
Corrigé de la feuille d’exercices no10
Mathématiques spéciales

Exercices à traiter en priorité :
Exercices : 10 ; 6 ; 3 ; 2 ; 13 ; 15.

1. Somme directe de plusieurs sous-espaces

Exercice 1.Exercice 1.

Soit E = R4. On considère (u1, u2, u3, u4) une famille libre de E et on pose

F = vect(u1 + u2, u3), G = vect(u1 + u3, u4), H = vect(u1 + u4, u2).

Démontrer que F ∩ G = {0}, que F ∩ H = {0} et que G ∩ H = {0}. La somme F + G + H
est-elle directe ?

Correction.

On va simplement démontrer que F ∩G = {0}, les deux autres égalités se prouvant de façon tout
à fait similaire. Soit u ∈ F ∩G. Alors il existe des scalaires a, b, c, d tels que

u = a(u1 + u2) + bu3 = c(u1 + u3) + du4 =⇒ (a− c)u1 + au2 + (b− c)u3 − du4 = 0.

La famille (u1, u2, u3, u4) étant libre, on en déduit que

a− c = a = b− c = −d = 0,

d’où l’on déduit successivement a = d = 0, puis c = 0, b = 0. Ainsi, u = 0. On va prouver que
la somme F + G + H n’est pas directe en trouvant un vecteur qui admet deux décompositions
différentes dans F +G+H. Par exemple,

u1 = −u3 + (u1 + u3) + 0 ∈ F +G+H

= (u1 + u2) + 0 + (−u2) ∈ F +G+H.

La somme n’est pas directe !

Exercice 2.Exercice 2.

On considère le R-espace vectoriel R4 muni de sa base canonique (e1, e2, e3, e4). Soit

E = {(x, y, z, t) ∈ R4 : 2x+ y + z − t = 0 et x+ y + z = 0}

et F = vect(v) où v = e1 + e3.
1. On pose G1 = vect(w1) où w1 = e1 + e2. La somme directe E + F + G1 est-elle directe ?

Préciser la dimension de E + F +G1.
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2. On pose G2 = vect(w2) où w2 = e1+e2+e3. La somme directe E+F+G2 est-elle directe ?
Préciser la dimension de E + F +G2.

Correction.

On va utiliser le résultat suivant : si BE est une base de E, BF est une base de F et BG est une
base de G, la somme E +F +G est directe si et seulement si BE ∪BF ∪BG est une famille libre.
Ceci nous incite à chercher une base de E. Pour cela, on remarque que

(x, y, z, t) ∈ E ⇐⇒


x = −y − z
y = y
z = z
t = −y − z.

Ainsi, si on pose u1 = (−1, 1, 0,−1) et u2 = (−1, 0, 1,−1), la famille (u1, u2) est une base de E.
1. Voyons si la famille (v, w1, u1, u2) est une famille libre. Pour cela, on résout le système

av + bw1 + cu2 + du2 = 0, d’inconnues a, b, c, d. La résolution de ce système, en utilisant la
matrice augmentée, donne

1 0 1 0 0
1 1 0 0 0
−1 1 0 −1 0
−1 0 1 −1 0

 ⇐⇒


1 0 1 0 0
0 1 −1 0 0
0 1 1 −1 0
0 0 2 −1 0



⇐⇒


1 0 1 0 0
0 1 −1 0 0
0 0 2 −1 0
0 0 2 −1 0



⇐⇒


1 0 1 0 0
0 1 −1 0 0
0 1 2 −1 0
0 0 0 0 0



La famille est donc liée. La somme n’est pas directe ! De plus, on vérifie que (v, w1, u1) est
libre, en reproduisant le calcul précédent (sauf la dernière ligne). C’est bien que (v, w1, u1)
est une base de E + F +G1 qui est de dimension 3.

2. On reprend la même méthode, mais en remplaçant w1 par w2.
1 0 1 0 0
1 1 1 0 0
−1 1 0 −1 0
−1 0 1 −1 0

 ⇐⇒


1 0 1 0 0
0 1 1 0 0
0 1 1 −1 0
0 0 2 −1 0



⇐⇒


1 0 1 0 0
0 1 0 0 0
0 0 1 −1 0
0 0 2 −1 0



⇐⇒


1 0 1 0 0
0 1 0 0 0
0 1 1 −1 0
0 0 0 1 0

 .
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La famille est libre : E, F et G2 sont en somme directe, et la dimension de E +F +G2 est
égale à 4.

2. Sous-espaces stables

Exercice 3.Exercice 3.

Soit E un K-espace vectoriel, et soit u ∈ L(E). On dit qu’un sous-espace vectoriel F de E est
stable par u si u(x) ∈ F pour tout x ∈ F . Soit p un projecteur de E. Démontrer que u commute
avec p si et seulement si Im(p) et ker(p) sont stables par u.

Correction.

Supposons d’abord que u◦p = p◦u, et prouvons que ker(p) et Im(p) sont stables par u. En effet,
si p(x) = 0, alors p ◦ u(x) = u ◦ p(x) = 0 et donc u(x) ∈ ker(p). De plus, si x ∈ Im(p), alors
x = p(y) et u(x) = u◦p(y) = p(u(y)) ∈ Im(p). Remarquons que cette implication n’utilise pas du
tout le fait que p est un projecteur. Réciproquement, supposons que ker(p) et Im(p) sont stables
par u, et prouvons que u et p commutent. Prenons x ∈ E. Il se décompose de manière unique en
x = y + z, avec y ∈ ker(p) et z ∈ Im(p). En particulier, p(y) = 0 et p(z) = z. Mais alors, on a
d’une part

u(p(x)) = u(z)

et d’autre part, puisque u(y) ∈ ker(p) et u(z) ∈ Im(p) par hypothèse :

p(u(x)) = p(u(y)) + p(u(z)) = u(z).

Ainsi, u(p(x)) = p(u(x)) et les deux endomorphismes p et u commutent.

3. Matrices semblables

Exercice 4.Exercice 4.

Montrer que les matrices A, B, C et D suivantes sont semblables :

A =

0 0 0
0 0 1
0 0 0

 , B =

0 0 0
0 0 0
0 1 0



C =

0 1 0
0 0 0
0 0 0

 , D =

0 0 0
4 0 0
0 0 0

 .

Correction.

Soit u ∈ L(R3) l’endomorphisme de R3 dont la matrice dans la base canonique B = (e1, e2, e3)
est A. On a donc u(e1) = u(e2) = 0 et u(e3) = e2. Alors,
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1. Si on pose B1 = (e1, e3, e2), alors la matrice de u dans B1 est B.
2. Si on pose B2 = (e2, e3, e1), alors la matrice de u dans B2 est C.
3. Si on pose B3 = (e3,

1
4e2, e1) alors la matrice de u dans B3 est D.

Exercice 5.Exercice 5.

Soit A ∈ Mn(K) une matrice de rang r.

1. Démontrer que A est semblable à une matrice par blocs
(
B 0
C 0

)
avec B ∈ Mr(K) et

C ∈ Mn−r,r(K).
2. On suppose de plus que Im(A) et ker(A) sont supplémentaires. Démontrer que l’on peut

demander C = 0. Que dire de B ?

Correction.

On notera, pour éviter toute confusion, u et non A l’endomorphisme de Rn dont la matrice dans
la base canonique de Rn est A.

1. Puisque A est de rang r, ker(u) est de dimension n − r d’après le théorème du rang. Soit
S un supplémentaire de ker(u), de dimension r, et considérons (e1, . . . , er) une base de S,
(er+1, . . . , en) une base de ker(u), de sorte que (e1, . . . , en) est une base de Kn. Alors la
matrice de u dans la base (e1, . . . , en) a bien la forme voulue.

2. On reprend la même démonstration, mais cette fois on choisit comme supplémentaire de
ker(u) le sous-espace vectoriel Im(u). On a alors bien C = 0, et puisque le rang de A vaut
r, il en est de même du rang de B qui est donc inversible.

Exercice 6.Exercice 6.

Soit M =

 0 2 −1
3 −2 0
−2 2 1

 et D =

1 0 0
0 2 0
0 0 −4

. Le but de l’exercice est de démontrer que M

et D sont semblables. On note f l’endomorphisme de R3 dont la matrice dans la base canonique
est M .

1. Démontrer qu’il existe u1 ∈ R3 tel que vect(u1) = ker(f−Id). De même, prouver l’existence
de u2, u−4 ∈ R3 tels que vect(u2) = ker(f − 2Id) et Vect(u−4) = ker(f + 4Id).

2. Démontrer que (u1, u2, u−4) est une base de R3.
3. Conclure.
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Correction.

1. Soit u(x, y, z). Alors

u ∈ ker(f − Id) ⇐⇒ (f − Id)(u) = 0

⇐⇒

 −x+ 2y − z = 0
3x− 3y = 0

−2x+ 2y = 0

⇐⇒

 x = x
y = y
z = z

Si on pose u1 = (1, 1, 1), alors on vient de prouver que ker(f − Id) = u1. De même, en
résolvant l’équation f(u)− 2u = 0, puis l’équation f(u)+4u = 0, on trouve respectivement
vect(u2) = ker(f−2Id) et Vect(u−4) = ker(f+4Id) avec u2 = (4, 3,−2) et u−4 = (2,−3, 2).

2. Puisqu’il s’agit d’une famille de trois vecteurs de R3, il suffit de vérifier que c’est une famille
libre, ce qui est laissé au lecteur.

3. Notons B la matrice de f dans la base (u1, u2, u−4). Puisque f(u1) = u1, que ,f(u2) = 2u2

et f(u−4) = −4u−4, on a B = D. Ainsi, M et D représentent la même matrice dans des
bases différentes. Elles sont donc semblables.

Exercice 7.Exercice 7.

1. Soit E un espace vectoriel et f ∈ L(E). Montrer que f est une homothétie si et seulement
si, pour tout x ∈ E, la famille (x, f(x)) est liée.

2. Soit M ∈ Mn(K) de trace nulle. Montrer que M est semblable à une matrice n’ayant que
des zéros sur la diagonale.

Correction.

1. Si f est une homothétie, alors (x, f(x)) est bien toujours liée. Réciproquement, l’hypothèse
nous dit, que pour tout x non-nul, il existe un scalaire λx tel que f(x) = λxx. On doit
prouver qu’il existe un scalaire λ tel que λx = λ pour tout x de E, ou encore que λx = λy

quels que soient x et y non-nuls. Si la famille (x, y) est liée, c’est clair, car y = µx et
µλyx = λyy = f(y) = µf(x) = µλxx et on peut simplifier par µx 6= 0. Si la famille (x, y)
est libre, calculons f(x+ y). D’une part,

f(x+ y) = λx+y(x+ y) = λx+yx+ λx+yy,

d’autre part,
f(x+ y) = f(x) + f(y) = λxx+ λyy.

Puisque la famille (x, y) est libre, toute décomposition d’un vecteur à l’aide de combinaison
linéaire de ces vecteurs est unique. On obtient donc λx = λy = λx+y, ce qui est le résultat
voulu.

2. On va raisonner par récurrence sur n, le résultat étant vrai si n = 1. Soit f l’application
linéaire associée à M dans la base canonique de Kn. Si f est une homothétie, alors M est
diagonale et comme sa trace est nulle, c’est la matrice nulle. Sinon, soit x ∈ Kn tel que
(x, f(x)) est libre. Alors on peut compléter cette famille en une base (x, f(x), e3, . . . , en).
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Dans cette base, la matrice de f est

N =


0 ∗ . . . ∗
1
0 N ′

...

 .

Autrement dit, M est semblable à N . Puisque N est de trace nulle, N ′ est de trace nulle.
On peut lui appliquer l’hypothèse de récurrence : il existe Q ∈ GLn−1(K) tel que Q−1N ′Q
soit une matrice n’ayant que des zéros sur la diagonale. Posons alors

P =


1 0 . . . 0
0
0 Q
...

 .

Alors, P est inversible, et on vérifie aisément que P−1NP est une matrice n’ayant que des
zéros sur la diagonale. Ainsi, N , donc M , est semblable à une telle matrice.

4. Eléments propres et polynôme caractéristique

Exercice 8.Exercice 8.

Soit E = C∞(R) et D l’endomorphisme de E qui à f associe f ′. Déterminer les valeurs propres
de D et les sous-espaces propres associés.

Correction.

f est un vecteur propre de D associé à la valeur propre λ ∈ R si et et seulement si f ′ = λf . f est
donc un multiple de la fonction x 7→ exp(λx), et la réciproque est vraie. Autrement dit, tous les
réels sont des valeurs propres pour D, et exp(λx) est une base de l’espace propre associé à λ.

Exercice 9.Exercice 9.

Soit E = CN l’espace des suites à coefficients complexes, et ϕ l’endomorphisme de E qui à une
suite (un) associe la suite (vn) définie par v0 = u0 et pour tout n ≥ 1,

vn =
un + un−1

2
.

Déterminer les valeurs propres et les vecteurs propres de ϕ.

Correction.

Soit (un) un vecteur propre associé à la valeur propre λ. Alors on a u0 = λu0 et pour tout n ≥ 1,
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on a
un + un−1

2
= λun ⇐⇒ (1− 2λ)un = −un−1.

On distingue alors trois cas :
— Si λ = 1, alors on a u0 = u0 (qui n’implique plus rien sur u0), puis pour tout n ≥ 1, on

a un = un−1. Réciproquement, toute suite constante est bien vecteur propre de ϕ pour la
valeur propre 1. On en déduit que 1 est une valeur propre de ϕ dont l’espace propre associé
est constitué par les suites constantes.

— Si λ = 1/2, alors le système devient u0 = 0 et pour tout n ≥ 1, un−1 = 0 ce qui implique
que (un) est la suite nulle et donc 1/2 n’est pas valeur propre de ϕ.

— Dans tous les autres cas, le système devient u0 = 0 et pour tout n ≥ 1,

un =
1

2λ− 1
un−1.

Ainsi, la suite (un) est là-encore la suite nulle, et λ n’est pas valeur propre.
En conclusion, la seule valeur propre est 1, et les seuls vecteurs propres sont les suites constantes.

Exercice 10.Exercice 10.

Déterminer les éléments propres des matrices suivantes :

A =

 0 2 −1
3 −2 0
−2 2 1

 , B =

 0 3 2
−2 5 2
2 −3 0

 , C =

 1 0 0
0 1 0
1 −1 2

 .

Correction.

Procédons d’abord avec A. Son polynôme caractéristique vaut

χA(X) = (X − 1)(X − 2)(X + 4).

Il suffit de chercher pour chaque valeur propre un vecteur propre associé. D’abord pour 1, on
résoud AX=X, c’est-à-dire le système : −x+ 2y − z = 0

3x− 3y = 0
−2x+ 2y = 0

Ce système est équivalent à x = y = z et un vecteur propre est donc donnée par

 1
1
1

. On fait

de même pour 2 et -4, et on trouve respectivement

 4
3
−2

 et

 2
−3
2

. La matrice A est donc

semblable à diag(1, 2,−4), la matrice de passage étant

P =

 1 4 2
1 3 −3
1 −2 2

 .
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Poursuivons avec B dont on calcule le polynôme caractéristique :

PB(X) = X3 − 5X2 + 8X − 4.

1 est racine évidente, on factorise par X − 1 et finalement on trouve

χB(X) = (X − 1)(X − 2)2.

On cherche le sous-espace propre associé à 1 en résolvant BX = X, c’est-à-dire le système : −x+ 3y + 2z = 0
−2x+ 4y + 2z = 0

2x− 3y − z = 0

Ce système est équivalent à x = y = −z. Ainsi, le sous-espace propre associé à 1 est de dimension

1, engendré par le vecteur propre

 1
1
−1

. L’étude du sous-espace propre associé à 2 conduit

au système :  −2x+ 3y + 2z = 0
−2x+ 3y + 2z = 0
2x− 3y − 2z = 0

Ces trois équations se ramènent à 2x − 3y − 2z = 0, qui est l’équation d’un plan de R3. Le
sous-espace propre associé à 2 est donc de dimension 2, et une base est donnée par les vecteurs 3

2
0

 et

 1
0
1

. B est donc semblable à la matrice diag(1, 2, 2), la matrice de passage P étant

donnée par

P =

 1 3 1
1 2 0
−1 0 1

 .

Le polynôme caractéristique de C est χC(X) = −(1−X)2(2−X). On procède exactement comme
précédemment, et on trouve que (u1, u2) forme une base de l’espace propre associé à la valeur
propre 1, avec u1 = (1, 1, 0) et u2 = (0, 1, 1) et que (u3) forme une base de l’espace propre associé
à la valeur propre 2, avec u3 = (0, 0, 1). Ainsi, C s’écrit C = PDP−1 avec D la matrice diagonale

D =

 1 0 0
0 1 0
0 0 2


et

P =

 1 0 0
1 1 0
0 1 1

 .

Exercice 11.Exercice 11.

Soit E = Rn[X] et soit ϕ l’endomorphisme de E défini par ϕ(P ) = P − (X + 1)P ′. Donner les
éléments propres de ϕ.
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Correction.

On va écrire la matrice de ϕ dans la base canonique de E. Remarquons que pour tout k = 0, . . . , n,
on a

ϕ(Xk) = (−k + 1)Xk − kXk−1.

Ainsi, la matrice de ϕ dans la base (1, X, . . . ,Xn) est triangulaire supérieure, et ses coefficients
diagonaux sont 1, 0, . . . ,−n+ 1. Les valeurs propres d’une matrice triangulaire supérieure étant
exactement les valeurs situées sur la diagonale, on en déduit que ϕ est diagonalisable, ses valeurs
propres étant les (n+ 1) = dim(E) réels distincts 1, 0,−1, . . . ,−n+ 1.

Exercice 12.Exercice 12.

Soit ϕ : M ∈ Mn(R) → Mn(R), M 7→ tM . Déterminer les valeurs propres de ϕ.

Correction.

Soit λ ∈ R et M ∈ Mn(R), M 6= 0 tel que ϕ(M) = λM . Les termes diagonaux donnent
mi,i = λmi,i pour 1 ≤ i ≤ n, les termes non-diagonaux donnent mi,j = λmj,i, pour 1 ≤ j < i ≤ n.
On en déduit que mi,j = λ2mi,j pour tous les couples (i, j). Ceci entraîne que λ = ±1. On
distingue plusieurs cas.

— Si λ = −1, tous les coefficients sur la diagonale sont égaux à 0 et on a mi,j = −mj,i. On en
déduit que −1 est une valeur propre de ϕ, les vecteurs propres appartenant à vect(fi,j ; 1 ≤
j < i ≤ n) avec fi,j = Ei,j−Ej,i. L’espace propre associé est donc de dimension n(n−1)/2.

— Si λ = 1, on n’a plus de contraintes sur les éléments diagonaux, et mi,j = mj,i pour les
éléménts non-diagonaux. On en déduit que 1 est valeur propre, les vecteurs propres étant
éléments de vect(Ei,i, gi,j ; 1 ≤ j < i ≤ n), avec gi,j = Ei,j + Ej,i. L’espace propre associé
est donc de dimension n+ n(n− 1)/2 = n(n+ 1)/2.

Exercice 13.Exercice 13.

Une matrice A ∈ Mn(R) est dite stochastique si ses coefficients sont des réels positifs ou nuls
et si la somme des coefficients de chacune de ses lignes est égale à 1.

1. Démontrer que si λ ∈ C est une valeur propre de A, alors |λ| ≤ 1.
2. Démontrer que 1 est valeur propre et donner un vecteur propre associé.

Correction.

1. Supposons que λ ∈ C soit une valeur propre de A et soit Z un vecteur propre non-nul
associé. Soit i ∈ {1, . . . , n} tel que |zi| = maxj=1,...,n |zj |. La i-ème coordonnée de AZ est∑n

j=1 ai,jzj et ceci doit être égal à λzi. Prenant les valeurs absolues et utilisant l’inégalité
triangulaire, on obtient

|λ||zi| ≤
n∑

j=1

ai,j |zj | ≤
n∑

j=1

ai,j |zi| ≤ |zi|

où on a utilisé aussi que ai,j ≥ 0 et que
∑n

j=1 ai,j = 1. On a donc obtenu |λ||zi| ≤ |zi|.
Comme |zi| 6= 0 (sinon Z serait le vecteur nul), ceci entraîne encore que |λ| ≤ 1.
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2. Il suffit de choisir Z =

1
...
1

 pour remarquer que AZ = Z. Ainsi, Z est un vecteur propre

pour la valeur propre 1.

Exercice 14.Exercice 14.

1. Soient M,N ∈ Mn(C). Démontrer que MN est inversible si et seulement si M et N sont
inversibles.

2. Soient A,B ∈ Mn(C). Démontrer que

χA(B) ∈ GLn(C) ⇐⇒ Sp(A) ∩ Sp(B) = ∅.

Correction.

1. On a

MN ∈ GLn(C) ⇐⇒ det(MN) 6= 0

⇐⇒ det(M)× det(N) 6= 0

⇐⇒ det(M) 6= 0 et det(N) 6= 0

⇐⇒ M ∈ GLn(C) et N ∈ GLn(C).

2. Soient λ1, . . . , λn les valeurs propres de A, répétées autant de fois que leur multiplicité, de
sorte que χA(X) =

∏n
i=1(X − λi). On a donc

χA(B) =

n∏
i=1

(B − λiIn).

D’après la première question (et une récurrence immédiate), χA(B) est inversible si et
seulement, pour tout i = 1, . . . , n, B − λiIn est inversible, c’est-à-dire si et seulement si,
pour tout i = 1, . . . , n, λi /∈ Sp(B). Ceci revient à dire que Sp(A) ∩ Sp(B) = ∅.

Exercice 15.Exercice 15.

Soit A ∈ GLn(C). On note P le polynôme caractéristique de A et Q celui de A−1. Quelle relation
a-t-on pour tout λ ∈ C∗ entre Q(λ) et P (λ−1) ?
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Correction.

On écrit, pour λ 6= 0,

Q(λ) = det(λIn −A−1)

= det(A−1(λA− In))

= det(A−1) det(λA− In)

= det(A−1) det(−λ(λ−1In −A))

= det(A−1)(−λ)n det(λ−1In −A)

=
(−λ)n

det(A)
P (λ−1).

Exercice 16.Exercice 16.

Soient A,B ∈ Mn(K). On souhaite prouver que χAB = χBA.
1. Démontrer le résultat si A ou B est inversible.
2. Dans le cas général, on considère les matrices de M2n(K)

M =

(
BA −B
0 0

)
, N =

(
0 −B
0 AB

)
, P =

(
In 0
A In

)
.

Vérifier que PN = MP et conclure.

Correction.

1. Si par exemple A est inversible, AB et BA sont semblables. En effet, on peut écrire

A−1(AB)A = BA.

2. Il est clair que
PN = MP =

(
0 −B
0 0

)
.

De plus, P est une matrice triangulaire inférieure avec des 1 sur sa diagonale, donc P est
inversible. Il vient que M et N sont semblables donc ont le même polynôme caractéristique.
Mais le calcul de χM fait intervenir le déterminant d’une matrice triangulaire supérieure
par blocs. On peut calculer ce déterminant par blocs et on trouve que

χM (X) = XkχBA(X).

De même, on a aussi
χN (X) = XkχAB(X).

Puisque χM = χN , on en déduit que χAB = χBA.
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