Par suite x′

m = xm.
On réitère le même raisonnement de proche en proche pour i = m − 1, ..., 2 pour obtenir
x′
i = xi. Puis pour i = 1, on arrive alors à x1 − x′

1 = 0E d’où x′
1 = x1.

Il en résulte que la décomposition de y dans la somme F1 + ...+ Fm est unique.

Exemple 1.Exemple 1.

— Dans R[X], les sous-espaces Fi = Vect(Xi) pour i = 0, ...,m ∈ N∗ sont en somme directe
et

m⊕
i=0

Fi = Rm[X].

— On considère E = F(R,R) et pour I ⊂ R, on note FI = {f ∈ E | ∀ x /∈ I, f(x) = 0}
exercice : montrer que FI est un sous-espace vectoriel de E. Alors les sous-espaces vectoriels F]−∞,0],
F[1,8], et F[33,100] sont en somme directe et

F]−∞,0] ⊕ F[1,8])⊕ F[33,100] = F]−∞,0]∪[1,8]∪[33,100].

On a F]−∞,0] ∩ F[1,8] = {0} car si une fonction f appartient à cette intersection,
elle est nulle en dehors de ] −∞, 0] et en dehors de [1, 8] qui sont des intervalles
disjoints.
De plus, on a F]−∞,0] + F[1,8] = F]−∞,0]∪[1,8].
En effet, si f = f1 + f2 ∈ F]−∞,0] + F[1,8], alors, pour tout x /∈] − ∞, 0] ∪ [1, 8],
f(x) = 0 car x /∈] − ∞, 0], d’où f1(x) = 0 et x /∈ [1, 8], d’où f2(x) = 0. Ainsi,
F]−∞,0] + F[1,8] ⊂ F]−∞,0]∪[1,8].
Et si f ∈ F]−∞,0]∪[1,8], on pose :

f1 : x 7→

{
f(x) si x ∈]−∞, 0]

0 sinon
et f2 : x 7→

{
f(x) si x ∈ [1, 8]

0 sinon

Alors f1 ∈ F]−∞,0] et f2 ∈ F[1,8] et ]−∞, 0] et [1, 8] étant disjoints, f = f1 + f2 ∈
F]−∞,0] + F[1,8]. Ainsi F]−∞,0]∪[1,8] ⊂ F]−∞,0] + F[1,8].
Maintenant, comme ] −∞, 0] ∪ [1, 8] et [33, 100] sont disjoints, comme précédem-
ment, on a :

(F]−∞,0] + F[1,8]) ∩ F[33,100] = F]−∞,0]∪[1,8] ∩ F[33,100] = {0}

Il en résulte que F]−∞,0], F[1,8], et F[33,100] sont en somme directe.
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Exercice 1.Exercice 1.

On note :
• Sn(R) = {M ∈Mn(R) | tM = M} (ensemble des matrices symétriques) et
• An(R) = {M ∈Mn(R) | tM = −M} (ensemble des matrices antisymétriques).

Montrer que Mn(R) = Sn(R)⊕An(R).

Exercice 2.Exercice 2.

On considère la matrice M =

0 2 −1
3 1 −3
2 2 −3

 et f ∈ L(R3) l’endomorphisme canoniquement

associé à M .
Montrer que les sous-espaces vectoriels Ker(f−IdE), Ker(f+IdE), Ker(f+2IdE) sont en somme
directe et déterminer leur somme.

Correction.

On note B la base canonique de R3. Alors M = MatB(f). On pose F1 = Ker(f − IdE), F2 =
Ker(f + IdE), F3 = Ker(f + 2IdE).
Soit x = x1 + x2 + x3 ∈ F1 + F2 + F3 avec xi ∈ Fi. Alors on a :

f(x1) = x1; f(x2) = −x2 et f(x3) = −2x3.

et donc,
f2(x1) = x1; f2(x2) = x2 et f2(x3) = 4x3.

Supposons x = 0R3 . Alors, par linéarité de f , f(x) = 0E = f2(x). Par suite, on a le système : x1 + x2 + x3 = 0E
x1 + −x2 + −2x3 = 0E
x1 + x2 + 4x3 = 0E

On le résout pour trouver x1 = x2 = x3 = 0E . Par suite, les sous-espaces sont en somme directe.
On peut remarquer qu’on n’a jamais utilisé la matrice M ... nous y verrons plus clair dans la suite
du chapitre !

Remarque 1.Remarque 1.

Attention ! On peut montrer que si F1, ..., Fm sont en somme directe, alors, pour tous i, j ∈J1,mK avec i 6= j, Fi ∩ Fj = {0E}. Mais la réciproque est fausse comme on peut s’en
apercevoir dans l’exercice suivant :

Exercice 3.Exercice 3.

On considère l’espace vectoriel R2. Soit F = Vect((1, 0)), G = Vect((0, 1)) et H = Vect((1, 1)).
1. Déterminer F +G+H.
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2. (a) Déterminer les intersections deux à deux entre F , G et H.
(b) La somme F +G+H est-elle directe ?
(c) Que dire de la dernière affirmation de la remarque précédente.

3. Montrer la première affirmation de la remarque i.e. si F1, ..., Fm sont en somme directe,
alors, pour tous i, j ∈ J1,mK avec i 6= j, Fi ∩ Fj = {0E}.

Correction.

1. Soit (x, y) ∈ R2. On a :

(x, y) = x(1, 0) + y(0, 1) + 0(1, 1) ∈ F +G+H

donc R2 ⊂ F +G+H. L’inclusion réciproque est vraie car F +G+H est un sous-espace
vectoriel de R2.
Par suite, F +G+H = R2.

2. (a) Si u ∈ F ∩ G, alors il existe λ, υ ∈ R tels que u = (λ, 0) et u = (0, υ) d’où λ = 0 et
υ = 0. Par suite u = (0, 0). Ainsi, F ∩G = {(0, 0)}.
Par des raisonnements similaires, on trouve G ∩H = {(0, 0)} = H ∩ F .

(b) La somme F + G +H n’est pas directe car (1, 1) admet dans F + G +H les décom-
positions (1, 1) = 0(1, 0)+ 0(0, 1)+ 1(1, 1) et (1, 1) = 1(1, 0)+ 1(0, 1)+ 0(1, 1) qui sont
différentes.

(c) Les intersections deux à deux des facteurs de la somme sont toutes réduites à 0E mais
la somme n’est pas directe. La réciproque de l’implication énoncée dans la remarque
précédente est donc fausse, comme annoncé !

3. On suppose F1, ..., Fm en somme directe. Soit i, j ∈ J1,mK avec i 6= j. Quitte à les échanger,
on peut supposer j < i. D’après le iv) de la proposition 2, on a (F1+ ...+Fi−1)∩Fi = {0E}
Or, comme j < i, on a Fj ⊂ F1 + ...+ Fi−1 donc Fj ∩ Fi ⊂ (F1 + ...+ Fi−1) ∩ Fi = {0E},
d’où Fj ∩ Fi = {0E}.

Grâce à l’unicité de la décomposition dans une somme directe, on peut définir les applications qui, à
un vecteur de la somme, associent chaque composante de sa décomposition :

Définition 3.Définition 3. gProjecteurs associés à une somme directeProjecteurs associés à une somme directe

Soit m ∈ N∗ et F1, ..., Fm des sous-espaces vectoriels de E en somme directe tels que E =

m⊕
i=1

Fi.

On appelle projecteurs associés à la décomposition en somme directe E =

m⊕
i=1

Fi les

applications p1, ..., pm où, pour tout i ∈ J1,mK,
pour x = x1 + ...+ xm ∈ E avec, pour tout j ∈ J1,mK, xj ∈ Fi,

pi(x) = xi.
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Proposition 3.Proposition 3.

Soit m ∈ N∗, F1, ..., Fm des sous-espaces vectoriels de E en somme directe, tels que E =

m⊕
i=1

Fi

et p1, ..., pm les projecteurs associés. Alors :
• pour tout i ∈ J1,mK, pi est un projecteur ; plus précisément, pi est la projection sur Fi

parallèlement à
m⊕
j=1
j ̸=i

Fj .

• p1 + ...+ pn = IdE et, pour tout i, j ∈ J1,mK avec i 6= j, pi ◦ pj = 0.

Proposition 4.Proposition 4.

Soit m ∈ N∗, F1, ..., Fm des sous-espaces vectoriels de E. On a :

dim
(

m∑
i=1

Fi

)
≤

m∑
i=1

dim (Fi) .

Et il y a égalité si, et seulement si, la somme est directe.

Démonstration.

On considère l’application linéaire f de F1× ...×Fm dans F1+ ...+Fm tel que f : (x1, ..., xm) 7→
x1 + ...+ xm.
Par définition de la somme, f est surjective, donc :

dim
(

m∑
i=1

Fi

)
≤ dim (F1 × ...× Fm) =

m∑
i=1

dim (Fi) .

De plus, comme f est surjective, il y a égalité si, et seulement si, f est injective d’après le théorème
du rang (on est bien en dimension finie ici, car cet énoncé n’a aucun intérêt en dimension infinie !).
Or, f étant linéaire, f est injective si, et seulement si, pour tout x = (x1, ..., xm) ∈ F1× ...×Fm,
x1 + ...+ xm = f(x) = 0E implique x = (0E , ..., 0E) i.e. pour tout i ∈ J1,mK, xi = 0E ; d’après la
proposition 2, ceci est équivalent à F1, ..., Fm sont en somme directe.

Définition-Proposition 4.Définition-Proposition 4. gBase adaptée à une somme directeBase adaptée à une somme directe

Soit m ∈ N∗, F1, ..., Fm des sous-espaces vectoriels de E en somme directe.
Si, pour chaque i ∈ J1,mK, Bi une base de Fi, alors la famille B obtenue en concaténant (i.e. en
mettant bout-à-bout) les bases B1, ...,Bm, est une base F1 ⊕ ...⊕ Fm.
Une telle base B est appelée base adpatée à la somme directe F1 ⊕ ...⊕ Fm.
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Démonstration.

Soit B la famille obtenue en concatenant B1, ...,Bm. Montrons que B est une famille libre et
génératrice de F1 ⊕ ...⊕ Fm.

Pour i ∈ J1,mK, on note (ei,j)j∈Ji la base Bi de Fi. On note I =

m⋃
i=1

({i} × Ji) et on a :

B = (ei,j)(i,j)∈I .

— Liberté : Soit (λi,j)(i,j)∈I une famille de scalaires presque tous nuls. On suppose∑
(i,j)∈I λi,jei,j = 0E . Pour i ∈ J1,mK, on note xi =

∑
j∈Ji

λi,jei,j ∈ Fi.
Alors on a :

m∑
i=1

xi =
∑

(i,j)∈I

λi,jei,j = 0E .

Les Fi étant en somme directe, on obtient, pour tout i ∈ J1,mK, ∑j∈Ji
λi,jei,j = xi = 0E ;

or, Bi = (ei,j)j∈Ji est une base de Fi et donc une famille libre, donc, pour tout j ∈ Ji,
λi,j = 0.
Ainsi, pour tout (i, j) ∈ I, λi,j = 0, d’où B est une famille libre.

— Génération : Soit x ∈ F1 ⊕ ...⊕ Fm. Alors, pour tout i ∈ J1,mK, il existe xi ∈ Fi tels que
x = x1 + . . .+ xm.
Or, pour tout i ∈ J1,mK, comme Bi = (ei,j)j∈Ji

est une base de Fi, il existe une famille
(λi,j)j∈Ji

une famille de scalaires presque tous nuls telle que :

xi =
∑
j∈Ji

λi,jei,j .

Par suite, la famille (λi,j)(i,j)∈I est une famille de scalaire presque tous nuls comme conca-
ténation de m familles de scalaires presque tous nuls et on a :

x =

m∑
i=1

xi

=

m∑
i=1

∑
j∈Ji

λi,jei,j

x =
∑

(i,j)∈I

λi,jei,j

d’où x est combinaison linéaire d’éléments de la famille B.
Ainsi, la famille B est génératrice de F1 ⊕ ...⊕ Fm.

Il en résulte que B est une base de F1 ⊕ ...⊕ Fm comme famille libre et génératrice de F1 ⊕ ...⊕
Fm.

2. Matrices semblables

a. Matrices équivalentes
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Définition 5.Définition 5. gMatrices équivalentesMatrices équivalentes

Soit A,B ∈Mn(K). On dit que A et B sont équivalentes s’il existe P,Q ∈ GLn(K) tels que

B = Q−1AP.

Exercice 4.Exercice 4.

Montrer que la relation ”être équivalentes” est une relation d’équivalence sur Mn(K).

Proposition 5.Proposition 5.

Soit A ∈Mn(K). Alors rg(A) = r ∈ J0, nK si, et seulement si, A est équivalente à la matrice(
Ir 0
0 0

)

b. Matrices semblables

Définition 6.Définition 6. gMatrices semblablesMatrices semblables

Soit A,B ∈Mn(K). On dit que A et B sont semblables s’il existe P ∈ GLn(K) tels que

B = P−1AP.

Exemple 2.Exemple 2.

Soit B et B′ des bases de E et u ∈ L(E). On note M = MatB(u) la matrice de u dans la base B
et M ′ = MatB′(u) la matrice de u dans la base B′. Alors M et M ′ sont semblables ; en effet, on a

M ′ = P−1MP

où P est la matrice de passage de B vers B′.

Remarque 2.Remarque 2.

— Deux matrices A et B qui sont semblables ont le même déterminant.
— Deux matrices A et B qui sont semblables ont la même trace. En vertu de cette remarque

et de l’exemple ci-dessus, cela permet de définir la trace d’un endomorphisme : la trace
d’un endomorphisme est la trace d’une matrice de cet endomorphisme dans une base
quelconque.

3. Sous-espaces stables et endomorphismes induits

10



Définition 7.Définition 7. gSous-espace stableSous-espace stable

Soit F un sous-espace vectoriel de E et u ∈ L(E). On dit que F est stable par u si u(F ) ⊂ F ,
i.e. pour tout x ∈ F , u(x) ∈ F .

Exemple 3.Exemple 3.

— Les sous-espaces vectoriels {0} et E sont stables par tout endomorphisme de E.
— Une homothétie (i.e. λIdE où λ ∈ K) stabilise tous les sous-espaces vectoriels de E.
— Une intersection ou une somme de sous-espaces stables par un endomorphisme u est un

sous-espace stable par u.

Exercice 5.Exercice 5.

1. Soit u ∈ L(E). On suppose que, pour tout x ∈ E, la famille (x, u(x)) est liée. Montrer que
u est une homothétie.

2. En déduire que les seuls endomorphismes qui stabilisent tous les sous-espaces vectoriels de
E sont les homothéties.

Correction.

1. On suppose que, pour tout x ∈ E, (x, u(x)) est liée. Alors, pour tout x 6= 0E , il existe un
unique λx ∈ K tel que u(x) = λxx. Montrons que, pour tous x, y ∈ E non nuls, λx = λy.
— 1er cas : x et y sont colinéaires. Alors il existe µ ∈ K tel que x = µy, d’où :

λxx = u(x) = µu(y) = µλyy = λyx;

donc λx = λy.
— 2nd cas : (x, y) est libre. Alors on a

λx+y(x+ y) = u(x+ y) = u(x) + u(y) = λxx+ λyy.

Par suite,
(λx+y − λx)x+ (λx+y − λy)y = 0E ,

or (x, y) est libre donc λx+y − λx = 0 et λx+y − λy = 0. Et donc λx = λx+ y = λy.
Il en résulte qu’il existe λ ∈ K tel que, pour tout x ∈ E, u(x) = λx (cette égalité étant
trivialement vraie pour x = 0E). Ainsi u = λIdE est une homothétie.

2. Une homothétie stabilise tous les sous-espaces vectoriels. Réciproquement, si u est un endo-
morphisme qui stabilise tous les sous-espaces vectoriels, alors, pour tout x ∈ E, u stabilise
Kx = Vect(x). Ainsi, pour tout x ∈ E, u(x) ∈ Kx i.e. (x, u(x)) est liée. Par suite, d’après
la question précédente, u est une homothétie.

11



Proposition 6.Proposition 6.

Soit F un sous-espace vectoriel de E, (ei)i∈I une famille génératrice de F et u ∈ L(E). Alors F
est stable par u si, et seulement si, pour tout i ∈ I, u(ei) ∈ F .

Démonstration.

• (⇒). On suppose F stable par u. Alors pour tout x ∈ F , u(x) ∈ F , donc en particulier,
comme chaque ei ∈ F pour i ∈ I, u(ei) ∈ F .

• (⇐). On suppose que pour tout i ∈ I, u(ei) ∈ F . Soit x ∈ F . Comme (ei)i∈I est génératrice,
alors il existe une famille (λi)i∈I presque tous nuls telle que x =

∑
i∈I λiei. Par suite, on

a :
u(x) =

∑
i∈I

λi u(ei)︸ ︷︷ ︸
∈F

,

donc, comme F est un sous-espace vectoriel, u(x) ∈ F . Il en résulte que F est stable par
u.

Remarque 3.Remarque 3.

Pour x ∈ E, Kx est un sous-espace vectoriel de E. D’après la proposition précédente, ce sous-
espace est stable par u si, et seulement si, il existe λ ∈ K tel que u(x) = λx.

Proposition 7.Proposition 7.

Soit u, v ∈ L(E). Si u et v commutent i.e. u◦v = v ◦u, alors Ker(v) et Im(v) sont stables par u.

Démonstration.

On suppose que u et v commutent.
• Soit x ∈ Ker(v). Montrons que u(x) ∈ Ker(v). On a :

v(u(x)) = v ◦ u(x) = u ◦ v(x) = u(v(x)) = u(0E) = 0E

car v ◦ u = u ◦ v et u est linéaire. Par suite, Ker(v) est stable par u.
• Soit v(x) ∈ Im(v) où x ∈ E. Montrons que u(v(x)) ∈ Im(v). On a :

u(v(x)) = u ◦ v(x) = v ◦ u(x) = v(u(x)) ∈ Im(v)

car u ◦ v = v ◦ u et u(x) ∈ E. Par suite Im(v) est stable par u.

12



Définition 8.Définition 8. gEndomorphisme induitEndomorphisme induit

Soit F un sous-espace vectoriel de E stable par un endomorphisme u de E. On appelle endo-
morphisme induit par u sur F et l’endomorphisme uF ∈ L(F ) défini par uF = u|F i.e. pour
tout x ∈ F

uF (x) = u(x)

Proposition 8.Proposition 8.

On suppose E de dimension finie n. Soit u un endomorphisme de F un sous-espace vectoriel de
E de dimension p et B = (e1, ..., en) une base adaptée à F i.e. B′ = (e1, ..., ep) est une base
de F .
Alors F est stable par u si, et seulement si, la matrice M = MatB(u) dans la base B est
triangulaire supérieure par bloc, i.e.

M =

(
A B
0 C

)
avec A ∈Mp(K).
Dans ce cas, A est la matrice MatB′(uF ) de l’endomorphisme induit uF par u sur F .

Démonstration.

On note M = (mij)1≤i,j≤n = MatB(u). Alors on a, pour i ∈ J1, nK, u(ei) =
∑n

j=1 mijei. On
note : A = (mij)1≤i,j≤p, B = (mij)p+1≤j≤n

1≤i≤p

, C = (mij)p+1≤i,j≤n et D = (mij) 1≤j≤p
p+1≤i≤n

.

On remarque que (e1, ..., ep) est en particulier une famille génératrice de F .
Ainsi,

F est stable par u

si, et seulement si,

pour tout j ∈ J1, pK, u(ej) =∑n
j=1 mijei ∈ F

si, et seulement si,

pour tout j ∈ J1, pK et i ∈ Jp+ 1, nK, mij = 0

si, et seulement si,

D = (0) 1≤j≤p
p+1≤i≤n

si, et seulement si,
M =

(
A B
0 C

)

13



Éléments propres
Partie BPartie B

1. Éléments propres d’un endomorphisme

a. Définitions

Définition 9.Définition 9. gValeur/vecteur propre d’un endomorphismeValeur/vecteur propre d’un endomorphisme

Soit u ∈ L(E).
— On dit que λ ∈ K est une valeur propre de u s’il existe x ∈ E non nul tel que

u(x) = λx.

— Soit λ ∈ K une valeur propre de u. On dit que x ∈ E est un vecteur propre de u
associé à λ si :

x 6= 0E et u(x) = λx.

Proposition 9.Proposition 9.

Soit u ∈ L(E), λ ∈ K et x ∈ E ∖ {0E}.
— Le scalaire λ est une valeur propre de u si, et seulement si, Ker(u − λIdE) 6= {0E} -

autrement dit, si, et seulement si, u− λIdE n’est pas injectif.
— Le vecteur x est un vecteur propre de u si, et seulement si, u(x) est colinéaire à x.

Démonstration.

•
λ est une valeur propre de u

si, et seulement si,
il existe x ∈ E ∖ {0E} tel que u(x) = λx

si, et seulement si,
il existe x ∈ E ∖ {0E} tel que u− λIdE(x) = 0E

si, et seulement si,
il existe x ∈ E ∖ {0E} tel que x ∈ Ker(u− λIdE)(x)

si, et seulement si,
Ker(u− λIdE)(x) 6= {0E}.

•
x est un vecteur propre de u

si, et seulement si,
il existe λ ∈ K tel que u(x) = λx

si, et seulement si,
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u(x) et x sont colinéaires.

Exercice 6.Exercice 6.

Soit f ∈ L(R3) tel que f : (x, y, z)→ (2y, 2x, 2z). Montrer que (1, 1, 0), (0, 0, 1) et (1,−1, 0) sont
des vecteurs propres de f . À quelle valeur propre chacun d’entre eux est-il associé ?

Démonstration.

On a :
f(1, 1, 0) = (2, 2, 0) = 2(1, 1, 0)

f(0, 0, 1) = (0, 0, 1) = 2(0, 0, 1)

f(1,−1, 0) = (−2, 2, 0) = (−2)(1,−1, 0)

Donc (1, 1, 0) et (0, 0, 1) sont des vecteurs propres de f associés à la valeur propre 2 et (1,−1, 0)
est un vecteur propre de f associé à la valeur propre −2.

Définition 10.Définition 10. gSous-espace propre d’un endomorphismeSous-espace propre d’un endomorphisme

Soit u ∈ L(E) et λ ∈ K. Si λ est une valeur propre de u, on appelle sous-espace propre de
u associé à la valeur propre λ le sous-espace vectoriel de E noté Eλ(u) et défini par :

Eλ(u) = Ker(u− λIdE) = {x ∈ E | u(x) = λx}.

Autrement dit, Eλ(u) est l’ensemble contenant 0E et l’ensemble des vecteurs propres associés à
la valeur propre λ.

Définition 11.Définition 11. gSpectre d’un endomorphismeSpectre d’un endomorphisme

On suppose que E est de dimension finie. Soit u ∈ L(E). Le spectre de u, noté Sp(u), est
l’ensemble des valeurs propres de u i.e.

Sp(u) = {λ ∈ K | ∃x ∈ E ∖ {0E}, u(x) = λx}.

Remarque 4.Remarque 4.

— le vecteur nul 0E n’est JAMAIS un vecteur propre ! Par contre, il appartient à tout
sous-espace propre.

— 0 est valeur propre de u si, et seulement si, u n’est pas injectif. Dans ce cas, on a :

E0(u) = Ker(u)
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Exercice 7.Exercice 7.

Soit u ∈ L(E) et λ ∈ K. On suppose que λ est une valeur propre de u.
1. On suppose que λ 6= 0. Montrer que Eλ(u) ⊂ Im(u).

2. On suppose u bijectif. Montrer que λ 6= 0 et que 1
λ est une valeur propre de u−1. Que dire

de E 1
λ
(u−1) ?

Correction.

1. Soit x ∈ Eλ(u). Alors u(x) = λx et donc, par linéarité de u,

x = u(
1

λ
x) ∈ Im(f).

Par suite, Eλ(u) ⊂ Im(u).

2. Comme Ker(u) = {0E}, 0 n’est pas valeur propre de u. Par suite, λ 6= 0.
Soit x ∈ Eλ(u). Alors u(x) = λx et donc, par linéarité de u−1, x = u−1(u(x)) = λu−1(x).
Par suite, on a :

u−1(x) =
1

λ
x,

Or, λ étant valeur propre de u, il existe x ∈ Eλ(u)∖ {0E} et donc, d’après ce qui précède,
1
λ est une valeur propre de u−1 et x est un vecteur propre de u−1 associé à 1

λ . Ainsi,
Eλ(u) ⊂ E 1

λ
(u−1). Et réciproquement, si x ∈ E 1

λ
(u−1), par un raisonnement similaire, on

obtient u(x) = λx. Il en résulte que

E 1
λ
(u−1) = Eλ(u).

b. Exemples

On applique les transformations suivantes à la première image. Déterminons les valeurs propres et
leurs directions propres associées pour chacune des transformations. Une direction propre correspond à
une direction qui reste inchangée après transformation et une valeur propre correspond à l’échelle de
la modification (en tenant compte du changement de sens grâce au signe) après transformation dans la
direction propre qui lui est associée.
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Exemple 4.Exemple 4.

— Soit λ ∈ K. Alors l’homothétie λIdE admet λ pour unique valeur propre et Eλ(λIdE) = E.

— Une rotation non triviale (i.e. d’angle différent d’un multiple de π) dans le plan euclidien
n’admet pas de valeur propre.

— Soit p ∈ L(E) un projecteur non trivial de E i.e. p2 = p et p 6= 0, IdE . Alors p admet pour
valeurs propres 0 et 1 et on a :

E0(p) = Ker(p) et E1(p) = Im(p)
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Si λ est une valeur propre de p, alors pour x un vecteur propre de p associé à λ,
on a :

λ2x = p2(x) = p(x) = λx.

Comme x 6= 0E , on en déduit que λ = 0 ou λ = 1.

Montrons que 0 et 1 sont bien valeurs propres de p :
— Comme p 6= 0, il existe x ∈ E tel que p(x) 6= 0E . Ainsi, pour y = p(x) 6= 0E ,

on a :
p(y) = p(p(x)) = p(x) = y = 1.y car p2 = p

Donc, y étant un vecteur non nul, 1 est bien valeur propre de p.
— Comme p 6= IdE , il existe x ∈ E tel que p(x) 6= x. Ainsi, pour y = p(x)−x 6=

0E , on a, par linéarité de p :

p(y) = p(p(x))− p(x) = 0E = 0.y car p2 = p

Donc, y étant un vecteur non nul, 0 est bien valeur propre de p.

Déterminons désormais les sous-espaces propres associés à 0 et 1 :
• λ = 0. Pour tout endomorphisme qui admet 0 pour valeur propre, le sous-

espace propre associé à 0 est égal à son noyau, donc E0(p) = Ker(u).
• λ = 1. Pour tout endomorphisme u qui admet λ 6= 0 pour valeur propre,
Eλ(u) ⊂ Im(u). Par suite, E1(p) ⊂ Im(p).
Réciproquement, pour y = p(x) ∈ Im(p) avec x ∈ E, on a :

p(y) = p(p(x)) = p2(x) = p(x) = y.

d’où y ∈ E1(p).
Par suite, Im(p) ⊂ E1(p).
Il en résulte que E1(p) = Im(p).

— Soit F,G deux sous-espaces supplémentaires non triviaux. La symétrie s par rapport à F
parallèlement à G admet pour valeur propre 1 et −1 et et on a :

E1(s) = F et E−1(s) = G

Soit p le projecteur sur F parallèlement à G. Alors on a s = 2p− IdE , donc, pour
λ ∈ K et x ∈ E,

s(x) = λx ⇔ p(x) =
1 + λ

2
x.

Par suite, comme p est non trivial, d’après l’exemple précédent, s admet 1 et −1
pour valeurs propres et

E1(s) = E1(p) = Ker(p) = F

et
E−1(s) = E0(p) = Im(p) = G.
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— Soit f ∈ L(R2) tel que f : (x, y) 7→ (2x, x + y). Alors Sp(f) = {2, 1} ; et E2(f) =
Vect((1, 1)) et E1(f) = Vect((0, 1)).

On a, pour λ ∈ K :

(∗) f(x, y) = λ(x, y)⇔
{

2x = λx
x + y = λy

⇔
{

(2− λ)x = 0
x + (1− λ)y = 0

1er cas : λ 6= 2 et λ 6= 1. Alors (∗) est équivalent à{
x = 0
y = 0

Donc, dans ce cas, (x, y) = (0, 0) est la seule solution de f(x, y) = λ(x, y) donc λ
n’est pas valeur propre de f .
2eme cas : λ = 2. Alors

(∗)⇔
{

x − y = 0

Donc, dans ce cas, l’ensemble des solutions de f(x, y) = 2(x, y) est {(x, y) | x−y =
0} = Vect((1, 1)) 6= {0E} donc λ = 2 est valeur propre de f et E2(f) = Vect((1, 1)).

2eme cas : λ = 2. Alors
(∗)⇔

{
x = 0

Donc, dans ce cas, l’ensemble des solutions de f(x, y) = (x, y) est {(x, y) | x = 0} =
Vect((0, 1)) 6= {0E} donc λ = 1 est valeur propre de f et E1(f) = Vect((0, 1)).

— Soit E = C∞(R) et D ∈ L(E) tel que D : f 7→ f ′. Alors pour tout λ ∈ R, λ est une valeur
propre et x 7→ eλx est un vecteur propre associé à λ.

Soit λ ∈ R. Pour f ∈ E, on a f ∈ Ker(u− λIdE) si, et seulement si, f ′ − λf = 0,
c’est à dire, f est solution de l’équation différentielle homogène y′ − λy = 0. Cette
équation à pour ensemble de solution {x 7→ C.eλx | C ∈ R} 6= {0} ; donc λ est une
valeur propre de D et on a :

Eλ(D) = {x 7→ C.eλx | C ∈ R} = R.f

où f est le vecteur propre de D associé à λ défini par f : x 7→ eλx.

Exercice 8.Exercice 8.

Ques dire des valeurs propres...

1. de l’endomorphisme nul 0 ? de l’identité IdE ?
2. d’une rotation dans R3 ?

3. de l’application ∆ : P → P ′ de R[X] dans lui-même ?
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Correction.

1. Pour tout x ∈ E∖ {0E}, on a 0E = 0(x) = λx si, et seulement si, λ = 0, donc λ est la seule
valeur propre de 0 et E0(0) = E.
Pour tout x ∈ E ∖ {0E}, on a xIdE = λx si, et seulement si, λ = 1, donc λ est la seule
valeur propre de IdE et E1(IdE) = E.

2. Une rotation de R3 (d’angle différent d’un multiple de π) n’admet qu’une seule valeur
propre. Il s’agit de la valeur propre 1 dont le sous-espace propre associé est l’axe de la
rotation.

3. Pour λ ∈ K∗, P ′ = λP implique deg(P ) = deg(P ′) = deg(P ) − 1. Ainsi P = 0 est la seule
solution de P = λP ′, donc si λ 6= 0, λ n’est pas une valeur propre de ∆.
Pour λ = 0, P ′ = 0 a pour solutions les polynômes constants. Ainsi, 0 est la seule valeur
propre de ∆ et E0(∆) = Ker(∆) = P = a0 | a0 ∈ K.

2. Propriétés des sous-espaces propres

Proposition 10.Proposition 10.

Soit u ∈ L(E) et λ ∈ K. Si λ est valeur propre de u alors Eλ(u) est un sous-espace vectoriel de
E et

dim (Eλ(u)) ≥ 1.

Correction.

On suppose que λ est une valeur propre de u. Alors Eλ(u) = Ker(u − λIdE) est un sous-espace
vectoriel de E comme noyau d’une application linéaire d’espace de départ E. De plus, par défi-
nition de λ valeur propre, il existe x ∈ E ∖ {0E} tel que u(x) = λx. Alors x appartient à Eλ(u)
qui est un sous-espace vectoriel donc Vect(x) ⊂ Eλ(u) car Vect(x) est le plus petit sous-espace
vectoriel de E contenant x. Or dim(Vect(x)) = 1 car x 6= 0E , d’où :

dim (Eλ(u)) ≥ dim(Vect(x)) ≥ 1.

Proposition 11.Proposition 11.

Soit u, v ∈ L(E). Si u et v commutent, i.e. u ◦ v = v ◦ u alors les sous-espaces propres de u sont
stables par v et les sous-espaces propres de v sont stables par u.

Démonstration.

On suppose que u et v commutent. Comme u commute avec IdE , alors, pour tout λ ∈ K, u
commute avec v− IdE . Ainsi, d’après la proposition 7, Ker(v− λIdE) est stable par u. Par suite,
si λ ∈ K est une valeur propre de u, Eλ(v) = Ker(v − λIdE) est stable par u.
On raisonne de même pour la stabilité par v des sous-espaces propres de u.
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Proposition 12.Proposition 12.

Soit u ∈ L(E) et λ, µ ∈ K. Si λ, µ sont des valeurs propres distinctes de u, alors Eλ(u) et Eµ(u)
sont en somme directe i.e.

Eλ(u) ∩ Eµ(u) = {0E}.

Démonstration.

On suppose que λ, µ sont des valeurs propres de u qui vérifient λ 6= µ. Soit x ∈ Eλ(u) ∩ Eµ(u).
Alors on a :

u(x) = λx et u(x) = µx.

Par suite, par linéarité de u

(λ− µ)x = λx− µx = u(x)− u(x) = u(x− x) = u(0E) = 0E

Or λ− µ 6= 0 donc x = 0E par l’axiomatique d’un espace vectoriel.
Ainsi Eλ(u) ∩ Eµ(u) ⊂ {0E} et donc Eλ(u) ∩ Eµ(u) = {0E}.

Corollaire 2.Corollaire 2.

Soit u ∈ L(E) et λ, µ ∈ K. Si λ, µ sont des valeurs propres distinctes de u, alors, pour tous
vecteurs propres x et y associés à λ et µ respectivement, la famille (x, y) est libre.

Démonstration.

On suppose λ 6= µ. Soit x ∈ Eλ(u)∖{0E} et y ∈ Eλ(u)∖{0E}. D’après la proposition précédente,
Eλ(u) et Eµ(u) sont en somme directe, donc (x, y) est libre.
Exercice : Soit F,G des sous-espaces vectoriels de E tels que F et G sont en somme directe.
Montrer que toute famille (x, y) avec x ∈ F ∖ {0E} et y ∈ G∖ {0E} est libre.

Proposition 13.Proposition 13.

Soit u ∈ L(E), k ∈ N∗ et λ1, ..., λk ∈ K. Si λ1, ..., λk des valeurs propres de u toutes distinctes,
alors les sous-espaces propres associés Eλ1

(u), ..., Eλk
(u) sont en somme directe.

Démonstration.

Montrons, par récurrence sur N ∖ {0, 1}, que pour tout k ∈ N ∖ {0, 1}, la propriété Pk =”pour
k-uplets (λ1, ..., λk) de valeurs propres distinctes de u, les sous-espaces propres associés sont en
somme directe”.
L’initialisation k = 2 est donnée par la proposition préccédente.
Hérédité : Soit k un entier plus grand que 2. On suppose Pk vraie.
Soit λ1, ..., λk+1 des valeurs propres distinctes de u. Soit x = x1 + ... + xk+1 ∈

∑k+1
i=1 Eλi(u) où,

pour tout i ∈ J1, k + 1K, xi ∈ Eλi(u). On suppose x = 0E . Alors, par linéarité de u, on a d’une
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part u(x) = 0E et d’autre part :

u(x) =

k+1∑
i=1

u(xi) =

k+1∑
i=1

λixi.

Par suite, on a :

0E = u(x)− λk+1x =

k∑
i=1

(λi − λk+1)xi.

Or, pour tout i ∈ J1, kK, Eλi
(u) étant un sous-espace vectoriel, (λi − λk+1)xi ∈ Eλi

(u).
Ainsi,

∑k
i=1(λi−λk+1)xi appartient à la somme

⊕k
i=1 Eλi

(u) qui est bien directe par hypothèse de
récurrence. Ainsi, comme

∑k
i=1(λi−λk+1)xi = 0E , on a pour tout i ∈ J1, kK, (λi−λk+1)xi = 0E ,

d’où xi = 0E car λi − λk+1 6= 0.
Et de plus, on a alors, xk+1 = x = 0E , d’où, pour tout i ∈ J1, k + 1K, xi = 0E .
Il en résulte que la somme

∑k+1
i=1 Eλi

(u) est directe.
Ce qui achève le raisonnement par récurrence. Ainsi, pour tout entier k ≥ 2, Pk est vraie.

Corollaire 3.Corollaire 3.

Soit u ∈ L(E), k ∈ N et λ1, ..., λk ∈ K. Si λ1, ..., λk des valeurs propres de u toutes distinctes,
alors :

k∑
i=1

dim(Eλi(u)) ≤ dim(E).

Démonstration.

On suppose λ1, ..., λk valeurs propres de u deux à deux distinctes. Alors les sous-espaces propres
Eλi

(u) sont en somme directe et on a :

k∑
i=1

dim(Eλi
(u)) = dim

(
k⊕

i=1

Eλi
(u)

)
≤ dim(E).

Théorème 1.Théorème 1.

On suppose E de dimension finie n. Tout endomorphisme u de E admet au plus n valeurs
propres distinctes ; autrement dit :

#Sp(u) ≤ n.

Démonstration.

Soit u ∈ L(E). On suppose par l’absurde que #Sp(u) > n. Alors il existe n+1 valeurs propres de u
deux à deux distinctes λ1, ..., λn+1. Pour chaque sous-espace propre Eλi(u), on a dim(Eλi(u)) ≥ 1,
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donc :

n+ 1 ≤
k∑

i=1

dim(Eλi
(u)) ≤ n.

Contradiction. Par suite #Sp(u) ≤ n.

Remarque 5.Remarque 5.

Soit u ∈ L(E) et F un sous-espace vectoriel de E stable par u. Les valeurs propres de l’endomor-
phisme uF ∈ L(F ) induit par u sur F sont les valeurs propres λ de u telles que Eλ(u)∩F 6= {0}.
Dans ce cas,

Eλ(uF ) = Eλ(u) ∩ F.

3. Éléments propres d’une matrice carrée

a. Définitions

Définition 12.Définition 12. gÉléments propres d’une matriceÉléments propres d’une matrice

Soit A ∈Mn(K) et λ ∈ K.
— On dit que λ est une valeur propre de A s’il existe X ∈Mn,1(K) non nulle telle que

AX = λX.

— Si λ ∈ K est une valeur propre de A, on dit que X ∈ Mn,1(K) est un vecteur propre
de A associé à λ si :

X 6= 0n,1 et AX = λX.

— Si λ ∈ K une valeur propre de A, on appelle sous-espace propre associé de A à λ le
sous-espace vectoriel noté Eλ(A) de Mn,1(K) défini par :

Eλ(A) = Ker(A− λIn) = {X ∈Mn,1(K) | AX = λX}.

— On appelle spectre de A et on note Sp(A), l’ensemble des valeurs propres de A.

Remarque 6.Remarque 6.

Soit A ∈Mn(K). On remarque que λ ∈ Sp(A) si, et seulement si, A− λIn /∈ GLn(K).

Exercice 9.Exercice 9.

Déterminer les valeurs, vecteurs et sous-espaces propres de A =

1 . . . 1
... . . . ...
1 . . . 1

 ∈Mn(K).
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Correction.

— 1er cas : n = 1

On a A = (1) = I1 ∈M1(K) donc Sp(A) = {1} et E1(A) = M1(K).

— 2ème cas : n ≥ 2

Pour i ∈ J1, nK, on note Ei le i-ième vecteur de la base canonique de Mn,1(K) et S =

1
...
1

.

Alors on a, i ∈ J2, nK, AE1 = S = AEi donc E1−Ei ∈ Ker(A). La famille (E1−Ei)2≤i≤n

est une famille libre et, comme rg(A) = 1 (car Im(A) = Vect(S)), d’après le théorème du
rang, dim(Ker(A)) = n− 1 >= 1 ; d’où (E1 − Ei)2≤i≤n est une base de Ker(A).
Ainsi, 0 est valeur propre de A car Ker(A− 0In) = Ker(A) 6= {0n,1} et on a :

E0(A) = Ker(A) = Vect (E1 − E2, . . . , E1 − En) .

On remarque que les sommes de chaque ligne sont égales et valent toutes n donc la colonne
S 6= 0n,1 est vecteur propre de A associé à n qui est donc valeur propre.
De plus, comme 0 et n sont des valeurs propres distinctes, leurs sous-espaces propres
respectifs sont en somme directe et donc :

n = n− 1 + 1 ≤ dim (E0(A))︸ ︷︷ ︸
=n−1

+ dim (En(A))︸ ︷︷ ︸
≥1

≤ dim (Mn,1(K)) = n.

Par suite, dim (En(A)) = 1 d’où :

En(A) = Vect (S) ,

et En(A) et E0(A) sont de somme Mn,1(K) donc A ne possède pas d’autre valeur propre.

Conclusion :

Sp(A) = {0, n} et E0(A) = Vect




1
−1
0
...
0

 , . . . ,


1
0
...
0
−1



 En(A) = Vect


1

...
1




b. Propriétés du spectre d’une matrice

Proposition 14.Proposition 14.

On suppose E de dimension finie n. Soit B = (e1, ..., en) une base de E, u ∈ L(E) et A =
MatB(u) ∈Mn(K). Alors on a Sp(A) = Sp(u).
De plus, pour tout λ ∈ Sp(u),

x =

n∑
i=1

xiei ∈ Eλ(u) si, et seulement si, X =

x1

...
xn

 ∈ Eλ(A).
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Démonstration.

L’application φB : E →Mn,1(K) tel que

φB : x =

n∑
i=1

xiei 7→ X =

x1

...
xn

 .

est un isomorphisme.
Ainsi, l’équation MX = λX est équivalente à l’équation u(x) = λx d’où le résultat.

Proposition 15.Proposition 15.

Soit A,B ∈ Mn(K). Si A et B sont semblables, alors Sp(A) = Sp(B) et pour tout λ ∈ Sp(A),
Eλ(A) = PEλ(B) où P ∈ GLn(K) vérifie B = P−1AP .

Démonstration.

On peut voir deux matrices semblables comme les matrices d’un même endomorphisme dans deux
bases différentes. On obtient alors le résultat souhaité en appliquant la proposition précédente.

Proposition 16.Proposition 16.

Soit K′ un sous-corps de K et A ∈Mn(K′). Alors SpK′(A) ⊂ SpK(A).

Démonstration.

Soit λ ∈ K′ une valeur propre de A ∈Mn(K′) ⊂Mn(K) et X ∈Mn,1(K′) un vecteur propre de A.
Comme Mn,1(K′) ⊂ Mn,1(K), alors X vu comme matrice à coefficients dans K vérifie l’équation
AX = λX. Donc λ ∈ SpK(A).

Exercice 10.Exercice 10.

Illustrer le résultat précédent en déterminant les spectres dans R puis dans C de M =

(
0 1
−1 0

)

Démonstration.

Soit λ ∈ K. On a, pour
(
x
y

)
∈Mn,1(K),

M

(
x
y

)
= λ

(
x
y

)
⇔

{
(1 + λ2)x = 0

(1 + λ2)y = 0

Par suite, si K = R, 1+λ2 > 0, l’unique solution de ce système est
(
0, 0
)

(et ce, pour toute valeur
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de λ). Donc SpR(M) = ∅.
Dans le cas où K = C, on a 1 + λ2 = 0 si, seulement si λ = ±i. Ainsi, M

(
x, y
)
= λX possède

des solutions non nulles si, et seulement si, λ = ±i. Les valeurs propres de M dans C sont donc
i et −i, d’où SpC(M) = {i,−i}.
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Polynôme caractéristique
Partie CPartie C

Dans cette partie, l’espace vectoriel E est supposé de dimension finie n.

1. Polynôme caractéristique

a. Polynôme caractéristique d’une matrice carrée

L’application M 7→ det(M) est une fonction polynomiale en les coefficients de M . Ainsi, pour A ∈
Mn(K) fixée, l’application λ 7→ det(λIn−A) est une fonction polynomiale de la variable λ ; ce qui justifie
la définition suivante :

Définition 13.Définition 13. gPolynôme caractéristique d’une matrice carréePolynôme caractéristique d’une matrice carrée

Soit A ∈ Mn(K). On appelle polynôme caractéristique de A et on note χA(X) l’unique
polynôme de K[X] tel que, pour tout λ ∈ K :

χA(λ) = det(λIn −A).

Remarque 7.Remarque 7.

On notera directement χA(X) = det(XIn−A). Pour justifier cette notation, il faudrait pouvoir
définir le déterminant d’une matrice à coefficients polynomiaux. Et c’est possible : au lieu d’uti-
liser le corps de base K pour les coefficients, on utilise le corps K(X) des fractions rationnelles.
La théorie reste la même.

Proposition 17.Proposition 17.

Soit A ∈Mn(K). Le polynôme caractéristique χA est un polynôme unitaire de degré n et on a :

χA(X) = Xn − Tr(A)Xn−1 + ...+ (−1)ndet(A).

Démonstration.

On a, pour λ ∈ K,

χA(λ) = det(λIn −A) =


λ− a11 −a12 . . . −a1n

−a21 λ− a22
...

... . . .
−an1 −an2 . . . λ− ann


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En utilisant la base canonique B = (e1, ..., en) de Mn,1(K), on a, pour Cj =

a1j
...

anj

 ∈Mn,1(K) :

χA(λ) = detB(λe1 − C1, ..., λen − Cn).

L’application detB est multilinéaire, donc en développant l’expression précédente on remarque
que l’on obtient un polynôme de degré au plus n et on a, pour 0 ≤ k ≤ n où cn−k est le coefficient
de χA(λ) correspondant à λn−k :

cn−kλ
n−k =

∑
i1<...<ik∈J1,nK detB(λe1, ...,−Ci1 , ..., λej , ...,−Cik , ..., λen)

= (−1)kλn−k
∑

i1<...<ik∈J1,nK detB(e1, ..., Ci1 , ..., ej , ..., Cik , ..., en).

Par suite, on obtient le résultat en évaluant, cn−k pour k = 0, 1 et n :
— cn = detB(e1, ..., en) = 1

— cn−1 = −
∑n

i=1 detB(e1, ..., Ci, ..., en) = −
∑n

i=1 aii = −Tr(A).
— c0 = (−1)ndetB(C1, ..., Cn) = det(A).

Exercice 11.Exercice 11.

Soit A = (aij) ∈ M3(K). Exprimer le coefficient c1 du monôme de degré 1 dans χA(X) en
fonction des aij .

Correction.

On utilise les notations de la démonstrations précédente :

c1 = detB(C1, C2, e3) + detB(C1, e2, C3) + detB(e1, C2, C3)

=

∣∣∣∣∣∣
a11 a12 0
a21 a22 0
a31 a32 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 0 a13
a21 1 a23
a31 0 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 a12 a13
0 a22 a23
0 a32 a33

∣∣∣∣∣∣
=

∣∣∣∣a11 a12
a21 a22

∣∣∣∣+ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣+ ∣∣∣∣a22 a23
a32 a33

∣∣∣∣.
Théorème 2.Théorème 2.

Soit A ∈ Mn(K) et λ ∈ K. Le scalaire λ est une valeur propre de A si, et seulement si, λ est
une racine du polynôme caractéristique de A. Autrement dit :

λ ∈ Sp(A) ⇔ χA(λ) = 0.
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Démonstration.

λ ∈ Sp(A)

si, et seulement si,

Ker(A− λIn) 6= {0}

si, et seulement si,

A− λIn /∈ GLn(K)

si, et seulement si,

λIn −A /∈ GLn(K)

si, et seulement si,

det(λIn −A) = 0

si, et seulement si,

χA(λ) = 0.

Corollaire 4.Corollaire 4.

Soit A ∈Mn(K).
— Si K = C, alors A a au moins une valeur propre.
— Si K = R et n est impair, alors A a au moins une valeur propre.

Démonstration.

On note χA le polynôme caractéristique de A.
— Si K = C, d’après le théorème de D’Alembert-Gauss, χA possède au moins une racine,

donc d’après le théorème 2, A possède au moins une valeur propre.
— Si K = R et n est impair, on a deg(χA) = n. Par suite, en appliquant le théorème des

valeurs intermédiaires ou en raisonnant en terme de facteurs irréductibles, on peut montrer
que χA possède au moins une racine, donc d’après le théorème 2, A possède au moins une
valeur propre.

Méthode : Calcul des éléments propres d’une matrice A ∈Mn(K) dans le corps K.

• On calcule le polynôme caractéristique χA de A.
• On factorise dans K le polynôme caractéristique χA de A et on détermine toutes ses racines.

• Chaque racine λ ∈ K de χA étant une valeur propre de χA, on résout le système

MX = λX,
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qui, NÉCESSAIREMENT, admet une infinité de solution (car λ est une valeur propre de
A).

• Pour chaque racine λ de χA, le sous-espace propre associé à λ est égal à l’ensemble des
solutions du système précédent :

Eλ(A) = {X ∈Mn,1(K) |MX = λX}.

En pratique, on cherchera une base (X1, ..., Xk) de l’ensemble des solutions de MX = λX
i.e. une famille libre maximale de vecteurs propres associés à λ, afin d’écrire :

Eλ(A) = Vect(X1, ..., Xn).

Exercice 12.Exercice 12.

Calculer les valeurs propres et les sous-espaces propres des matrices suivantes dans R puis dans
C :

A =

(
1 2
1 2

)
B =

−1 0 0
1 2 1
2 1 0

 C =

 2 0 2
0 6 0
−2 0 7

 D =

0 2 −2
3
2 2 −4
2 2 −4


E =

 1 2 2
4 2 8
−2 2 −4



Correction.

1. χA = X2 − 3X, d’où Sp(A) = {0, 3} et on a :

E0(A) = Vect(
(

1
− 1

2

)
) et E3(A) = Vect(

(
1
1

)
)

2. χB = X3 −X2 − 3X − 1, d’où Sp(B) = {−1, 1−
√
2, 1 +

√
2} et on a :

E1(B) = Vect(

 1
1
2
− 5

2

), E1−
√
2(B) = Vect(

 0
1√
2− 1

) et E1+
√
2(B) = Vect(

 0
1

−
√
2− 1

)

3. χC = X3 − 15X2 + 72X − 108, d’où Sp(B) = {3, 6} et on a :

E3(C) = Vect(

1
0
1
2

) et E6(C) = Vect(

1
0
1

 ,

0
1
0

)

4. χD = X3 + 2X2 +X + 2, d’où SpR(D) = {−2} et Sp(D) = {±i}. On a :

E−2(D) = Vect(

0
1
1

)
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et dans le cas de C, on a de plus :

Ei(D) = Vect(

 1
1
2 (i+ 2)

1

) et E−i(D) = Vect(

 1
− 1

2 (i+ 2)
1

)

5. χE = X3 +X2 − 30X, d’où Sp(E) = {−6, 0, 5} et on a :

E−6(E) = Vect(

 0
1
−1

), E0(E) = Vect(

 1
0
− 1

2

) et E5(E) = Vect(

 1
20
11
2
11

)

Exercice 13.Exercice 13. gMatrice compagnonMatrice compagnon

Soit n ∈ N∗, a0, ..., an−1 ∈ K et

A =



0 0 · · · · · · 0 −a0
1 0 · · · · · · 0 −a1

0 1
. . . ... · · ·

...
... . . . . . . ... · · ·

0 0 · · · 1 0 −an−2

0 0 · · · 0 1 −an−1


Montrer que χA = Xn + an−1X

n−1 + ...+ a1X + a0.
En déduire que pour tout polynôme unitaire P ∈ K[X], il existe une matrice A ∈ Mn(K) telle
que P = χA.

Correction.

Voici deux méthodes pour obtenir le résultat (on explicite ici seulement la deuxième) :
1) On développe le déterminant det(λIn −A) par rapport à la dernière colonne.

2) On a det(λIn −A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X 0 · · · · · · 0 a0
−1 X · · · · · · 0 a1

0 −1
. . . ... · · ·

...
... . . . . . . ... · · ·

0 0 · · · −1 X an−2

0 0 · · · 0 −1 X + an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
En faisant l’opération : L0 ←

∑n−1
i=0 XiLi, on obtient :

det(λIn −A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · · · · 0 P (X)
−1 X · · · · · · 0 a1

0 −1
. . . ... · · ·

...
... . . . . . . ... · · ·

0 0 · · · −1 X an−2

0 0 · · · 0 −1 X + an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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où P (X) = Xn + an−1X
p−1 + ...+ a1X + a0.

On obtient alors le résultat en développant par rapport à la 1ere ligne.
Pour P = Xn+an−1X

p−1+ ...+a1X+a0 un polynôme unitaire de K[X], la matrice compagnon
A de la question précédente a pour polynôme caractéristique le polynôme P .

Proposition 18.Proposition 18.

Soit A ∈ Mn(K). Si A est triangulaire (supérieure ou inférieure), alors χA =

n∏
i=1

(X − αi) où

α1, ..., αn sont les coefficients diagonaux de A.

Démonstration.

On a, pour λ ∈ K,

χA(λ) = det(λIn −A) =

∣∣∣∣∣∣∣∣∣∣
λ− α1 ∗ . . . ∗

0 λ− α2
. . . ...

... . . . . . . ∗
0 . . . 0 λ− αn

∣∣∣∣∣∣∣∣∣∣
D’où χA(λ) =

∏n
i=1(λ− αi).

b. Polynôme caractéristique d’un endomorphisme

Lemme 1.Lemme 1.

Soit A,B ∈Mn(K). Si A et B sont semblables, alors χA = χB .

Démonstration.

On suppose A et B semblables. Alors il existe P ∈ K[X] tel que B = PAP−1. Par suite, on a :

χB = det(XIn − PAP−1) = det(P (XIn −A)P−1) =
det(P )

det(P )
det(λIn −A) = χA.

Définition 14.Définition 14.

Soit u ∈ L(E). On appelle polynôme caractéristique de u et on note χu(X) le polynôme
caractéristique de toute matrice représentant u, i.e. si B est une base de E et si A = MatB(u),

χu := χA
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Remarque 8.Remarque 8.

Le lemme précédent nous permet d’affirmer que le polynôme caractéristique d’un endomor-
phisme est bien défini : en effet, si A et B sont des matrices représentant u, elles sont semblables
et donc ont même polynôme caractéristique.

Proposition 19.Proposition 19.

Soit u ∈ L(E). On a, pour tout λ ∈ K :

χu(λ) = det(λIdE − u) = λn − Tr(u)λn−1 + ...+ (−1)ndet(u).

Démonstration.

Il suffit d’écrire χu = χA avec A une matrice représentant u. On a alors

χu = χA = λn − Tr(A)λn−1 + ...+ (−1)ndet(A) = λn − Tr(u)λn−1 + ...+ (−1)ndet(u);

et de plus, la matrice λIn −A est une matrice représentant λIdE − u, donc

χu = χA = det(λIn −A) = det(λIdE − u).

Théorème 3.Théorème 3.

Soit u ∈ L(E) et λ ∈ K. Le scalaire λ est une valeur propre de u si, et seulement si, λ est une
racine du polynôme caractéristique de u. Autrement dit :

λ ∈ Sp(u) ⇔ χu(λ) = 0.

Démonstration.

On écrit χu = χA avec A une matrice représentant u et on a, pour λ ∈ K :

λ ∈ Sp(u) ⇔ λ ∈ Sp(A) ⇔ χA(λ) = 0 ⇔ χu(λ) = 0.

Remarque 9.Remarque 9.

Comme pour le cas des matrices, on en déduit que si K = C ou si K = R avec dim(E) impair,
alors tout endomorphisme de E possède au moins une valeur propre.

c. Polynôme caractéristique d’un endomorphisme induit
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Proposition 20.Proposition 20.

Soit F un sous-espace vectoriel de E et u ∈ L(E). Si F est stable par u, alors le polynôme
caractéristique χuF

de l’endomorphisme uF induit par u sur F divise χu

Démonstration.

On suppose que F est stable par u. Sot B = (e1, ..., en) une base de E adaptée à F où B′ =
(e1, ..., ep) forme une base de F . On pose M = MatB(u) et A = MatB′(uF ). Alors il existe
B ∈Mp,n−p(K) et C ∈Mn−p,n−p(K) telles que :

M =

(
A B
0 C

)
Par suite, on a, en notant Q = det(XIn−p − C) ∈ K[X] :

χu = det(XIn −M)

=

∣∣∣∣ XIp −A −B
0 XIn−p − C

∣∣∣∣
= det(XIp −A).det(XIn−p − C)

= χA.Q

χu = χuF
Q.

Il en résulte que χuF
|χu.

Remarque 10.Remarque 10.

— On a alors Sp(uF ) ⊂ Sp(u) ;
— Si χu est scindé (resp. scindé à racines simples) alors χuF

l’est aussi ;

— Par une récurrence finie, on obtient que si E =

k⊕
i=1

Fi et chaque Fi est stable par u, alors

χu =

k∏
i=1

χuFi
= χuF1

... χuFk
.

2. Ordre de multiplicité d’une valeur propre

Définition 15.Définition 15. gMultiplicité d’une valeur propreMultiplicité d’une valeur propre

Soit u ∈ L(E) et λ ∈ Sp(u). On définit l’ordre de multiplicité - ou plus simplement la
multiplicité - de la valeur propre λ de u et on note m(λ) l’ordre de multiplicité de λ comme
racine du polynôme caractéristique χu de u.
On définit de même la multiplicité d’une valeur propre d’une matrice A ∈Mn(K).
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Remarque 11.Remarque 11.

— Autrement dit, si Sp(u) = {λ1, ..., λk} avec λ1, ...λk deux à deux distinctes alors

χu = P

k∏
i=1

(X − λi)
mi ,

où P ∈ K[X] n’a pas de racine dans K et on a, pour tout i ∈ J1, kK :

m(λi) = mi.

— On a donc :
deg(P ) +m(λ1) + ...+m(λk) = n.

— En particulier, pour λ une valeur propre, on a : 1 ≤ m(λ) ≤ n = dim(E).

Proposition 21.Proposition 21.

Soit u ∈ L(E) et λ une valeur propre de u. On a :

1 ≤ dim(Eλ(u)) ≤ m(λ).

Démonstration.

On note F = Eλ(u). Alors F est stable par u et l’endomorphisme induit uF ∈ L(F ) de u sur F
est égal à l’homothétie λIdF . Comme F est un sous-espace propre de u, on a p = dim(F ) ≥ 1 et
d’après la proposition précédente, on a :

(X − λ)p = χuF
|χu = Q(X − λ)m(λ),

avec Q ∈ K[X] et (X − λ) premiers entre eux. Donc, d’après le lemme de Gauss, (X − λ)p|(X −
λ)m(λ).
Il en résulte que 1 ≤ p = dim(Eλ(u)) ≤ m(λ).

Corollaire 5.Corollaire 5.

Soit u ∈ L(E). Si λ est une valeur propre simple de u, alors dim(Eλ(u)) = 1.

Démonstration.

On suppose que λ est une valeur propre simple de u, d’après la proposition précédente, 1 ≤
dim(Eλ(u)) ≤ 1 donc dim(Eλ(u)) = 1.
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Diagonalisation et trigonalisation
Partie DPartie D

Dans cette partie, E désigne un espace vectoriel de dimension finie n ∈ N∗.

1. Endomorphismes et matrices diagonalisables

Définition 16.Définition 16. gEndomorphisme/matrice diagonalisableEndomorphisme/matrice diagonalisable

— Soit u ∈ L(E). On dit que u est diagonalisable s’il existe une base dans laquelle la
matrice de u est diagonale.

— Soit A ∈ Mn(K). On dit que A est diagonalisable si elle est semblable à une matrice
diagonale, i.e. s’il existe D ∈Mn(K) diagonale et P ∈ GLn(K) tels que :

A = PDP−1.

Proposition 22.Proposition 22.

Soit u ∈ L(E). Alors u est diagonalisable si, et seulement si, il existe une base de vecteurs
propres de u.

Démonstration.

• (⇒). Si u est diagonalisable, il existe une base B = (e1, ..., en) de E telle que A =
MatB(u) = diag(α1, ..., αn). Par suite, on a, pour chaque i ∈ J1, Kn, par définition des
coefficients de A,

u(ei) = αiei et ei 6= 0E .

Donc les éléments de B sont des vecteurs propres de u.
• (⇐). Si B = (e1, ..., en) est une base de vecteurs propres associés respectivement à
α1, ..., αn ∈ K, alors :

MatB(u) =




α1 0 . . . 0 e1

0
. . . . . . ...

...
... . . . . . . 0

...
0 . . . 0 αn en

u(e1) . . . . . . u(en)

.

Donc la matrice de u est diagonale dans la base B.
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Exercice 14.Exercice 14.

1. Soit Kn[X] l’espace vectoriel des polynômes de degré inférieur ou égal à n. L’endomor-
phisme de Kn[X], ∆n : P 7→ P ′ est-il diagonalisable ?

2. Montrer que les projecteurs et les symétries de E sont diagonalisables.

Correction.

1. ∆ ne possède qu’une seule valeur propre 0, et les vecteurs propres associés à 0 sont les
polynômes constants (non nuls). Ainsi, on ne peut pas obtenir une base de Kn[X] formée
de vecteurs de propres de ∆n (sauf dans le cas n = 0).

2. Soit p un projecteur de E i.e. p ∈ L(E) et p2 = p. On rappelle qu’alors F = Ker(p) et
G = Im(p) sont supplémentaires dans E et que G = Ker(p−IdE) (et alors p est la projection
sur F parallèlement à G). On note r = rg(p).
Considèrons B = (e1, ..., er, er+1, ..., en) une base de E adaptée à E = F ⊕G. Alors, on a :

MatB(p) =
(

Ir 0r,n−r

0n−r,r 0n−r,n−r

)
La matrice de p dans la base B étant diagonale, p est diagonalisable.
Soit s une symétrie de E. Alors s ∈ L(E) et s2 = IdE . En posant p = 1

2 (s + IdE), on
vérifie que p est un projecteur de E (ce que le lecteur fera sans hésiter !). Or, d’après ce qui
précède, p est diagonalisable donc il existe une base B telle que D = MatB(p) est diagonale.
Or on a s = 2p − IdE et l’application MatB : L(E) → Mn(K) est linéaire et vérifie
MatB(IdE) = In (cette application est même un isomorphisme d’algèbres), donc :

MatB(s) = MatB(2p− IdE) = 2D − In

qui est une matrice diagonale comme combinaison linéaire de matrices diagonales. Par suite,
s est diagonalisable.

Plus précisément, en utilisant la forme exacte de la matrice de p dans la base B de E adpatée
à la somme directe de son image et de son noyau, on trouve, avec r le rang de p :

MatB(s) =
(

Ir 0r,n−r

0n−r,r −In−r

)

Proposition 23.Proposition 23.

Soit u ∈ L(E) et A ∈Mn(K) une matrice représentant u dans une certaine base de E. Alors A
est diagonalisable si, et seulement si, u est diagonalisable.

Démonstration.

u est diagonalisable si, et seulement si, il existe une matrice D diagonale représentant u. Or A et D
représentent toutes deux u si, et seulement si, A et D sont semblables. Donc u est diagonalisable
si, et seulement si, A est diagonalisable.
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Corollaire 6.Corollaire 6.

Soit A ∈Mn(K). Alors A est diagonalisable si, et seulement si, l’endomorphisme de Kn canoni-
quement associé à A est diagonalisable.

Démonstration.

On applique la proposition précédente au cas particulier : E = Kn, A = (ai,j) ∈ Mn(K) et
u ∈ L(Kn) tel que :

u : (x1, ..., xn) 7→

 n∑
j=1

a1,jxj , ...,

n∑
j=1

an,jxj

 .

Proposition 24.Proposition 24.

Soit A ∈Mn(K). Alors A est diagonalisable si, et seulement si, il existe D une matrice diagonale
tel que A = PDP−1 où P =

(
C1 . . . Cn

)
et C1, ..., Cn constituent une base de Mn,1(K)

formée de vecteurs propres de A.

Démonstration.

On suppose A diagonalisable. Alors l’endomorphisme u de Kn canoniquement associé à A est
diagonalisable, donc il existe une base B′ = (ε1, ..., εn) de Kn formée de vecteurs propres de
u. Soit P la matrice de passage de la base canonique B de Kn vers la base B′. La formule de
changement de base pour les matrices représentant un endomorphisme nous donne

MatB′(u) = P−1MatB(u)P,

Or MatB(u) = A et MatB′ = D = diag(λ1, ..., λn) où λi est la valeur propre associé à εi. Par
suite,

A = PDP−1.

2. Diagonalisation

Proposition 25.Proposition 25.

Soit u ∈ L(E) avec Sp(u) = {λ1, ..., λk} avec λ1, ..., λk deux à deux distincts. Les assertions
suivantes sont équivalentes :

i) u est diagonalisable ;

ii) E =

k⊕
i=1

Eλi
(u) ;

iii) n = dim(E) =

k∑
i=1

dim(Eλi
(u)).
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Démonstration.

On démontre ii)⇔iii), i)⇐ii) puis i)⇒ii).
• ii)⇔iii). Les Eλi(u) sont en somme directe, donc on a

dim(

k⊕
i=1

Eλi(u)) =

k∑
i=1

dim(Eλi(u)).

Ainsi,
⊕k

i=1 Eλi(u) = E si, et seulement si,
∑k

i=1 dim(Eλi(u)) = n.

• i)⇐ii). On suppose u diagonalisable. Alors il existe une base de E formée de vecteurs
propres de u i.e. formée d’éléments appartenant aux sous-espaces propres de u. Par suite,
tout élément de E se décompose en somme d’éléments des sous-espaces propres qui sont
en somme directe ; donc E est égal à la somme directe des sous-espaces propres.

• ii)⇐i). On suppose
⊕k

i=1 Eλi(u) = E. Si on considère une base B de E adapté à cette
somme directe, on a :

MatB(u) =


λ1Idim(Eλ1

(u)) 0 . . . 0

0
. . . . . . ...

... . . . . . . 0
0 . . . 0 λkIdim(Eλk

(u))


qui est une matrice diagonale, donc u est diagonalisable.

Proposition 26.Proposition 26.

Soit A ∈ Mn(K) avec Sp(A) = {λ1, ..., λk} avec λ1, ..., λk deux à deux distincts. Les assertions
suivantes sont équivalentes :

i) A est diagonalisable ;

ii) Mn,1(K) =

k⊕
i=1

Eλi
(A) ;

iii) n =

k∑
i=1

dim(Eλi
(A)).

Démonstration.

On applique la proposition précédente à l’endomorphisme canoniquement associé à A.

Exercice 15.Exercice 15.

1. Soit A ∈Mn(K). On suppose que A possède une unique valeur propre λ ∈ K.
Montrer que A est diagonalisable si, et seulement si, A = λIn.

2. Soit A ∈ Mn(K) une matrice nilpotente i.e. vérifiant qu’il existe k ∈ N∗ tel que Ak = 0n.
Montrer que A est diagonalisable si, et seulement si, A = 0n.
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Correction.

1. On suppose que λ est la seule valeur propre de A. Si A est diagonalisable, alors il existe D
diagonale et P ∈ GLn(K) tels que A = PDP−1. Comme A et D sont semblables, ils ont
même polynôme caractéristique et donc même spectre Sp(A) = {λ} = Sp(D). Or D s’écrit
sous la forme diag(α1, ..., αn) et donc son spectre vérifie :

{α1, ..., αn} = Sp(D) = {λ}.

Par suite, α1 = ...αn = λ et donc D = λIn. Il en résulte que :

A = PDP−1 = PλInP
−1 = λPP−1 = λIn.

Réciproquement, si A = λIn, alors A est diagonalisable car diagonale.

2. Soit A une matrice nilpotente. Alors il existe k ∈ N∗ tel que Ak = 0n. Alors A n’est pas
inversible car det(A)k = det(Ak) = det(0n) = 0 d’où det(A) = 0. Par suite, 0 est valeur
propre de A.
De plus, si X 6= 0n,1 est vecteur propre associé à une valeur prore λ de A, on a, comme
AX = λX :

0n,1 = 0nX = AkX = λkX

d’où λk = 0 car X 6= 0n,1 et donc λ = 0.
Il en resulte que A possède 0 pour unique valeur propre. Ainsi, d’après la question précé-
dente, A est diagonalisable si, et seulement si, A = 0In = 0n.

Remarque 12.Remarque 12.

Soit u ∈ L(E) et sp(u) = {λ1, ..., λk} avec λ1, ..., λk deux à deux distinctes. Si u est diago-
nalisable, alors E =

⊕k
i=1 Eλi

(u) et si on note pλm
le projecteur sur Eλm

(u) parallèlement à⊕k
i=1
i ̸=m

Eλi
(u), alors

u = λ1pλ1
+ ...+ λkpλk

Théorème 4.Théorème 4. gThéorème de diagonalisation d’un endomorphismeThéorème de diagonalisation d’un endomorphisme

Soit u ∈ L(E). Alors u est diagonalisable si, et seulement si, il vérifie les deux conditions
suivantes :

i) le polynôme caractéristique χu de u est scindé.
ii) la multiplicité de chaque valeur propre de u est égale à la dimension de son sous-espace

propre associé, i.e. pour tout λ ∈ Sp(u),

m(λ) = dim(Eλ(u)).

Démonstration.

• (⇒). On suppose u diagonalisable. On note λ1, ..., λk ses valeurs propres (deux à deux
distinctes). Alors E =

⊕k
i=1 Eλi

(u) et l’endomorphisme ui induit sur Eλi
(u) par u est

égal à l’homothétie ui = λiIdEλi
(u).
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De plus, en notant di = dim(Eλi(u)) on a

χu = χu1
...χuk

= (X − λ1)
d1 ...(X − λk)

dk .

Donc, χu est scindé et pour tout i ∈ J1, kK, m(λi) = di.

• (⇐). On suppose i) et ii). D’après i), on a χu =
∏k

i=1(X − λi)
mi où les λi sont deux à

deux distincts. Donc Sp(u) = {λ1, ..., λk} et on a, d’après ii) :

n = deg(χu) =

n∑
i=1

mi =

n∑
i=1

m(λi) =

n∑
i=1

dim(Eλi(u)).

Donc d’après la proposition 25, u est diagonalisable.

Théorème 5.Théorème 5. gThéorème de diagonalisation d’une matriceThéorème de diagonalisation d’une matrice

Soit A ∈ Mn(K). Alors A est diagonalisable si, et seulement si, il vérifie les deux conditions
suivantes :

i) le polynôme caractéristique χA de A est scindé.
ii) la multiplicité de chaque valeur propre de A est égale à la dimension de son sous-espace

propre associé, i.e. pour tout λ ∈ Sp(A),

m(λ) = dim(Eλ(A)).

Démonstration.

On raisonne de la même manière que pour le théorème précédent.

Corollaire 7.Corollaire 7.

Soit u ∈ L(E) et A ∈Mn(K). On rappelle que dim(E) = n.
— Si le polynôme caractéristique de u est scindé à racines simples i.e. si u possède n valeurs

propres distinctes, alors u est diagonalisable.
— Si le polynôme caractéristique de A est scindé à racines simples i.e. si A possède n valeurs

propres distinctes, alors A est diagonalisable.

Démonstration.

Si χu est scindé à racines simples alors, pour tout λ ∈ Sp(u), on a 1 ≤ dim(Eλ(u)) ≤ m(λ) = 1,
donc dim(Eλ(u)) = m(λ). On applique alors le théorème précédent.
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Proposition 27.Proposition 27. gForme de la matrice diagonaliséeForme de la matrice diagonalisée

Soit A ∈ Mn(K) où Sp(A) = {λ1, ..., λk} avec λ1, ..., λk deux à deux distinctes. Si A est diago-
nalisable, alors A = PDP−1 où :

D =


λ1Im(λ1) 0 . . . 0

0
. . . . . . ...

... . . . . . . 0
0 . . . 0 λkIm(λk)


et P est la matrice de passage de la base canonique B de Mn(K) vers une base B′ = (C1, ..., Cn)

adaptée à la somme directe
k⊕

i=1

Eλi
(A), i.e.

P =
(
C1 ... Cn

)

Remarque 13.Remarque 13.

Soit u ∈ L(E) avec Sp(u) = {λ1, ..., λk} où λ1, ..., λk deux à deux distinctes et A sa matrice
dans une certaine base B. Si u est diagonalisable, alors A = PDP−1 où D à la même forme que
dans la proposition précédente et P est la matrice de passage de la base B de Mn(K) vers une

base B′ = (C1, ..., Cn) adaptée à la somme directe
k⊕

i=1

Eλi(u).

Méthode : Diagonaliser une matrice A ∈Mn(K) dans K.

• On calcule le polynôme caractéristique χA de A. S’il est scindé dans K, on continue ; s’il
ne l’est pas, A n’est pas diagonalisable.

• On calcule les éléments propres de A et on détermine la dimension de chaque sous-espace
propre de A. Si la multiplicité de chaque valeur propre est égale à la dimension du sous-
espace associé, alors A est diagonalisable et on continue ; sinon A n’est pas diagonalisable.

• On met A sous la forme A = PDP−1 où P est la matrice formée par les vecteurs propres
de A

Exercice 16.Exercice 16.

Diagonaliser (si c’est possible) les matrices suivantes dans R puis C :

A =

−1 1 1
1 −1 1
1 1 −1

 B =

2 1 10
0 6 8
0 0 −1

 C =

0 −2 0
1 0 −1
0 2 0



D =

i −1 i
0 1− 3i −2
0 −4 1 + 3i


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Correction.

1. χA = X3 + 3X2 − 2 = (X − 1)(X + 2)2, d’où Sp(A) = {−2, 1} et on a :

E1(A) = Vect(

1
1
1

) et E3(A) = Vect(

 1
0
−1

 ;

 0
1
−1

)

d’où A est diagonalisable et A = PDP−1 avec

D =

1 0 0
0 −2 0
0 0 −2

 P =

1 1 0
1 0 1
1 −1 −1


2. χB = X3 − 7X2 +4X +12 = (X +1)(X − 2)(X +6) donc B est diagonalisable (polynôme

scindé à racine simples) et Sp(B) = {−1, 2, 6} et on a :

E−1(B) = Vect(

 62
24
−21

), E2(B) = Vect(

1
0
0

)

E6(B) = Vect(

1
4
0

).

d’où B est diagonalisable et B = PDP−1 avec

D =

−1 0 0
0 2 0
0 0 6

 P =

 62 1 1
24 0 4
−21 0 0


3. χC = X3 +4X = X(X2 +4) = X(X − 2i)(X +2i), d’où C n’est pas diagonalisable dans R

(car son polynôme caractéristique n’est pas scindé dans R[X]) et SpR(B) = {0}. Par contre,
C est diagonalisable dans C (polynôme scindé à racines simples dans C[X]) et on trouve :

E0(C) = Vect(

1
0
1

);

E2i(C) = Vect(

−1i
1

), E−2i(C) = E2i(C) = Vect(

−1−i
1

).

Donc C = PDP−1 avec :

D =

0 0 0
0 2i 0
0 0 −2i

 P =

1 −1 −1
0 i −i
1 1 1


4. χD = (X − i)(X − (1 − i))(X − (1 + i)), d’où D est diagonalisable (polynôme scindé à

racines simples) et on trouve :

Ei(D) = Vect(

1
0
0

);
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E1−i(D) = Vect(

0
i
1

), E1+i(D) = Vect(

i
i
2

).

Donc D = PDP−1 avec :

D =

i 0 0
0 1− i 0
0 0 1 + i

 P =

1 0 i
0 i i
0 1 2



Exercice 17.Exercice 17.

On considère l’application u définie sur K2[X] par :

u : P 7→ u(P ) = (X + 1)P ′ +X2P

(
1

X

)
1. Montrer que u est une application linéaire à valeurs dans K2[X].

2. Chercher, si c’est possible, une base qui diagonalise u et, le cas échéant, donner sa matrice
dans cette base.

Correction.

1. Soit P ∈ K[X]. On a (X + 1)P ′ ∈ K[X] ⊂ K(X) et P (1/X) ∈ K(X) ; or X2 ∈ R(X) et
R(X) est un anneau donc (X +1)P ′ +X2P (1/X) ∈ K(X). Ainsi, on a u : R2[X]→ R(X).
Montrons la linéarité de u :
Soit P,Q ∈ R2[X] et λ, µ ∈ R. On a, par linéarité de la dérivation et de l’évaluation, puis
par opérations dans l’anneau R(X) :

u(λP + µQ) = (X + 1)(λP + µQ)′ +X2(λP + µQ)

(
1

X

)
= (X + 1)(λP ′ + µQ′) +X2

(
λP

(
1

X

)
+ µQ

(
1

X

))
= λ(X + 1)P ′ + µ(X + 1)Q′ + λX2P

(
1

X

)
+ µX2Q

(
1

X

)
= λ

(
(X + 1)P ′ +X2P

(
1

X

))
+ µ

(
(X + 1)Q′ +X2Q

(
1

X

))
u(λP + µQ) = λu(P ) + µu(Q).

D’où la linéarité de u.
Ainsi, u(0) = 0 ∈ R2[X] et, de plus, pour P ∈ R2[X]∖ {0}, on a 0 ≤ deg(P ) ≤ 2 et ainsi :

deg
(
X2P

(
1

X

))
= 2− deg(P ) ∈ J0, 2K

et
deg ((X + 1)P ′) = 1 + (deg(P )− 1) = deg(P ) ∈ J0, 2K
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donc X2P (1/X) , (X + 1)P ′ ∈ R2[X] qui est un espace vectoriel d’où u(P ) ∈ R2[X] par
combinaison linéaire.
Il en résulte que u est un endomorphisme de R2[X].

2. Considérons la base canonique B = (1, X,X2) de R2[X]. Comme :
⋆ u(1) = (X + 1)0 +X2 × 1 = X2 ;
⋆ u(X) = (X + 1)1 +X2 × 1/X = 2X + 1 ;
⋆ u(X2) = (X + 1)2X +X2 × 1/X2 = 2X2 + 2X + 1 ;

on obtient :

A = MatB(u) =

0 1 1
0 2 2
1 0 2


On a χu = χA = det(XI3 −A) = X(X − 1)(X − 3) qui est scindé à racines simples donc u
est diagonalisable. Déterminons une base qui diagonalise u.
On sait que, pour λ ∈ Sp(u) = Sp(A), on a P ∈ Eλ(u) si, et seulement si, MatB(P ) ∈ Eλ(A).
On détermine alors les sous-espaces propres de A ; après calculs, on trouve :

E0(A) = Vect

 2
1
−1

 E1(A) = Vect

 1
2
−1

 et E3(A) = Vect

−1−1
1


Par suite, on obtient :
⋆ E0(A) = Vect

(
(−X2 +X + 2)

)
;

⋆ E1(A) = Vect
(
(−X2 + 2X + 1)

)
;

⋆ E3(A) = Vect
(
(X2 −X − 1)

)
.

On obtient donc une base C = (−X2 +X +2,−X2 +2X +1, X2−X − 1) de R2[X] formée
de vecteurs propres de u i.e. C est une base qui diagonalise u et on a :

MatB(u) =

0 0 0
0 1 0
0 0 3



3. Endomorphismes et matrices trigonalisables

Définition 17.Définition 17. gEndomorphisme/matrice trigonalisableEndomorphisme/matrice trigonalisable

— Soit u ∈ L(E). On dit que u est trigonalisable s’il existe une base dans laquelle la
matrice de u est triangulaire supérieure.

— Soit A ∈ Mn(K). On dit que A est trigonalisable si elle est semblable à une matrice
triangulaire supérieure, i.e. s’il existe T ∈Mn(K) triangulaire supérieure et P ∈ GLn(K)
tels que :

A = PTP−1.
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Proposition 28.Proposition 28. gForme d’une matrice trigonaliséeForme d’une matrice trigonalisée

Soit A ∈Mn(K) et Sp(A) = {λ1, ..., λk} avec λ1, ..., λk deux à deux distincts. Si A est trigona-
lisable, alors A est semblable à :

T =



λ1 ∗ . . . . . . . . . . . . . . . ∗

0
. . . . . . ...

... . . . λ1
. . . ∗

...
... . . . . . . . . . ...
... . . . . . . . . . ...
... 0

. . . λk
. . . ...

... . . . . . . ∗
0 . . . . . . . . . . . . . . . 0 λk



Démonstration.

A et T ont même polynôme caractéristique qui est scindé et dont les racines sont λ1, ..., λk de
multiplicités respectives m(λ1), ...,m(λk). Or T étant triangulaire, les coefficients diagonaux de
T sont exactement les racines de χT et le nombre d’apparition d’un coefficient sur la diagonale
est exactement sa multiplicité dans χT . D’où la forme annoncée pour T .

Proposition 29.Proposition 29.

Soit u ∈ L(E) et A ∈Mn(K) une matrice représentant u dans une certaine base de E. Alors A
est trigonalisable si, et seulement si, u est trigonalisable.

Démonstration.

u est trigonalisable si, et seulement si, il existe une matrice T triangulaire représentant u. Or A et
T représentent toutes deux u si, et seulement si, A et T sont semblables. Donc u est trigonalisable
si, et seulement si, A est trigonalisable.

Corollaire 8.Corollaire 8.

Soit A ∈Mn(K). Alors A est trigonalisable si, et seulement si, l’endomorphisme de Kn canoni-
quement associé à A est trigonalisable.

Démonstration.

On applique la proposition précédente au cas particulier : E = Kn, A = (ai,j) ∈ Mn(K) et
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u ∈ L(Kn) tel que :

u : (x1, ..., xn) 7→

 n∑
j=1

a1,jxj , ...,

n∑
j=1

an,jxj

 .

4. Trigonalisation

Théorème 6.Théorème 6. gThéorème de trigonalisationThéorème de trigonalisation

— Soit A ∈Mn(K). Alors A est trigonalisable si, et seulement si, son polynôme caractéris-
tique χA est scindé.

— Soit u ∈ L(E). Alors u est trigonalisable si, et seulement si, son polynôme caractéristique
χu est scindé.

Démonstration.

On démontre la partie concernant les matrices. Pour les endomorphismes, il suffit d’utiliser l’équi-
valence u ∈ L(E) est trigonalisable si, et seulement si, une matrice représentant u est trigonali-
sable et de remarquer que u et sa matrice ont le même polynôme caractéristique.

• (⇒). Si A est trigonalisable, alors il existe une matrice triangulaire supérieure T semblable
à A. Par suite on a χA = χT et le polynôme caractéristique d’une matrice triangulaire est
scindé. Donc χA est scindé.

• (⇐). On considère la propriété

Pn : ”∀A ∈Mn(K), χA est scindé ⇒ A est trigonalisable.”

Montrons que, pour tout n ∈ N∗, Pn est vraie par récurrence n ∈ N∗.
— Initialisation. Pour n = 1, la propriété P0 est triviale : toute matrice de dimension 1

est triangulaire !

— Hérédité. Soit n ∈ N∗. On suppose la propriété Pn vraie.
Soit A ∈ Mn+1(K). On suppose que on polynôme caractéristique χA est scindé. Par
suite, χA admet au moins une racine λ qui est valeur propre de A. Soit C1 ∈Mn+1,1(K)
un vecteur propre de A associé à λ. On complète C1 en une base B = {C1, C2, ..., Cn+1}
de Mn+1,1(K). Alors, en posant Q =

(
C1 . . . Cn+1

)
i.e. Q est la matrice de

passage de la base canonique de Mn+1,1(K) vers B, on a

Q−1AQ =

(
λ B
0 C

)
.

où B ∈M1,n(K) et C ∈Mn(K).
Alors on a :

χA = χQ−1AQ = (X − λ)χC

Or comme χA est scindé et χC |χA, alors χC est scindé et ainsi, par hypothèse de
récurrence, C est trigonalisable. Par suite, il existe T ′ ∈ Mn(K) triangulaire et R ∈
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GLn(K) tels que C = RT ′R−1. Alors, si on pose :

P ′ =

(
1 0
0 R

)
et P = QP ′

on obtient :

P−1AP = P ′−1Q−1AQP ′ = P ′−1

(
λ B
0 C

)
P ′ =

(
λ BR
0 T ′

)
.

Donc T = P−1AP est triangulaire ; d’où A est trigonalisable. Par suite, Pn+1 est vraie.
Ce qui achève la récurrence.

Corollaire 9.Corollaire 9.

— Toute matrice de Mn(C) est trigonalisable.
— Si K = C, tout endomorphisme de E est trigonalisable.

Démonstration.

Soit A une matrice de Mn(C). Alors son polynôme caractéristique χA appartient à C[X] donc
d’après le théorème de D’Alembert-Gauss, χA est scindé. Il en résulte que A est trigonalisable
d’après le théorème précédent.
Même raisonnement pour un endomorphisme.

Proposition 30.Proposition 30.

Soit u ∈ L(E) avec Sp(u) = {λ1, ..., λk} avec λ1, ..., λk deux à deux distincts. Si u est trigonali-
sable, alors :

Tr(u) =
k∑

i=1

m(λi)λi et det(u) =
i∏

i=1

λ
m(λi)
k .

48



Démonstration.

On suppose u trigonalisable. Alors il existe T triangulaire qui représente u et T est de la forme :

T =



λ1 ∗ . . . . . . . . . . . . ∗

0
. . . . . . ...

... . . . λ1
. . . ...

... . . . . . . . . . ...

... . . . λk
. . . ...

... . . . . . . ∗
0 . . . . . . . . . . . . 0 λk


d’où le résultat.

Méthode : Trigonalisation d’une matrice.
• On calcule le polynôme caractéristique de la matrice. S’il est scindé, la matrice est trigo-

nalisable, on continue.
• On détermine les sous-espaces propres ; on compare la dimension de chacun de ces sous-

espaces et la multiplicité des valeurs propres correspondantes. Si chaque dimension est
égale à la multiplicité correspondante, on diagonalise ; sinon, on doit trigonaliser.
Dans le cas général, il n’y a pas de méthode à connaître ; mais nous allons voir comment
trigonaliser une matrice A dans les différents cas possibles en dimension 3 sur des exemples.
Dans la suite, u désignera l’endomorphisme canonique de K3 associé à A.

Méthode : Trigonalisation d’une matrice de M3(K) non diagonalisable.
1er cas : Deux valeurs propres distinctes de multiplicité 1 et 2 et chaque sous-espace propre de
dimension 1.
Exemple représentatif :

A =

 3 −1 −1
−1 2 0
3 −2 0


On a χA = (X − 1)(X − 2)2 et les sous-espaces propres sont :

E1(A) = Vect

1
1
1

 et E2(A) = Vect

 0
1
−1


• On forme une base B = (e1, e2, e3) de K3 en prenant e1 = (1, 1, 1) et e2 = (0, 1,−1) et en

choisissant e3 de manière à compléter en une base la famille e1, e2.
• On obtient alors A = PTP−1 où :

T = MatB(u) =

1 0 ∗
0 2 ∗
0 0 2


et P est formé des vecteurs e1, e2, e3 mis en colonne.
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Par exemple : On choisit e3 = e1 ∧ e2 = (−2, 1, 1) et on a :

u(e3) =

tA

−21
1

 = (−8, 4,−8) = −4e1 + 6e2 + 2e3.

d’où, dans ce cas, T =

1 0 −4
0 2 6
0 0 2

 et P =

1 0 −2
1 1 1
1 −1 1



Méthode : Trigonalisation d’une matrice de M3(K) non diagonalisable.
2eme cas : Une valeur propre triple et le sous-espace propre associé de dimension 2.
Exemple représentatif :

A =

1 0 0
0 0 −1
0 1 2


On a χA = (X − 1)3 et le sous-espace propre associé à 1 est :

E1(A) = Vect

1
0
0

 ,

 0
−1
1


• On forme une base B = (e1, e2, e3) de K3 en prenant e1 = (1, 0, 0) et e2 = (0,−1, 1) et en

choisissant e3 de manière à compléter en une base la famille e1, e2.
• On obtient alors A = PTP−1 où :

T = MatB(u) =

1 0 ∗
0 1 ∗
0 0 1


et P est formé des vecteurs e1, e2, e3 mis en colonne.

Par exemple : On choisit e3 = (0, 1, 1) et on a u(e3) = (8, 4,−8) = 2e2 + 1.e3. d’où, dans

ce cas, T =

1 0 0
0 1 2
0 0 1

 et P =

1 0 0
0 −1 1
0 1 1



Méthode : Trigonalisation d’une matrice de M3(K) non diagonalisable.
3eme cas : Une valeur propre triple λ et le sous-espace propre associé de dimension 1.
On utilise ici la méthode de réduction de Jordan (par souci de simplicité) :
On cherche une base B = (e1, e2, e3) de K3 telle que :

• On cherche e3 /∈ Ker
(
(u− λIdE)

2
)

;
• on pose e2 = u(e3)− λe3 ; (d’où u(e3) = e2 + λe3) ;
• on pose e1 = u(e2)− λe2 ; (d’où u(e2) = e1 + λe2).

Et on prouvera plus tard qu’on a nécessairement u(e1) = λe1 grâce au théorème de Cayley-
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Hamilton. Ainsi, on obtient A = PTP−1 où :

T = MatB(u) =

λ 1 0
0 λ 1
0 0 λ


et P est formé des vecteurs e1, e2, e3 mis en colonne.

Exercice 18.Exercice 18.

Trigonaliser les matrices suivantes :

A =

−1 0 0
2 −4 1
2 −1 −2

 B =

 1
2 + i 1

2 −i
− 1

2 − 1
2 + i −i

0 0 i

C =

 1 −1 0
2 −2 −1
−1 1 1



Correction.

A =

1 0 0
1 1 0
1 1 1

−1 0 0
0 −3 1
0 0 −3

1 0 0
1 1 0
1 1 1

−1

B =

−i −i 0
i −i 0
0 0 1

i 1 0
0 i 1
0 0 i

−i −i 0
i −i 0
0 0 1

−1

C =

1 0 0
1 1 0
1 1 1

−1 0 0
0 −3 1
0 0 −3

1 0 0
1 1 0
1 1 1

−1

5. Endomorphismes nilpotents et matrices nilpotentes
On rappelle ici la notion de nilpotence évoquée dans le chapitre Structures algébriques usuelles :

Définition 18.Définition 18. gEndomorphisme nilpotent/Matrice nilpotenteEndomorphisme nilpotent/Matrice nilpotente

— Soit u ∈ L(E). On dit que u est nilpotent s’il existe k ∈ N∗ tel que uk = 0. On appelle
alors indice de nilpotence le plus petit entier p ∈ N∗ tel que up = 0.

— Soit A ∈ Mn(K). On dit que A est nilpotente s’il existe k ∈ N∗ tel que Ak = 0n. On
appelle alors indice de nilpotence le plus petit entier p ∈ N∗ tel que Ap = 0n.

Exemple 5.Exemple 5.

Une matrice triangulaire dont la diagonale est composée de 0 - on appelle ce type de matrices
des matrices triangulaires strictes - est nilpotente.
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Proposition 31.Proposition 31.

Soit u ∈ L(E). On a équivalence entre les assertions :
i) u est nilpotent ;
ii) χu = Xn (où n = dim(E)) ;

On a le même résultat pour A ∈Mn(K).

Démonstration.

• i)⇒ ii). On suppose u nilpotent d’indice p. Soit A ∈ Mn(K) une matrice représentant u
dans une certaine base B de E. La matrice A est trigonalisable dans Mn(C). Soit λ ∈ C
une valeur propre de A et X ∈ Mn,1(C) un vecteur propre associé. Alors on a, pour tout
k ∈ N :

AkX = λkX.

Or Ap = 0 donc λpX = 0 avec X 6= 0, d’où λp = 0. Ainsi, λ = 0, donc 0 est la seule valeur
propre de A. A étant trigonalisable, son polynôme caractéristique est donc χA = Xn. Par
suite, χu = χA = Xn.

• ii)⇒ i). On suppose χu = Xn. (On peut conclure directement avec le théorème de Cayley-
Hamilton mais on n’a pas besoin d’utiliser un si puissant résultat ici).
Comme χu est scindé, u est trigonalisable et donc il existe une base B dans laquelle la
matrice T de u est triangulaire stricte car 0 est la seule valeur propre de u. Or T est
nilpotente car triangulaire stricte, donc il existe k ≥ 1 tel que MatB(uk) = T k = 0n. Ainsi,
uk = 0.

Corollaire 10.Corollaire 10.

— Soit u ∈ L(E). Alors u est nilpotent si, et seulement si, u est trigonalisable et Sp(u) = {0}.

— Soit A ∈ Mn(K). Alors A est nilpotente si, et seulement si, A est trigonalisable et
Sp(A) = {0}.

Démonstration.

On a u est nilpotent si, et seulement si, χu = Xn si, et seulement si, u est trigonalisable et son
unique valeur propre est 0.

Proposition 32.Proposition 32.

Soit u ∈ L(E). Si u est nilpotent d’indice p, alors :
— pour tout x ∈ E tel que up−1(x) 6= 0E , la famille (x, u(x), ..., up−1(x)) est libre ;
— p ≤ n = dim(E).

52



Démonstration.

— Soit a0, ..., ap−1 ∈ K tels que
∑p−1

i=0 aiu
i(x) = 0E . On a :

0E = up−1(

p−1∑
i=0

aiu
i(x)) = a0u

p−1(x).

donc a0 = 0 car up−1(x) 6= 0E , puis, on a :

0E = up−2(

p−1∑
i=1

aiu
i(x)) = a1u

p−1(x).

d’où a1 = 0. On continue ainsi de proche en proche pour trouver finalement :

a0 = a1 = ... = ap−1 = 0.

Donc (x, u(x), ..., up−1(x)) est une famille libre.
— Comme p est le plus petit entier de N∗ tel que up = 0, alors up−1 6= 0. Par suite, il

existe x 6= 0E tel que up−1(x) 6= 0E . Ainsi, en utilisant le point précédent, la famille
(x, u(x), ..., up−1(x)) est une famille libre de E de p vecteurs, par suite, p ≤ dim(E).
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Polynômes annulateurs et réduction
Partie EPartie E

Dans cette partie, l’espace vectoriel E est supposé de dimension finie n.

1. Rappels et compléments sur les polynômes annulateurs

a. Rappels

Soit P =
∑k

i=0 aiX
i ∈ K[X]. On rappelle que les polynômes P en u ∈ L(E) et en A ∈ Mn(K)

sont définis par :

P (u) =

k∑
i=0

aiu
i = a0IdE + a1u+ ...+ aku

k ∈ L(E),

et

P (A) =

k∑
i=0

aiA
i = a0In + a1A+ ...+ akA

k ∈Mn(K).

On note, pour u ∈ L(E) et A ∈Mn(K) :

K[u] = {P (u) | P ∈ K[X]} et K[A] = {P (A) | P ∈ K[X]}

On dit que P ∈ K[X] est un polynôme annulateur pour u (resp. pour A) si P (u) = 0 (resp. si
P (A) = 0n).

b. Polynômes annulateurs et éléments propres

Proposition 33.Proposition 33.

Soit u ∈ L(E).
i) Pour tous P,Q ∈ K[X], P (u) et Q(u) commutent.
ii) Pour tout P ∈ K[X], Ker(P (u)) et Im(P (u)) sont stables par u.

Démonstration.

i) On a, pour tous i, j ∈ N, ui ◦ uj = uj ◦ ui et ui est linéaire donc en déduit que, pour tous
P,Q ∈ K[X] :
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P (u) ◦Q(u) =

k∑
i=0

aiu
i ◦ (

l∑
j=0

bju
j)

=

k∑
i=0

ai

l∑
j=0

bju
i ◦ uj

=

l∑
j=0

bj

k∑
i=0

aiu
j ◦ ui

=

l∑
j=0

bju
j ◦ (

k∑
i=0

aiu
i)

= Q(u) ◦ P (u)

ii) Soit P ∈ K[X]. On a u = Q(u) avec Q = X, donc u et P (u) commutent d’après i). Donc,
d’après la proposition 7, Ker(P (u)) et Im(P (u)) sont stables par u.

Proposition 34.Proposition 34.

Soit u ∈ L(E), A ∈Mn(K), λ ∈ K et P ∈ K[X].
— Soit x ∈ E. Si u(x) = λx alors P (u)(x) = P (λ)x.
— Soit X ∈Mn,1(K). Si AX = λX alors P (A)X = P (λ)X.

Démonstration.

— On suppose u(x) = λx. Alors on a :

P (u)(x) =

k∑
i=0

aiu
i(x) =

k∑
i=0

ai(λ
ix) = (

k∑
i=0

aiλ
i)x = P (λ)x.

— On fixe une base B de E et on raisonne comme pour pour le point précédent en considérant
A et X comme les matrices dans la base B de u et x respectivement.

Corollaire 11.Corollaire 11.

Soit u ∈ L(E), A ∈Mn(K), λ ∈ K et P ∈ K[X].
— Si λ est une valeur propre de u, alors P (λ) est une valeur propre de P (u) et

Eλ(u) ⊂ EP (λ)(P (u)).

— Si λ est une valeur propre de A, alors P (λ) est une valeur propre de P (A) et

Eλ(A) ⊂ EP (λ)(P (A)).
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Proposition 35.Proposition 35.

Soit u ∈ L(E), A ∈Mn(K) et P ∈ K[X].
— Si P est un polynôme annulateur de u, alors toute valeur propre de u est une racine de

P ; autrement dit, pour λ ∈ Sp(u), P (λ) = 0.
— Si P est un polynôme annulateur de A, alors toute valeur propre de A est une racine de

P ; autrement dit, pour λ ∈ Sp(A), P (λ) = 0.

Démonstration.

On suppose que P est un polynôme annulateur de u, i.e. P (u) = 0. Alors, pour λ ∈ K une valeur
propre de u, d’après la proposition précédente, P (λ) est un valeur propre de l’endomorphisme
P (u) qui est l’endomorphisme nul. Or 0 est l’unique valeur propre de 0 ∈ L(E). D’où P (λ) = 0
i.e. λ est une racine de P .

Remarque 14.Remarque 14.

ATTENTION, la réciproque de la proposition précédente est fausse ! Par exemple, X2(X − 1)
est un polynôme annulateur pour la matrice In mais 0 n’est pas valeur propre de In.

Exemple 6.Exemple 6.

— Soit p un projecteur. Alors p2 = p donc X2 −X = (X − 1)X est un polynôme annulateur
de p et on a bien Sp(p) ⊂ {0, 1}.

— Soit s une symétrie. Alors s2 = IdE donc X2 − 1 = (X − 1)(X + 1) est un polynôme
annulateur de s et on a bien Sp(s) ⊂ {−1, 1}.

Proposition 36.Proposition 36.

Soit u ∈ L(E), A ∈Mn(K) et P ∈ K[X].
— Si P est un polynôme annulateur de u et P (0) 6= 0, alors u est injectif (et donc bijectif

car dim(E) est finie).
— Si P est un polynôme annulateur de A et P (0) 6= 0, alors A est inversible.

Démonstration.

On suppose que P =
∑k

i=0 aiX
i est un polynôme annulateur de u et que P (0) 6= 0. Alors a0 6= 0

et on a :

a0IdE + (

k∑
i=1

aiu
i−1) ◦ u = P (u) = 0,

donc (−1
a0

∑k
i=1 aiu

i−1) ◦ u = IdE . Par suite, u est inversible et son inverse est −1
a0

∑k
i=1 aiu

i−1.

On raisonne de même pour A ∈ Mn(K) pour démontrer que A est inversible et que son inverse
est −1

a0

∑k
i=1 aiA

i−1.
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Méthode : Calcul d’une inverse grâce à un polynôme annulateur. La démonstration précédente
nous donne un moyen pratique de détermination de l’inverse d’un endomorphisme (en dimension
finie) ou d’une matrice quand on a un polynôme annulateur P tel que P (0) 6= 0. En effet, pour
P =

∑k
i=0 aiX

i avec a0 6= 0 un polynôme annulateur de u (resp. de A), on a :

u−1 =
−1
a0

k∑
i=1

aiu
i−1;

respectivement,

A−1 =
−1
a0

k∑
i=1

aiA
i−1.

Exercice 19.Exercice 19.

1. Déterminer l’inverse de f : (x, y) 7→ (2x+ y, x+ 2y)

2. Déterminer l’inverse de A =

(
1 2
2 1

)
.

Correction.

1. On a f2 − 3f = −3IdE , donc f−1 = −1
3 (f − 3IdE).

2. On a A2 − 2A = 3In, donc A−1 = 1
3 (A− 3In).

Proposition 37.Proposition 37.

Soit u ∈ L(E) et P ∈ K[X]. Si uF est l’endomorphisme induit par u sur F = Ker(P (u)), alors
P est un polynôme annulateur de uF .

Correction.

Soit P =
∑m

k=0 akX
k la décomposition de P dans la base canonique de K[X]. On suppose que uF

est l’endomorphisme induit par u sur F = Ker(P (u)). Alors, pour tout x ∈ F , on a P (u)(x) = 0E
et :

P (uF )(x) =

m∑
k=0

aku
k
F (x) =

m∑
k=0

aku
k(x) = P (u)(x) = 0E

Par suite, P (uF ) = 0L(F ) i.e. P est annulateur de uF .

2. Polynôme minimal
Dans le chapitre Structures algébriques usuelles, on a introduit la notion de polynôme minimal d’un

élément d’une algèbre, on rappelle ici les principaux points de ce concept dans le contexte des algèbres
de dimension finie L(E) et Mn(K).
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Proposition 38.Proposition 38. gIdéal annulateurIdéal annulateur

— Soit u ∈ L(E). L’ensemble Iu = {P ∈ K[X] | P (u) = 0} appelé idéal annulateur de u
est un idéal de K[X] non réduit à {0}.

— Soit A ∈ Mn(K). L’ensemble IA = {P ∈ K[X] | P (A) = 0n} appelé idéal annulateur
de A est un idéal de K[X] non réduit à {0}.

Démonstration.

On a déjà démontré ce résultat dans la partie Algèbres du chapitre Structures algébriques. On
rappelle tout de même la démonstration dans notre contexte :

Iu est un idéal de K[X] comme noyau du morphisme d’anneaux f : P 7→ P (u) de K[X] dans
L(E).
Montrons que u possède un polynôme annulateur non nul. Comme L(E) est de dimension finie
égale à n2, la famille (IdE , u, ..., u

n2

) est liée car composée de n2 + 1 vecteurs dans un espace de
dimension n2 donc il existe λ0, ..., λn2 ∈ K non tous nuls tels que

n2∑
i=0

λiu
i = 0.

Par suite P =
∑n2

i=0 λiX
i est un polynôme annulateur non nul de u d’où Iu 6= {0}.

Définition 19.Définition 19. gPolynôme minimalPolynôme minimal

— Soit u ∈ L(E). On appelle polynôme minimal de u et on note πu le générateur unitaire
de l’idéal annulateur Iu de u. En particulier, Iu = πuK[X].

— Soit A ∈ Mn(K). On appelle polynôme minimal de A et on note πA le générateur
unitaire de l’idéal annulateur IA de A. En particulier, IA = πAK[X].

Proposition 39.Proposition 39.

Soit u ∈ L(E).
— Si E est de dimension n ≥ 1, deg(πu) ≥ 1.
— On a deg(πu) = 1 si, et seulement si, u est une homothétie.

Proposition 40.Proposition 40.

— Soit u ∈ L(E) et d = deg(πu). La famille (IdE , u, ..., u
d−1) est une base de l’algèbre

K[u] = {P (u) | P ∈ K[X]} engendré par u.
— Soit A ∈ Mn(K) et d = deg(πA). La famille (In, A, ..., Ad−1) est une base de l’algèbre

K[A] = {P (A) | P ∈ K[X]} engendré par A.
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Démonstration.

On a déjà démontré ce résultat dans la partie Algèbres du chapitre Structures algébriques. On
rappelle tout de même la démonstration dans notre contexte :

On suppose que u admet un polynôme minimal πu avec d = deg(πu). Montrons que
(
uk
)
0≤k≤d−1

est une base de K[u].

• Famille libre : soit λ0, ..., λd−1 ∈ K des scalaires tels que
d−1∑
k=1

λku
k = 0. S’il existe i ∈

J0, d − 1K tel que λi 6= 0,
∑d−1

k=1 λkX
k est un polynôme annulateur non nul de u de degré

< d = πu. Contradiction car πu est de degré minimal parmi les polynômes annulateurs.
Donc pour tout i ∈ J0, d− 1K, λi = 0. Donc la famille

(
uk
)
0≤k≤d−1

est libre.
• Famille génératrice : Soit P (u) ∈ K[u]. Alors P ∈ K[X] et en faisant la division euclidienne

de ce polynôme par πu, on obtient qu’il existe Q,R ∈ K[X] tels que P = πuQ + R et
deg(R) < d− 1. Par suite,

P (u) = πu(u)︸ ︷︷ ︸
=0A

Q(u) +R(u) = R(u).

et R est de degré ≤ d − 1 donc il existe λ0, ..., λd−1 ∈ K tels que R =

d−1∑
k=1

λkX
k. Il en

résulte que :

P (u) = R(u) =

d−1∑
k=1

λkX
k ∈ Vect

(
uk
)
0≤k≤d−1

.

Donc
(
uk
)
0≤k≤d−1

est une base de K[u].

Proposition 41.Proposition 41.

— Soit u ∈ L(E) et λ ∈ K. Alors λ ∈ Sp(u) si, et seulement si, πu(λ) = 0.
— Soit A ∈Mn(K) et λ ∈ K. Alors λ ∈ Sp(A) si, et seulement si, πA(λ) = 0.

Autrement dit, les valeurs propres sont exactement les racines du polynôme minimal.

Démonstration.

• (⇒). Si λ est une valeur propre de u, alors λ est racine de tout polynôme annulateur de
u. Or πu est un polynôme annulateur de u. Donc πu(λ) = 0.

• (⇐). On suppose πu(λ) = 0. Alors on a la factorisation
πu = (X − λ)P,

où P ∈ K[X] et deg(P ) = deg(πu)− 1 < deg(πu). Par suite,
0 = πu(u) = (u− λIdE) ◦ P (u).

Supposons par l’absurde que λ n’est pas valeur propre de u. Alors u− λIdE est injective
et donc bijective car E est de dimension finie ; d’où P (u) = 0. Ce qui est impossible par
minimalité du degré du polynôme minimal parmi les polynômes annulateurs de u.
Il en résulte que λ est une valeur propre de u.
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Corollaire 12.Corollaire 12.

— Soit u ∈ L(E). Alors πu et χu ont les mêmes facteurs irréductibles dans K[X]. En
particulier, ils ont les mêmes racines.

— Soit A ∈ Mn(K). Alors πA et χA ont les mêmes facteurs irréductibles dans K[X]. En
particulier, ils ont les mêmes racines.

Démonstration.

Traitons le cas matriciel. Soit A ∈Mn(K) ⊂Mn(C). D’après la proposition précédente, les racines
de πA dans C sont exactement les valeurs propres de u qui sont également les racines de χA dans
C. Les facteurs irréductibles de C[X] étant seulement les polynômes de degré 1, il en résulte que
πA et χA ont les mêmes facteurs irréductibles dans C[X].
Ainsi, si K = C, on a le résultat. Dans le cas K = R, il reste donc à traiter le cas où P est un
facteur irréductible de degré 2 de πA ou de χA. Alors P = (X − λ)(X − λ) avec λ ∈ C ∖ R
i.e. P possède deux racines complexes non réelles conjuguées. Ces deux racines λ, λ sont donc
des valeurs propres de A vu comme une matrice à coefficients complexes. Par suite, ce sont des
racines communes de πA et χA d’où P = (X − λ)(X − λ) est un facteur irréductible dans R[X]
commun à πA et χA.

Corollaire 13.Corollaire 13.

Soit u ∈ L(E). Alors πu est scindé si, et seulement si, χu est scindé.
De même dans le cas matriciel.

3. Lemme de décomposition des noyaux

Théorème 7.Théorème 7. gLemme de décomposition des noyauxLemme de décomposition des noyaux

Soit u ∈ L(E) et P1, ..., Pk ∈ K[X] deux à deux premiers entre eux. Alors, pour P = P1...Pk,
on a :

KerP (u) =

k⊕
i=1

KerPi(u).

Démonstration.

On montre le résultat par récurrence sur k ∈ N, k ≥ 2.
— Initialisation : k = 2 Soit A,B ∈ K[X] premiers entre eux et P = AB. On procède par

double inclusion.
Comme K[u] est commutatif, on a :

A(u) ◦B(u) = P (u) = B(u) ◦A(u),

d’où Ker(A(u)) ⊂ Ker(P (u)) et Ker(B(u)) ⊂ Ker(P (u)). Par suite,

Ker(A(u)) + Ker(B(u)) ⊂ Ker(P (u))

D’après le théorème de Bézout, il existe U, V ∈ K[X] tels que AU +BV = 1, donc
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A(u) ◦ U(u) +B(u) ◦ V (u) = IdE . (∗)

• Montrons tout d’abord que la somme Ker(A(u))+Ker(B(u)) est directe i.e. Ker(A(u))∩
Ker(B(u)) = {0E}.
Soit x ∈ Ker(A(u))∩Ker(B(u)). Alors on a, d’après (∗) et en utilisant le fait que K[u]
est une algèbre commutative :

x = U(u)

A(u)(x)︸ ︷︷ ︸
=0E

+ V (u)

B(u)(x)︸ ︷︷ ︸
=0E

 = 0E .

Par suite, Ker(A(u)) ∩Ker(B(u)) = {0E}.
• Soit x ∈ Ker(P (u)). On note y = A(u) ◦ U(u)(x) et z = B(u) ◦ V (u)(x). D’après (∗),
x = y + z, et de plus, on a :

A(u)(z) = A(u) ◦B(u) ◦ U(u)(x) = P (u) ◦ U(u)(x) = U(u)

P (u)(x)︸ ︷︷ ︸
=0E

 = 0E

donc z ∈ Ker(A(u)) et, par le même raisonnement, on obtient y ∈ Ker(B(u)).
Par suite, x = z + y ∈ Ker(A(u))⊕Ker(B(u)).
Il en résulte que

Ker(A(u))⊕Ker(B(u)) = Ker(P (u)).

— Hérédité : Soit k ≥ 2. On suppose le propriété vraie pour k. Soit P = P1...Pk+1 avec
P1, ..., Pk+1 premiers entre eux deux à deux.
On pose A = P1...Pk et B = Pk+1. Alors A et B sont premiers entre eux, P = AB. D’après
le raisonnement effectué pour l’initialisation, on a Ker(P (u)) = Ker(A(u)) + Ker(B(u)).
Par suite, d’après l’hypothèse de récurrence, on a :

Ker(P (u)) = Ker(A(u)) + Ker(B(u)) =

k⊕
i=1

KerPi(u)⊕KerPk+1(u).

Ce qui achève le raisonnement par récurrence.

Corollaire 14.Corollaire 14.

Soit u ∈ L(E) et P1, ..., Pk ∈ K[X] deux à deux premiers entre eux. Alors P = P1...Pk est un
polynôme annulateur de u si, et seulement si,

E =

k⊕
i=1

KerPi(u).
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Démonstration.

On applique le lemme de décomposition des noyaux pour obtenir :

KerP (u) =

k⊕
i=1

KerPi(u).

Or P est un polynôme annulateur de u si, et seulement si, on a KerP (u) = E, d’où le résultat.

Remarque 15.Remarque 15.

On retrouve que pour p un projecteur et s une symétrie, Ker(p) et Ker(p − IdE) sont supplé-
mentaires ainsi que Ker(s− IdE) et Ker(s+ IdE).

Exercice 20.Exercice 20.

1. Soit a, b ∈ R tels que a2 + 4b > 0 et U l’ensemble des suites récurrentes doubles dont le
terme général vérifie un+2 = aun+1+bun. Montrer que U est le noyau de l’endomorphisme
P (s) où

P = X2 − aX − b et s : u = (un)n∈N 7→ (un+1)n∈N.

En déduire une expression explicite de U .

2. Soit a, b ∈ R tels que a2 + 4b > 0 et S l’ensemble des fonctions f de C∞(R) telles que
f ′′ = af ′ + bf . Montrer que S est le noyau de l’endomorphisme P (D) où

P = X2 − aX − b et D : f 7→ f ′.

En déduire une expression explicite de S.

Correction.

1. On a, pour u = (un) ∈ RN,

P (s)(u) = s2(u)− as(u)− bid(u) = un+2 − aun+1 − bun

Donc on a bien U = Ker(P (s)) = {u ∈ RN | P (s)(u) = 0}. On a ∆(P ) = a2 + 4b > 0 par
hypothèse, donc P possède deux racines r1, r2 ∈ R distinctes. Ainsi P = (X − r1)(X − r2)
et X − r1, X − r2 sont premiers entre eux, donc, d’après le lemme de décomposition des
noyaux :

U = Ker(P (s)) = Ker(s− r1id)⊕Ker(s− r2id).
Or, pour r ∈ R,

Ker(s− rid) = {u = (un) | ∀n ∈ N, un+1 = run} = {(Arn)n∈N | A ∈ R}.

Il en résulte que :
U = {(Arn1 +Brn2 )n∈N | A,B ∈ R}.

2. Par un raisonnement similaire, on obtient, pour r1, r2 les deux racines réelles distinctes de
P :

S = {t 7→ αer1t + βer2t | α, β ∈ R},
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en remarquant que :

Ker(D − rid) = {f ∈ C∞(R) | f ′ = rf} = {t 7→ αert | α ∈ R}.

4. Polynômes annulateurs et réduction

Théorème 8.Théorème 8.

Soit u ∈ L(E). On a équivalence entre les assertions :
i) u est diagonalisable ;
ii) u possède un polynôme annulateur scindé à racines simples ;
iii) le polynôme minimal πu de u est scindé à racines simples.

Le même résultat est valable pour A ∈Mn(K).

Démonstration.

On démontre i)⇒ ii) ⇒ iii) ⇒ i)
• i)⇒ ii). On suppose u diagonalisable et on note Sp(u) = {λ1, ..., λk} avec λ1, ..., λk deux à

deux distinctes. Alors on a

E =

k⊕
i=1

Eλi
(u) =

k⊕
i=1

Ker(u− λiIdE).

Par suite, d’après le corollaire 14, le polynôme scindé à racines simples P =
∏k

i=1(X −λi)
est annulateur de u.

• ii)⇒ iii). Si u possède un polynôme annulateur scindé à racines simples P alors πu|P et
donc πu est scindé à racines simples.

• iii)⇒ i). On suppose que πu est scindé à racines simples i.e. πu =
∏k

i=1(X − λi) avec
λ1, ..., λk deux à deux distincts. Alors Sp(u) = {λ1, ..., λk} et d’après le corollaire 14, on
a : E =

⊕k
i=1 Ker(u− λiIdE) =

⊕k
i=1 Eλi

(u). Par suite, u est diagonalisable.

Corollaire 15.Corollaire 15.

Soit u ∈ L(E) et F un sous-espace vectoriel de E stable par u. Si u est diagonalisable, alors
l’endomorphisme uF ∈ L(F ) induit par u sur F est diagonalisable.

Démonstration.

Si u est diagonalisable, alors πu est scindé à racines simples d’après le théorème précédent. Or
on a πu(uF ) = 0 : en effet, pour tout x ∈ F , πu(uF )(x) = πu(u)(x) = 0E ; par suite, uF

possède un polynôme annulateur scindé à racines simples. D’après le théorème précédent, uF est
diagonalisable.
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Exemple 7.Exemple 7.

Soit u ∈ L(E) tel que u3 + 11u = 6u2 + 6IdE . Alors u est diagonalisable.

En effet, le polynôme P = X3 − 3X2 + 11X − 6 est annulateur de u et on remarque que
P = (X−1)(X−2)(X−3) est scindé à racines simples. Ainsi, u est diagonalisable d’après
le théorème précédent.

Exercice 21.Exercice 21.

Soit n ∈ N∗ et M ∈ Mn(R) telle que M3 −M2 +M = In. Déterminer le déterminant de M et
montrer que sa trace est un entier naturel inférieur ou égal à n.

Correction.

On remarque que P = X3 −X2 +X − 1 = (X − 1)(X − i)(X + i) est un polynôme annulateur
scindé à racines simples de M . Par suite, M est diagonalisable dans C avec SpC(M) ⊂ {1, i,−i}
et ainsi, on a :

det(M) = 1m(1) × im(i) × (−i)m(−i) et tr(M) = m(1) +m(i)i−m(−i)i

où, si λ n’est pas valeur propre de M , m(λ) = 0 et si λ est valeur propre de M , m(λ) désigne sa
multiplicité.
De plus, M étant à coefficients dans R, ses valeurs propres non réelles conjuguées (potentielles)
i et −i ont la même multiplicité i.e. m(i) = m(−i). Ainsi :

det(M) = (i× (−i))m(i) = 1m(i) = 1 et tr(M) = m(1) +m(i)(i− i) = m(1) ∈ J0, nK.
Exercice 22.Exercice 22.

Soit n ∈ N∗. On pose J =

1 . . . 1
... . . . ...
1 . . . 1

 ∈Mn(R) et A =


n+ 1 1 . . . 1

1
. . . . . . ...

... . . . . . . 1
1 . . . 1 n+ 1

 ∈Mn(R).

1. Exprimer J2 en fonction de J .
2. Exprimer A en fonction de J et In puis en déduire un polynôme annulateur de degré 2 de

A.
3. En déduire que A est diagonalisable sur R.

Correction.

1. On a J2 = nJ .
2. On a A = J + nIn et comme J et In commutent, on a :

A2 = (J + nIn)2 = J2 + 2nJ + n2In = 3nJ + n2In = 3nA− 2n2In
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Par suite, P = X2 − 3nX + 2n2 est annulateur de A

3. On remarque que P = (X − n)(X − 2n) est un polynôme annulateur de A scindé à racines
simples, donc A est diagonalisable.

Exercice 23.Exercice 23.

Soit n ∈ N∗, A ∈Mn(R) et B =

(
A A
0n A

)
∈M2n(R).

Montrer que si B est diagonalisable, alors A l’est aussi puis, sous la même hypothèse, que A = 0n.

Correction.

On remarque tout d’abord que pour P ∈ R[X], P (B) =

(
P (A) AP ′(A)
0n P (A)

)
car, pour tout

k ∈ N∗, Bk ==

(
Ak kAk

0n Ak

)
.

On suppose B diagonalisable. D’après la caractérisation de la diagonalisabilité par les polynômes
annulateurs, B possède un polynôme annulateur P scindé à racines simples. Ainsi, d’après la
remarque précédente, P est donc également annulateur de A, d’où A est diagonalisable, toujours
d’après la caractérisation utilisée précédemment.
De plus, on a également XP ′ qui est annulateur de A. Ainsi, les valeurs propres de A font partie
des racines communes de XP ′ et de P . Or, comme P est à racines simples, P et P ′ n’ont pas
de racine commune ; donc les valeurs propres de A font partie des racines communes de X et
P ... et ils en ont nécessairement au moins une en commun et il s’agit bien-sûr seulement de
0, car A possède au moins une valeur propre ! Ainsi, 0 est la seule valeur propre de A qui est
diagonalisable : par suite, A = 0n.

Théorème 9.Théorème 9.

Soit u ∈ L(E). On a équivalence entre les assertions :
i) u est trigonalisable ;
ii) u possède un polynôme annulateur scindé ;
iii) le polynôme minimal πu de u est scindé.

Le même résultat est valable pour A ∈Mn(K).

Démonstration.

Démontrons i)⇔ iii) :
i) : u est trigonalisable si, et seulement si, χu est scindé (Théorème 6) si, et seulement si, πu est
scindé (Corollaire 13) : iii).
Et en remarquant que le polynôme minimal est un polynôme annulateur de u qui divise tout
polynôme annulateur u, on obtient ii)⇔ iii).

Remarque : dans la suite, on propose une preuve de iii)⇒i) qui n’utilise pas la caractérisation de
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la trigonalisabilité en terme de polynôme caractéristique :
Pour n ∈ N∗, on considère la propriété :

Pn : ”∀A ∈Mn(K), πA est scindé ⇒ A est trigonalisable.”

Montrons que, pour tout n ∈ N∗, Pn est vraie par récurrence n ∈ N∗.
— Initialisation. Pour n = 1, la propriété P0 est triviale : toute matrice de dimension 1 est

triangulaire.

— Hérédité. Soit n ∈ N∗. On suppose la propriété Pn vraie.
Soit A ∈ Mn+1(K). On suppose que on polynôme minimal πA est scindé. Par suite,
πA admet au moins une racine λ qui est valeur propre de A. Soit C1 ∈ Mn+1,1(K) un
vecteur propre de A associé à λ. On complète C1 en une base B = (C1, C2, ..., Cn+1) de
Mn+1,1(K). Alors, en posant Q =

(
C1 . . . Cn+1

)
i.e. Q est la matrice de passage de

la base canonique de Mn+1,1(K) vers B, on a :

Q−1AQ =

(
λ B
0 C

)
.

où B ∈M1,n(K) et C ∈Mn(K).
De plus, on a :

πA(Q
−1AQ) = Q−1 πA(A)︸ ︷︷ ︸

=0n+1

Q = 0n+1.

Or,

πA(Q
−1AQ) = πA

((
λ B
0 C

))
=

(
πA(λ) B′

0 πA(C)

)
où B′ ∈M1,n(K).

Par suite, πA(C) = 0n i.e. πA est un polynôme annulateur de C qui est scindé par hy-
pothèse ; donc le polynôme minimal πC de C est scindé car il divise πA. Ainsi, par hypo-
thèse de récurrence, C est trigonalisable. Par suite, il existe T ′ ∈ Mn(K) triangulaire et
R ∈ GLn(K) tels que C = RT ′R−1. Alors, si on pose :

P ′ =

(
1 0
0 R

)
et P = QP ′

on obtient :

P−1AP = P ′−1Q−1AQP ′ = P ′−1

(
λ B
0 C

)
P ′ =

(
λ BR
0 T ′

)
.

Donc T = P−1AP est triangulaire ; d’où A est trigonalisable. Par suite, Pn+1 est vraie.
Ce qui achève la récurrence.

Montrons maintenant l’implication iii) ⇒ i). Supposons πu scindé. Soit B une base de E et
A = MatB(u). Comme πA = πu, πA est scindé, et donc, d’après le résultat précédent, A est
trigonalisable, ce qui implique que u l’est aussi.
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Corollaire 16.Corollaire 16.

Soit u ∈ L(E) et F un sous-espace vectoriel de E stable par u. Si u est trigonalisable, alors
l’endomorphisme uF ∈ L(F ) induit par u sur F est trigonalisable.

Démonstration.

Si u est trigonalisable, alors πu est scindé d’après le théorème précédent. Or on a πu(uF ) = 0 :
en effet, pour tout x ∈ F , πu(uF )(x) = πu(u)(x) = 0E ; par suite, uF possède un polynôme
annulateur scindé. D’après le théorème précédent, uF est trigonalisable.

5. Théorème de Cayley-Hamilton

Théorème 10.Théorème 10. gThéorème de Cayley-HamiltonThéorème de Cayley-Hamilton

— Soit u ∈ L(E). Le polynôme caractéristique χu de u est un polynôme annulateur de u
i.e.

χu(u) = 0.

Autrement dit, πu divise χu.
— Soit A ∈ Mn(K). Le polynôme caractéristique χA de A est un polynôme annulateur de

A i.e.
χA(A) = 0n.

Autrement dit, πA divise χA.

Démonstration Non exigible.

On suppose u trigonalisable. Soit B = (e1, ..., en) une base de trigonalisation de u. On note
T = MatB(u) et on a, pour λ1, ..., λn les n valeurs propres de u (pas forcément distinctes donc) :

T = (tij) =


λ1 ∗ . . . ∗

0 λ2
. . . ...

... . . . . . . ∗
0 . . . 0 λn


Par suite, on a χu = χT =

∏n
i=1(X − λi). Pour i = 1, ..., n, on note Fi = Vect(e1, ..., ei),

F0 = {0E} et Pi = X − λi. Alors on a :

χu(u) = P1(u) ◦ ... ◦ Pn(u).

Montrons que pour i ∈ J1, nK, que Pi(u)(Fi) ⊂ Fi−1.
• Cas i = 1. On a

P1(u)(e1) = u(e1)− λ1e1 = λ1e1 − λ1e1 = 0E ,

d’où P1(u)(F1) ⊂ {0E} = F0.
• Cas i ∈ J1, n− 1K. Pour x ∈ Fi, on a x = αei + xi−1︸︷︷︸

∈Fi−1

.

Comme Fi−1 est stable par u, alors Fi−1 est stable par Pi(u) d’où Pi(u)(xi−1) ∈ Fi−1. De
plus, on a :
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Pi(u)(ei) = u(ei)− λiei

= (t1ie1 + ...+ ti−1,iei−1 + tii︸︷︷︸
=λi

ei)− λiei

= t1ie1 + ...+ ti−1,iei−1 ∈ Fj−1.
Donc Pi(u)(x) = αPi(u)(ei) + Pi(u)(xi−1) ∈ Fj−1.

Alors, on a bien, pour tout i ∈ J1, nK, que Pi(u)(Fi) ⊂ Fi−1.
Ainsi, on a :

χu(u)(E) = P1(u) ◦ ... ◦ Pn−1(u) ◦ Pn(u)(Fn)

⊂ P1(u) ◦ ... ◦ Pn−1(u)(Fn−1)

⊂
...
⊂
⊂ P1(u)(F1)

⊂ F0 = {0E}.

Et donc :
χu(u)(E) = {0E} i.e. χu(u) = 0.

Si u n’est pas trigonalisable, alors on considère une matrice A ∈ Mn(K) représentant u comme

une matrice de Mn(C). Alors A est trigonalisable dans Mn(C) et donc l’endomorphisme u′ de
Cn canoniquement associé à A l’est aussi. D’après ce qui précède, on a χu′(u′) = 0 et donc
χA(A) = 0n. Le polynôme caractéristique de A est à coefficients dans K, donc on a également
χu(u) = 0.

Dans tous les cas, on χu(u) = 0.

Pour ce corollaire, on rappelle qu’on a prouvé précedemment que les polynômes caractéristique et
minimal possèdent les mêmes facteurs irréductibles dans K[X].

Corollaire 17.Corollaire 17.

Soit u ∈ L(E). On a deg(πu) ≤ n.
Plus précisément, si P1, ..., Pk sont les facteurs irréductibles distincts des polynômes minimal πu

et caractéristique χu de u avec πu =

k∏
i=1

P pi

i et χu =

k∏
i=1

Pmi
i leurs décompositions en facteurs

irréductibles, alors, pour tout i ∈ J1, kK :

pi ≤ mi

De même dans le cas matriciel.

Démonstration.

D’après le théorème de Cayley-Hamilton, on a πu|χu.
Ainsi on a deg(πu) ≤ deg(χu) = n.
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Précisons ! Soit i ∈ J1, kK. Alors Pni
i |
∏k

j=1 P
nj

j = πu = χu|χu =
∏k

j=1 P
mj

j ; donc par transiti-
vité, Pni

i |
∏k

i=1 P
mi
i . Or, pour tout j 6= i, Pni

i , P
mj

j sont premiers entre eux car Pi, Pj sont des
polynômes irréductibles distincts ; donc, d’après le lemme de Gauss, Pni

i |P
mi
i d’où ni ≤ mi.

Exercice 24.Exercice 24.

Soit A =

 1 0 1
1 1 1
−1 0 1

. Montrer que A est inversible et exprimer A−1 en fonction de puissances

de A.

Correction.

On a χA = X3 − 3X2 + 4X − 2, donc d’après le théorème de Cayley-Hamilton,

0n = χA(A) = A3 − 3A2 + 4A− 2.

Par suite,
A−1 =

1

2
(A2 − 3A+ 4I3).

Exercice 25.Exercice 25.

Soit A ∈ Mn(R) une matrice nilpotente d’indice p ∈ N∗. Retrouver grâce au théorème de
Cayley-Hamilton, que p ≤ n.

Correction.

Comme A est nilpotente d’indice p, son polynôme minimal est πA = Xp. Celui-ci est scindé, donc
χA l’est aussi, et comme ils ont les même facteurs irréductibles et deg(χA) = n, on a χA = Xn.
Or, d’après le theorème de Cayley-Hamilton, Xp = πA|χA = Xn d’où p ≤ n.

6. Sous-espaces caractéristiques
Tout les énoncés suivants sont directement transposables au cas matriciel.

Définition 20.Définition 20. gSous-espace caractéristiqueSous-espace caractéristique

Soit u ∈ L(E). Pour λ ∈ K une valeur propre de u, on appelle sous-espace caractéristique
de u associé à λ et on note Cλ(u) le sous-espace vectoriel de E :

Cλ(u) = Ker
(
(u− λIdE)

m(λ)
)

où m(λ) désigne la multiplicité de la valeur propre λ.
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Exercice 26.Exercice 26.

Déterminer les sous-espaces caractéristiques de

A =

 6 −6 5
−4 −1 10
7 −6 4



Proposition 42.Proposition 42.

Soit u ∈ L(E) et λ ∈ K. Si λ est une valeur propre de u de multiplicité m(λ), alors :

dim(Cλ(u)) = m(λ).

Démonstration.

On suppose que λ ∈ Sp(u). On note m = m(λ) et p = dim(Cλ(u)). Alors on a χu = P (X − λ)m

où (X −λ) et P sont premiers entre eux. Comme χu est annulateur de u d’après le Théorème de
Cayley-Hamilton, on a, d’après le lemme des noyaux :

E = Ker(P (u))⊕ Cλ(u).

De plus, comme P (u) et (u−λIdE)
m commutent avec u, Ker(P (u)) et Cλ(u) sont stables par u. On

considère alors les endomorphismes induits v et w par u sur Ker(P (u)) et Cλ(u) respectivement.
Comme Q est un polynôme annulateur de v et que λ n’est pas racine de Q, alors λ n’est pas
valeur propre de v. Ainsi, (X − λ) et χv sont premier entre eux.
Comme (X − λ)m est annulateur de w, alors λ est la seule racine de w et donc χw = (X − λ)p.
Par suite, on a P (X − λ)m = χu = χv.χw = χv.(X − λ)p. Comme (X − λ)p et P sont premiers
entre eux, (X − λ)p|(X − λ)m d’où p ≤ m puis, comme (X − λ)p et χv sont premiers entre eux,
(X − λ)m|(X − λ)p d’où m ≤ p.
Il en résulte que m = p.

Proposition 43.Proposition 43.

Soit u ∈ L(E) tel que χu est scindé. Si πu =
∏k

i=1(X−λi)
pi où λ1, .., λk sont exactement toutes

les valeurs propres distinctes de u, alors, pour tout i ∈ J1, kK :

Ker ((u− λiIdE)
pi) = Cλi

(u)
(
= Ker

(
(u− λiIdE)

m(λi)
))

Correction.

D’après le théorème de Cayley-Hamilton, πu|χu donc pour tout i ∈ J1, kK, pi ≤ m(λi). Par suite,
Ker ((u− λiIdE)

pi) ⊂ Cλi
(u) ; en effet, pour f ∈ L(E), si p ≤ q, Ker(fp) ⊂ Ker(fq).

En notant di = dim(Ker ((u− λiIdE)
pi)), on a donc di ≤ m(λi) = dim(Cλi

(u))
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De plus, comme πu et χu sont annulateurs de u, on a, d’après le lemme des noyaux :

k⊕
i=1

Ker ((u− λiIdE)
pi) = E =

k⊕
i=1

Cλi(u).

Ainsi,
k∑

i=1

di = n =

k∑
i=1

m(λi).

Par suite, on a pour tout i ∈ J1, kK, di = m(λi) : en effet, comme pour tout i ∈ J1, kK, di ≤
m(λi), si, par l’absurde, il existe i0 ∈ J1, kK tel que di0 < m(λi0), alors

∑k
i=1 di <

∑k
i=1 m(λi),

contradiction.
Ainsi, pour tout i ∈ J1, kK, comme Ker ((u− λiIdE)

pi) est un sous-espace vectoriel de Cλi
(u) et

qu’ils ont la même dimension (finie), on en déduit Ker ((u− λiIdE)
pi) = Cλi

(u).

Théorème 11.Théorème 11.

Soit u ∈ L(E) et πu son polynôme minimal. Si πu est scindé de racines (pas forcément simples)
deux à deux distinctes λ1, ..., λk ∈ K, alors, pour i ∈ J1, kK,

uCλi
(u) = λiIdCλi

(u) + ni,

où ni est un endomorphisme nilpotent de Cλi(u). De plus, dans une base B adaptée de E à la
somme directe

⊕k
i=1 Cλi

(u), on a :

MatB(u) =

λ1Im(λ1) +N1 0
. . .

0 λkIm(λk) +Nk


où pour tout i ∈ J1, kK, Ni est la matrice de ni dans la base de Cλi(u) extraite de la base B.
Dans le cas matriciel, cet énoncé se résume à : toute matrice de polynôme minimal scindé est
semblable à une matrice de la forme précédente.

Démonstration.

On suppose que πu =
∏k

i=1(X − λi)
pi . Alors, comme πu(u) = 0, d’après le lemme de décompo-

sition des noyaux, on a :

E = Ker(πu) =

k⊕
i=1

Ker ((u− λiIdE)
pi) .

Pour i = 1, ..., k, on pose Fi = Ker ((u− λiIdE)
pi). Soit i ∈ J1, kK. Alors Fi est stable par u car

u et le polynôme en u, (u− λiIdE)
pi commutent.

On note alors uFi
l’endomorphisme induit par u sur Fi. On a, pour tout x ∈ Fi :

(uFi
− λiIdFi

)pi(x) = (u− λiIdE)
pi(x) = 0E

donc (uFi
− λiIdFi

)pi = 0 ∈ L(Fi). Par suite ni = uFi
− λiIdFi

∈ L(Fi) est nilpotent et on a
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bien :
uFi

= λiIdFi
+ ni.

Exercice 27.Exercice 27. gProjecteurs SpectrauxProjecteurs Spectraux

Soit u ∈ L(E). On suppose que son polynôme minimal πu est scindé de la forme πu =

k∏
i=1

(X −

λi)
qi .

— On note, pour i ∈ J1, kK, Pi =

k∏
j=1
j ̸=i

(X − λj)
qj =

πu

(X − λi)qi
.

— On note p1, ..., pk les projecteurs associée à la somme directe des sous-espaces caractéris-
tiques ; ceux-ci sont appelés les projecteurs spectraux de u.

1. Montrer que, pour tout i ∈ J1, kK, il existe Ui ∈ R[X] tel que

UiPi ≡ 1 mod (X − λi)
qi .

2. En déduire que (UiPi)(u) = pi.

3. Avec un ”bon” choix de chaque Ui, montrer que 1

πu
=

k∑
i=1

Ui

(X − λi)qi
.

Application : On pose u ∈ L(R4) l’endomorphisme canoniquement associé à A =
2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 −1


1. Déterminer πu puis effectuer la décomposition en éléments simple de 1

πu
.

2. En déduire une expression des projecteurs spectraux de u comme sous forme de polynômes
en u.

Correction.

1. Comme les λj sont distincts, Pi et (X − λi)
qi sont premiers entre eux. Par suite, d’après le

théorème de Bézout, il existe Ui, Vi ∈ K[X] tels que :

UiPi + Vi(X − λi)
qi = 1

Par suite,
UiPi ≡ 1 mod (X − λi)

qi

2. On va utiliser le fait que, pour p1, ..., pk ∈ L(E) et F1, ..., Fk des sous-espaces vectoriels de
E en somme directe :

p1, ...pk sont les projecteurs associés à
k⊕

i=1

Fi si, et seulement si,
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—
∑k

i=1 pi = IdE ; pi ◦ pj = 0 pour tous i 6= j et,

— pour tout i, Im(pi) = Fi ; Ker(pi) =
k⊕

j=1
j ̸=i

Fj .

Allons-y :
— Pour tous j 6= i, on a UjPj ≡ 0 mod (X − λi)

qi , donc

S =

k∑
j=1

UjPj ≡ 1 mod (X − λi)
qi

D’où, pour tout i ∈ J1, kK, (X − λi)
qi |S − 1. Or les (X − λi)

qi sont premiers entre eux,
donc leur produit, qui vaut πu divise S − 1 et ainsi :

k∑
j=1

UjPj = S ≡ 1 mod πu

Il en résulte qu’il existe Q ∈ K[X] tel que :
k∑

j=1

UjPj = 1 + πu.Q

donc :
k∑

j=1

(UjPj)(u) = IdE + πu(u)︸ ︷︷ ︸
=0

◦Q(u) = IdE

De plus, pour tous i, j ∈ J1, kK avec i 6= j, on a :

(UiPi)(UjPj) = UiUjRπu où R =

k∏
m=1

m/∈{i,j}

(X − λm)qm

Par suite,
(UiPi)(u) ◦ (UjPj)(u) = (UiUjR)(u) ◦ πu(u)︸ ︷︷ ︸

=0

= 0.

— Soit i ∈ J1, kK. Notons fi = (UiPi)(u). Rappelons que Cλi
(u) = Ker(u − λiIdE)

qi

(proposition 41).
• Montrons Im(fi) = Cλi

(u) par double inclusion.
Soit y ∈ Im(fi). Alors il existe x ∈ E tel que y = fi(x). On a :
(u−λiIdE)

qi(y) = (u−λiIdE)
qi◦fi(x) = ((X−λi)

qiUiPi)(u)(x) = Ui(u)◦πu(u)(x) = 0E .

D’où y ∈ Cλi(u). Ainsi Im(fi) ⊂ Cλi(u).
Réciproquement, soit x ∈ Cλi

(u). Alors, comme pour tous j 6= i, (X − λi)
qi divise

Pj et donc UjPj , on a :
(UjPj)(u)(x) = 0E car x ∈ Cλi(u) = Ker(u− λiIdE)

qi .

Or, d’après ce qui précède, on a IdE =
∑k

j=1(UjPj)(u), donc :

x =

k∑
j=1

(UjPj)(u)(x) = (UiPi)(u)(x) ∈ Im(fi)

Ainsi Cλi(u) ⊂ Im(fi).
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• Montrons Ker(fi) =
k⊕

j=1
j ̸=i

Cλj
(u) par double inclusion.

Soit x ∈ Ker(fi). Comme dans le point précédent, on a IdE =
∑k

j=1(UjPj)(u) donc :

x =

k∑
j=1

(UjPj)(u)(x) =

k∑
j=1
j ̸=i

(UjPj)(u)(x) ∈
k⊕

j=1
j ̸=i

Cλj
(u)

car pour tous j, Im(fj) ⊂ Cλj (u). Ainsi Ker(fi) ⊂
k⊕

j=1
j ̸=i

Cλj (u).

Soit j ∈ J1, kK tel que j 6= i. Soit x ∈ Cλj
(u). On a (X−λj)

qj divise Pi et donc UiPi,
d’où :

(UiPi)(u)(x) = 0E car x ∈ Cλj
(u) = Ker(u− λjIdE)

qj .

Par suite, pour tous j ∈ J1, kK, Cλj
(u) ⊂ Ker(fi) et ainsi,

k⊕
j=1
j ̸=i

Cλj
(u) ⊂ Ker(fi).

Il en résulte, d’après la caractérisation des projecteurs associés à une somme directe,
que, pour tous i ∈ J1, kK,

(UiPi)(u) = pi.

— On a montrer précédemment qu’il existe Q ∈ K[X] tel que :

k∑
j=1

UjPj = 1 + πu.Q

Et comme UiPi ≡ 1 mod (X−λi)
qi , quitte à prendre le reste de la division euclidienne

de Ui par X − λi)
qi , on peut supposer que deg(Ui) < qi.

Ainsi, on a :

deg(
k∑

j=1

UjPj) ≤ max
j=1,...,k

(deg(Uj)︸ ︷︷ ︸
<qj

+ deg(Pj)︸ ︷︷ ︸
=deg(πu)−qj

) < deg(πu)

Ainsi, par comparaison des degré dans l’égalité précédente, on obtient Q = 0 et donc :

k∑
j=1

UjPj = 1

Remarque : on aurait également pu obtenir cette relation et donc les bons Ui dès le début
en utilisant le théorème de Bézout appliqué aux polynômes Pi qui sont premiers entre
eux (dans leur ensemble mais pas deux à deux !
Ainsi, on obtient le résultat :

1

πu
=

∑k
i=1 UiPi

πu
=

k∑
i=1

Ui

(X − λi)qi
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Application :
1. On a πu = (X − 2)2(X + 1) et ainsi :

1

πu
=
− 1

9X + 5
9

(X − 2)2
+

1
9

X + 1

2. En utilisant les notations de la partie précédente, on a P1 = (X − 2)2, P2 = (X + 1) puis,
avec les calculs précédents, U1 = − 1

9X + 5
9 et U2 = 1

9 . Par suite, on obtient :

p1 = (U1P1)(u) =
1

9
(−u+ 5IdE) ◦ (u− 2IdE)

2 et p2 = (U2P2)(u) =
1

9
(u+ IdE)
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Matrices symétriques et théorème spectral
AnnexeAnnexe

On énonce ici le théorème spectral que nous ne démontrerons que plus tard, dans le chapitre relatif aux
endomorphismes des espaces euclidiens : cela nous permettra d’anticiper un peu quelques exercices où on
doit voir ”à l’oeil nu” la diagonalisabilité d’une matrice !

Théorème.Théorème. gThéorème spectralThéorème spectral

Soit A ∈Mn(R) une matrice à coefficients réels et symétrique i.e. tA = A.
Alors il existe P ∈ GLn(R) orthogonale i.e. tP = P−1 et une matrice diagonale D ∈ Mn(R)
telle que :

A = PDtP.

Ainsi, en particulier, A est diagonalisable.

Remarque.Remarque.

Attention ce résultat est faux pour les matrices à coefficients complexes.

Exercice 28.Exercice 28.

Diagonaliser à l’aide d’une matrice orthogonale la matrice

2 2 2
2 2 2
2 2 2

.

Correction.

On sait que A est diagonalisable car A est symétrique à coefficients réels d’après le théorème
spectral. Mais redémontrons le tout de même en déterminant les sous-espaces propres.

On remarque tout d’abord que

1
1
1

 est un vecteur propre associé à la valeur propre 6 dont le

sous-espace propre E6(A) est donc de dimension au moins 1. De plus, les 2ème et 3ème colonnes
A2 et A3 de A étant égale à la première A1, le rang de A est égal à 1 et donc son noyau est de
dimension 2 d’après le théorème du rang. Ainsi, 0 est valeur propre et le sous-espace propre associé
E0(A) est de dimension 2 car il est égal au noyau de A. La somme des dimensions des sous-espaces

propres étant inférieure à 3, on en déduit que dim(E6(A)) = 1 et donc E6(A) = Vect

1
1
1

.

Comme dim(E6(A))+dim(E0(A)) = 3, alors A est diagonalisable. Il ne reste plus qu’à déterminer
E0(A) en déterminant deux vecteurs qui l’engendrent (et si, qui plus est, ils sont orthogonaux,
ça arrange nos affaires pour la suite !).
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On remarque que A

 0
1
−1

 = A2 − A3 = 03,1 et A

 2
−1
−1

 = 2A1 − A2 − A3 = 03,1 et ainsi,

E0(A) = Vect

 0
1
−1

 ,

 2
−1
−1

.

Ces trois vecteurs propres formant une famille orthogonale de M3,1(R) (muni de son produit
scalaire canonique), il suffit alors de les normer pour former une bon de M3,1(R) et ainsi produire
une matrice de passage P qui est orthogonale. Ce qui nous donne au final :

A = PDtP où D =

6 0 0
0 0 0
0 0 0

 et P =


1√
3

0 2√
6

1√
3

1√
2

−1√
6

1√
3

−1√
2

−1√
6


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Exercices et problèmes
E&PE&P

Problème 1.Problème 1. gRacines carrées d’une matriceRacines carrées d’une matrice

Soit n ∈ N∗ et K = R ou C. On note :
— RK(A) = {R ∈Mn(K) | R2 = A} pour A ∈Mn(K) ;
— Dn(K) = {M ∈Mn(K) |M est diagonalisable dans Mn(K)}.

1. Quand on est diagonalisable.
(a) Soit A ∈ Dn(C). Montrer que RC(A) 6= ∅.

(b) Soit A ∈ Dn(R). Justifier rapidement, en s’appuyant sur la réponse à la question 1a,
l’implication suivante : si Sp(A) ⊂ R+, alors RR(A) 6= ∅.
Que dire de la réciproque ?

(c) Déterminer une matrice explicite R ∈ RR(A) où

A =

7 −3 −3
3 1 −3
3 −3 1

 .

(d) Soit A ∈ Dn(C) telle que 0 /∈ Sp(A). Montrer que RC(A) ⊂ Dn(C).
2. Quand on n’a pas de racine !

(a) Soit A ∈Mn(R). Montrer : si det(A) < 0, alors RR(A) = ∅.

(b) On considère A =

(
3 −4
2 −3

)
∈M2(R). Montrer que RR(A) est vide et que RC(A) ne

l’est pas.
(c) On suppose n ≥ 2. Soit A ∈Mn(K) nilpotente d’indice n. Montrer que RC(A) = ∅.

3. Quand RC(A) est infini.
Montrer que RC(A) est infini dans chacun des cas suivants :

(a) n = 2 et A = I2.

(b) n = 2 et A = 02.

(c) A ∈ Dn(C) possède une valeur propre de multiplicité au moins 2.

4. Quand RC(A) est fini.

(a) Soit λ1, ..., λn ∈ K deux à deux distincts. Déterminer RC(A) et son cardinal pour
A = diag(λ1, ..., λn).

(b) Soit A ∈ Mn(C) telle que Card(Sp(A)) = n. Montrer que RC(A) est fini de cardinal
à déterminer.

5. Quand RK(A) est topologique.

(a) i. Soit A ∈Mn(K). Montrer que RK(A) est un fermé de Mn(K).
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ii. Montrer que RK(In) est compact dans Mn(K) si, et seulement si n = 1.
Application : Montrer qu’il n’existe pas de norme ‖ · ‖ sur-multiplicative sur
Mn(K) i.e. telle que, pour tous M,N ∈Mn(K), ‖MN‖ ≥ ‖M‖.‖N‖

En général,

(b) Intérieur de RK(A). Pour k ∈ N∗, on note :

K[X1, ..., Xk] =

 ∑
i=(i1,...,ik)∈Nk

aiX
i1
1 ...Xik

k

∣∣∣∣∣∣ (ai)i∈Nk presque nulle

 .

l’ensemble des polynômes à k indéterminées et à coefficients dans K (par famille presque
nulle, on entend famille dont les termes sont tous nuls sauf pour un nombre fini d’indices).
De plus, pour P ∈ K[X1, ..., Xk], on pose :

Z(P ) = {x = (x1, ..., xk) ∈ Kk | P (x) = P (x1, ..., xk) = 0}.

où la même notation P désigne la fonction polynomiale de Kk dans K associée au
polynôme P .
L’intérieur d’une partie X d’un espace vectoriel normé est notée X̊ dans la suite.

i. Pour k ∈ N∗, on note Pk =”pour toutes parties infinies I1, .., Ik de K et tout
P ∈ K[X1, ..., Xk], si I1 × ...× Ik ⊂ Z(P ) alors P = 0”. Par P = 0, on entend que
tous les coefficients de P sont nuls.
Montrer que, pour tout k ∈ N∗, Pk est vraie.
En déduire que, pour P ∈ K[X1, ..., Xk], si P 6= 0, alors l’intérieur ˚Z(P ) de Z(P )
est vide.

ii. Soit A ∈Mn(K). Montrer que l’intérieur ˚RK(A) de RK(A) est vide.

Correction.

On rappelle trois faits connus mais importants pour toute la suite :
i) Pour tout z0 ∈ C, l’équation z2 = z0 d’inconnue z ∈ C admet, :

— si z0 6= 0, exactement deux solutions z = ±
√
rei

θ
2 où r est le module de z0 et θ un

argument de z0 ;
— si z0 = 0, une unique solution z = 0.
Dans toute la suite de cette correction, une solution de l’équation z2 = z0 dans C est
appelée une racine carrée de z0.

ii) pour tout α1, ..., αn ∈ C :

diag(α1, ..., αn)
2 = diag(α2

1, ..., α
2
n).

iii) Pour tous M,P ∈Mn(K) avec P ∈ GLn(K),

(PMP−1)2 = PM2P−1

1. Quand on est diagonalisable.
(a) Soit A ∈ Dn(C). Comme A est diagonalisable, il existe λ1, ..., λn ∈ K et P ∈ GLn(C)

tel que A = PDP−1 avec D = diag(λ1, ..., λn).
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Pour chaque i ∈ J1, nK, on note ri ∈ C une racine carrée de λi (voire rappel i)) ; ainsi,
on a, d’après le rappel ii) :

diag(r1, ..., rn)2 = diag(r21, ..., r2n) = diag(α1, ..., αn)
2 = diag(λ1, ..., λn) = D.

D’où, en posant R = Pdiag(r1, ..., rn)P−1 ∈Mn(C), d’après le rappel iii) :

R2 = Pdiag(r1, ..., rn)2P−1 = PDP−1 = A.

Il en résulte que R ∈ RC(A) et ainsi RC(A) 6= ∅.

(b) Comme dans la question précédente, on cherche une matrice diagonale D′ telle que
D′2 = D dont les coefficients diagonaux sont des racines carrées des éléments coeffi-
cients diagonaux de D. Or, dans R, l’équation x2 = x0 admet des solutions réelles si,
et seulement si, x0 ≥ 0, donc, les λi étant positifs, on peut réitérer le raisonnement de
la question précédente pour trouver R dans RR(A).
La réciproque est vraie si n = 1 (toujours car l’équation x2 = x0 admet des solutions
réelles si, et seulement si, x0 ≥ 0).
Si n ≥ 2, la réciproque est fausse. En effet,
— si n = 2, on peut trouver un contre-exemple en pensant ”rotation” : une rotation

d’angle π est le carré d’une rotation d’angle π
2 . En terme matriciel :

la matrice −I2 est diagonalisable dans M2(R) et la matrice Rπ
2
=

(
0 −1
1 0

)
vérifie

R2
π
2
= −I2. Ainsi, RR(−I2) 6= ∅ et Sp(−I2) 6⊂ R+.

— si n est pair, on a R ∈ RR(A) 6= ∅ et Sp(A) 6⊂ R+ pour :

A = −In et R =

 Rπ
2

. . .
Rπ

2


— si n est impair, on a R ∈ RR(A) 6= ∅ et Sp(A) 6⊂ R+ pour :

A =

(
1
−In−1

)
et R =


1

Rπ
2

. . .
Rπ

2


(c) On vérifie que A est diagonalisable (ici dans Mn(R)) et on applique la méthode de

la question précédente dans ce cas précis. On trouve, avec les techniques usuelles,
A = PDP−1 où :

D =

4 0 0
0 4 0
0 0 1

 ; P =

1 0 1
0 1 1
1 −1 1

 ; P =

 2 −1 −1
1 0 −1
−1 1 1


Puis, en posant R = Pdiag(2,−2, 1)P−1 ∈ M3(R) par exemple, on a, comme dans le
raisonnement de la question précédente, R ∈ RR(A). Et après calculs, on trouve :

R =

 3 −1 −1
−3 1 3
5 −1 −3

 .
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(d) Notons λ1, ..., λk ∈ C les valeurs propres distinctes de A. Comme A est diagonalisable,
son polynôme minimal πA est scindé à racines simples, et plus précisément :

πA =

k∏
i=1

(X − λi).

Soit R ∈ RC(A). On remarque que 0n = πA(A) = πA(R
2) =

∏k
i=1(R

2 − λi) et donc,
le polynôme Q =

∏k
i=1(X

2 − λi) est annulateur de R.
De plus, pour tout i ∈ J1, kK, λi 6= 0 et donc possède deux racines distinctes dans C
que l’on note ri et si et ainsi, le polynôme Q est scindé à racines simples car :

Q =

k∏
i=1

(X − ri)(X − si)

Il en résulte que R est diagonalisable par caractérisation de la diagonalisabilité en
terme de polynômes annulateurs.

2. Quand on n’a pas de racine !
(a) Soit A ∈ Mn(R). Procédons par contraposée. On suppose RR(A) 6= ∅. Alors il existe

R ∈Mn(R) tel que R2 = A. Par suite, on a :

det(A) = det(R2) = det(R)2 ≥ 0.

(b) Pour A =

(
3 −4
2 −3

)
∈ Mn(R), on vérifie det(A) = −1 < 0 donc RR(A) 6= ∅ d’après

la question précédente ; et on vérifie de plus que A est diagonalisable dans Mn(C) (de
valeurs propres −1 et 1) ainsi, d’après la question 1a, RC(A) 6= ∅.
On peut vérifier également par le calcul que :

R =

(
1 1
1 1

2

)(
i 0
0 1

)(
1 1
1 1

2

)−1

=

(
2− i −2 + 2i
1− i −1 + 2i

)
∈ RC(A).

(c) Supposons par l’absurde qu’il existe R ∈ RC(A). Alors R2n = (R2)n = An = 0n donc
R est nilpotente et notons p ∈ N∗ son indice de nilpotence.
Alors, d’après le cours (Proposition 32) p ≤ n. Or, comme n ≥ 2, on a 2n−2 ≥ n ≥ p,
donc :

0n = R2n−2 = (R2)n−1 = An−1 6= 0n

Contradiction !
Il en résulte que RC(A) = ∅.

3. Quand RK(A) est infini.

(a) Considérons R =

(
a b
c d

)
∈M2(K). On a R ∈ RK(I2) si, et seulement si,

(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
= R2 = I2 =

(
1 0
0 1

)
ce qui est équivalent à

R = I2 (cas a+ d > 0) ou R = −I2 (cas a+ d < 0)
ou

R =

(
a b
c −a

)
avec a2 + bc = 1 (cas a+ d = 0).
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Par suite, pour tout x ∈ K, en prenant a = 1, b = x et c = 0, on a :

Rx =

(
1 x
0 −1

)
∈ RK(A)

donc RK(A) est infini car les Rx sont tous différents.

(b) On pourrait procéder par équivalence comme précédemment mais, d’expérience, on

sait que N =

(
0 1
0 0

)2

= 02 donc, pour tout x ∈ K, Rx = xN ∈ R(02). Comme tous

les Rx sont différents, RK(02) est infini.

(c) Soit A ∈ Dn(C) telle que A possède une valeur propre λ ∈ K de multiplicité au moins 2
(alors dans ce cas, n ≥ 2). Comme A est diagonalisable, alors il existe P ∈ GLn(C) telle
que A = PDP−1 où D = diag(λ, λ, λ1, ..., λn−2) avec λi ∈ C pour tout i ∈ J1, n− 2K.
On note r ∈ C une racine de λ et, pour i ∈ J1, n− 2K, ri une racine de λi.

On pose alors, pour tout x ∈ C,

R′
x =


r

(
1 x

0 −1

)
si λ 6= 0(

0 x

0 0

)
si λ = 0

et :

D′
x =


R′

x 01,n−2

r1

0n−2,1
. . .

rn−2


Soit x ∈ C. D’après les questions 3a et 3b, R′2

x = λI2, d’où D′2
x = D et donc, pour

Rx = PD′
xP

−1, on obtient R2
x = A.

Les Rx étant tous différents (car les D′
x le sont), RC(A) est infini.

4. (a) Soit λ1, ..., λn ∈ K deux à deux distincts et A = diag(λ1, ..., λn). Soit M =
(mi,j)1≤i,j≤n ∈ Mn(C). On spoose M ∈ RC(A). Alors MA = M3 = AM donc A
et M commutent. Ainsi, on a :

(λjmi,j)1≤i,j≤n = MA = AM = (λimi,j)1≤i,j≤n.

Par suite, pour tous i, j ∈ J1, nK avec i 6= j, on a (λj − λi)mi,j = 0 d’où mi,j = 0 car
λi 6= λj . D’où M = diag(m1,1, ...,mn,n).
De plus,

diag(m2
1,1, ...,m

2
n,n) = M2 = A = diag(λ1, ..., λn),

d’où, pour tout i ∈ J1, nK, mi,i est une racine carrée dans C de λi.
Ainsi, en notant, pour i ∈ J1, nK, µi une racine carrée dans C de λi, on obtient :

RC(A) =


εiµi

. . .
εnµn


∣∣∣∣∣∣∣ (ε1, ..., εn) ∈ {−1, 1}n

 .
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Les λi étant tous différents, au plus l’un deux est nul. Or tout nombre complexe non
nul admet exactement 2 racines carrées et 0 admet exactement une racine carrée donc :

Card(RC(D)) =

{
2n si ∀ i ∈ J1, nK, λi 6= 0

2n−1 sinon.

(b) On suppose que A possède n valeurs propres non nulles et distinctes. Comme
Card(Sp(A)) = n alors A est diagonalisable car la somme des sous-espaces propres
est de dimension au moins n et donc n.
Ainsi, en notant λ1, ..., λn ∈ K∗ les valeurs propres de A, il existe P ∈ GLn(C) tel que
A = PDP−1 avec D = diag(λ1, ..., λn).
Soit R ∈Mn(C). On note D′ = P−1RP . Ainsi, R2 = PD′2P−1 et donc :

R ∈ R(A)
⇔

R2 = A
⇔

D′2 = D
⇔

D′ ∈ R(D)

Par suite, si on note c : M 7→ PMP−1, on a :

R(A) = c(R(D))

Or, comme λ1, ..., λn sont deux à deux distinctes, d’après la question 4a, on a R(D) =
{diag(ε1µ1, ..., εnµn) | (ε1, ..., εn) ∈ {0, 1}n} où, pour tout i ∈ J1, nK µi est une racine
carrée de λi et de plus, Card(R(D)) = 2n si les λi sont non nuls ou 2n−1 sinon.
Ainsi, c étant un automorphisme de Mn(C), on a :

Card(RC(A)) =

{
2n si 0 n’est pas valeur propre de A

2n−1 sinon.

5. Quand RK(A) est topologique.
(a) i. Soit A ∈ Mn(K). L’application f : M 7→ M2 de Mn(K) dans lui-même est conti-

nue sur Mn(K) comme composée de l’application linéaire M 7→ (M,M) et de
l’application bilinéaire (M,N) 7→ MN toutes deux continues car Mn(K) est de
dimension finie. Ainsi, RK(A) = f−1({A}) est un fermé de Mn(K) comme image
réciproque du fermé {A} (car singleton) par l’application continue f .

ii. — Si n = 1, RK(A) est fini (de cardinal 1 ou 2) donc compact dans K.
Si n ≥ 2, comme vu précédemment, pour tout x ∈ K,

D′
x =


1 x
0 −1

1
. . .

1

 ∈ RC(In)

Or, on a ‖D′
x‖∞ = |x| −−−−−→

|x|→+∞
+∞ pour la norme définie par

‖(mi,j)1≤i,j≤n‖∞ = sup1≤i,j≤n(|mi,j |) donc RK(In) n’est pas borné et donc
n’est pas compact.
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iii. Supposons par l’absurde qu’il existe une norme ‖ · ‖ sur Mn(K) telle que, pour
tous M,N ∈ Mn(K), ‖MN‖ ≥ ‖M‖.‖N‖. Comme RK(In) n’est pas compact, il
existe une suite (Rk)k∈N à valeurs dans R(In) telle que ‖Rk‖ ≥ k.
Par suite, pour M = Rk = N , on a, pour tout k ∈ N :

‖In‖ = ‖MN‖ ≥ ‖M‖.‖N‖ = ‖Rk‖2 = k2 −−−−−→
k→+∞

+∞

Contradiction !
Par suite, une telle norme n’existe pas.

(b) i. — On procède par réccurence sur N∗.
• Initialisation. Soit I une partie infinie de K et P ∈ K[X]. Si I ⊂ Z(P ),

alors le polynôme P à une indéterminée possède une infinité de racines
dans K et donc est le polynôme nul.
Par suite, P1 est vraie.

• Hérédité. Soit k ∈ N∗. On suppose Pk vraie.
Soit I1, ..., Ik+1 des parties infinies de K et P =∑

i=(i1,...,ik)∈Nk+1 aiX
i1
1 ...X

ik+1

k+1 ∈ K[X1, ..., Xk+1]. On suppose
I1 × ...× Ik+1 ⊂ Z(P ).
On remarque que, pour tout x = (x1, ..., xk+1) ∈ Kk+1 :

P (x) =

+∞∑
j=0

Pj(x1, .., xk)x
j
k+1.

où Pj =
∑

i=(i1,...,ik)∈Nk

a(i,j)X
i1
1 ...Xik

k ∈ K[X1, ..., Xk] pour j ∈ N.

Soit (x1, ..., xk) ∈ Kp. On note, pour j ∈ N :

bj = Pj(x1, .., xk) ∈ K.

Comme la famille (a(i,j))(i,j)∈Nk×N est presque nulle, il existe N ∈ N tel
que, pour tout i ∈ Nk et pour tout j ≥ N , a(i,j) = 0 et donc bj = 0.
Par suite, on peut considérer le polynôme de K[X] :

Q(X) =

+∞∑
j=0

bjX
j

qui vérifie donc, pour tout x = (x1, ..., xk+1) ∈ Kk+1 :

Q(x) =

+∞∑
j=0

bjx
j
k+1 =

+∞∑
j=0

Pj(x1, .., xk)x
j
k+1 = P (x).

Soit (x1, ..., xk) ∈ I1 × ... × Ik. Pour tout λ ∈ Ik+1, on a, comme
(x1, .., xk, λ) ∈ I1 × ...× Ik+1 ⊂ Z(P ) :

Q(λ) =

+∞∑
j=0

bjλ
j = P (x1, .., xk, λ) = 0.

Or, Ik+1 est infini donc le polynôme Q ∈ K[X] admet une infinité de racines,
d’où Q = 0 et donc la famille (bj = P (x1, ..., xk))j∈N est nulle.
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Ceci étant vrai pour tout (x1, ..., xk) ∈ I1 × ... × Ik, pour tout j ∈ N,
I1 × ...× Ik ⊂ Z(Pj) et donc, comme Pj ∈ K[X1, ..., Xk], par hypothèse de
récurrence, Pj = 0 i.e. (a(i′,j))i′∈Nk est nulle.
Il en résulte que (ai)i∈Nk+1 =

⋃
j∈N(a(i′,j))i′∈Nk est la famille nulle et donc

P = 0.
Ainsi, Pk+1 est vraie.

Ce qui achève le raisonnement par récurrence. Par suite, pour tout k ∈ N∗, Pk

est vraie.

— Soit k ∈ N∗ et P ∈ K[X1, ..., Xk]. Procédons par contraposée. On suppose que
˚Z(P ) 6= 0.

On munit Kp de la norme infinie ‖ · ‖∞. Alors il existe x = (x1, ..., xk) ∈ Z(P )

et r > 0 tel que
∏k

i=1 = D(xi, r) = B(x, r) ⊂ Z(P ) où D(z0, R) = {z ∈
K | |z − z0| < R}.
Or, comme r > 0, pour tout i ∈ J1, kK, D(xi, r) est une partie infinie de K ;
par suite, d’après Pk, P = 0.

ii. Soit A = (ai,j)1≤i,j≤n ∈ Mn(K). Alors on a R = (ri,j)1≤i,j≤n ∈ RK(A) si, et
seulement si, pour tous i, j ∈ J1, nK :

ai,j −
n∑

k=1

ri,krk,j = 0

On identifie Mn(K) et Kn2 . On considère alors, pour tous i, j ∈ J1, nK, le polynôme
Pi,j ∈ K[X1,1, ..., Xn,n] défini par :

Pi,j(X1,1, .., Xn,n) = ai,j −
n∑

k=1

Xi,kXk,j .

Et on obtient ainsi :
RK(A) =

⋂
1≤i,j≤n

Z(Pi,j).

D’après la question précédente, pour tous i, j ∈ J1, nK, Z(Pi,j) est d’intérieur vide
et ainsi, comme l’intérieur d’une intersection est incluse dans l’intersection des
intérieurs, RK(A) est d’intérieur vide.
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