Mathématiques spéciales

Corrigé de la feuille d’exercices n°10

Exercices a traiter en priorité :
Exercices : 10; 6; 3; 2; 13; 15.

1. Somme directe de plusieurs sous-espaces

Exercice 1.
Soit E = R*. On consideére (u1,uz, uz, us) une famille libre de E et on pose
F = vect(uy + uz,u3), G = vect(uy + us,uyg), H = vect(uy + ug,ug).

Démontrer que F NG = {0}, que F N H = {0} et que GN H = {0}. La somme F +G + H
est-elle directe ?

On va simplement démontrer que F NG = {0}, les deux autres égalités se prouvant de fagon tout
a fait similaire. Soit u € F'N G. Alors il existe des scalaires a, b, ¢, d tels que

u=a(u; + us) + bus = c(ug + uz) + duy = (a — c)us + aus + (b — c)ug — dug = 0.
La famille (u7,us,us,uq) étant libre, on en déduit que
a—c=a=b—c=-d=0,

d’out 'on déduit successivement a = d = 0, puis ¢ = 0, b = 0. Ainsi, v = 0. On va prouver que
la somme F 4+ G + H n’est pas directe en trouvant un vecteur qui admet deux décompositions
différentes dans F' + G + H. Par exemple,

up = —uz+(ui+uz3)+0e€F+G+H
= (u1+u2)+0+(—u2) € F+ G+ H.

La somme n’est pas directe!

Exercice 2.
On considere le R-espace vectoriel R* muni de sa base canonique (ey, €2, €3, e4). Soit
E={(z,y,2,t) ER*: 224 y+2—t=0ctz+y+2=0}

et I = vect(v) ol v = e1 + e3.
1. On pose G1 = vect(w;) ot w1 = e1 + es. La somme directe E + F + G; est-elle directe ?
Préciser la dimension de E + F + G.



2. On pose G2 = vect(ws) oll we = e1 +e2+e3. La somme directe E+ F + G5 est-elle directe 7
Préciser la dimension de E + F + G.

On va utiliser le résultat suivant : si Bg est une base de E, Br est une base de F' et Bg est une
base de G, la somme F + F + G est directe si et seulement si Bg U Br U Bg est une famille libre.
Ceci nous incite a chercher une base de E. Pour cela, on remarque que

= —y—z
=Y
= 5

(z,y,2,t) € B —

~ e R
|

Ainsi, si on pose u; = (—1,1,0,—1) et ug = (—1,0,1,—1), la famille (u1,us) est une base de FE.

1. Voyons si la famille (v, w1, u1,us2) est une famille libre. Pour cela, on résout le systéme

av + bwy + cus 4+ duy = 0, d’inconnues a, b, ¢, d. La résolution de ce systéme, en utilisant la
matrice augmentée, donne

1 01 010 10 1 010
110 ojo| _ [o1 =1 0o
110 —-1]0 01 1 —1]0
101 —1]0 00 2 —1]0
10 1 010
o1 -1 0o
00 2 —1]0

00 2 —1]0

10 1 010

01 -1 0|0

= 1lo1 2 —1]0
00 0 010

La famille est donc liée. La somme n’est pas directe! De plus, on vérifie que (v, wy,u;) est
libre, en reproduisant le calcul précédent (sauf la derniére ligne). C’est bien que (v, w1, uq)
est une base de F + F' 4+ GG; qui est de dimension 3.

2. On reprend la méme méthode, mais en remplacant w; par ws.

1 01 0]0 101 010
L1t 1 ojo| o111 0]o
110 -1]0 01 1 —1]0
101 —1]0 00 2 —1/0
101 010

010 010

1001 -1]0

002 —1/0

101 010

010 010

= 1o11 -1]o0

000 110




La famille est libre : E, F et G5 sont en somme directe, et la dimension de E + F 4+ G5 est

égale a 4.

2. Sous-espaces stables

Exercice 3.

Soit E un K-espace vectoriel, et soit u € L(E). On dit qu'un sous-espace vectoriel F' de E est
stable par u si u(z) € F pour tout = € F. Soit p un projecteur de E. Démontrer que v commute

avec p si et seulement si Im(p) et ker(p) sont stables par w.

Supposons d’abord que uwop = powu, et prouvons que ker(p) et Im(p) sont stables par u. En effet,
si p(x) = 0, alors powu(z) = uop(x) = 0 et donc u(z) € ker(p). De plus, si x € Im(p), alors
x = p(y) et u(z) = uop(y) = p(u(y)) € Im(p). Remarquons que cette implication n’utilise pas du
tout le fait que p est un projecteur. Réciproquement, supposons que ker(p) et Im(p) sont stables
par u, et prouvons que u et p commutent. Prenons z € E. Il se décompose de maniere unique en
x =y+z avec y € ker(p) et z € Im(p). En particulier, p(y) = 0 et p(z) = z. Mais alors, on a

d’une part
u(p(z)) = u(z)

et d’autre part, puisque u(y) € ker(p) et u(z) € Im(p) par hypothese :

Ainsi, u(p(x)) = p(u(z)) et les deux endomorphismes p et « commutent.

3. Matrices semblables

Exercice 4.

Montrer que les matrices A, B, C' et D suivantes sont semblables :

00 0 00 0
A=|0 0 1|, B=(0 0 0
00 0 010
010 00 0

Q
I

oo

co
=R=
!
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=R=

Soit u € L(R?) 'endomorphisme de R? dont la matrice dans la base canonique B = (ey, ez, €3)
est A. On a donc u(e;) = u(ez) = 0 et u(es) = ey. Alors,



1. Si on pose By = (eq, e3,€2), alors la matrice de u dans By est B.
2. Si on pose By = (ea,e3,e1), alors la matrice de v dans Bs est C.

3. Si on pose Bs = (es, i@g, e1) alors la matrice de u dans Bz est D.

Exercice 5.

Soit A € M,,(K) une matrice de rang r.

1. Démontrer que A est semblable & une matrice par blocs <g 8) avec B € M, (K) et
CeM,_,.(K).

2. On suppose de plus que Im(A) et ker(A) sont supplémentaires. Démontrer que ’on peut
demander C' = 0. Que dire de B?

On notera, pour éviter toute confusion, u et non A I’endomorphisme de R™ dont la matrice dans
la base canonique de R™ est A.

1. Puisque A est de rang r, ker(u) est de dimension n — r d’aprés le théoréme du rang. Soit

S un supplémentaire de ker(u), de dimension r, et considérons (ey,...,e,;) une base de S,
(ér41,-.-,6en) une base de ker(u), de sorte que (ey,...,e,) est une base de K”. Alors la
matrice de u dans la base (eq,...,e,) a bien la forme voulue.

2. On reprend la méme démonstration, mais cette fois on choisit comme supplémentaire de
ker(u) le sous-espace vectoriel Im(u). On a alors bien C' = 0, et puisque le rang de A vaut
r, il en est de méme du rang de B qui est donc inversible.

Exercice 6.

0o 2 -1 10 0
Soit M=[3 -2 0 ]JeteD=]|0 2 0 |.Lebutdel’exercice est de démontrer que M
-2 2 1 0 0 —4

et D sont semblables. On note f I’endomorphisme de R? dont la matrice dans la base canonique
est M.

1. Démontrer qu’il existe u; € R3 tel que vect(u;) = ker(f—Id). De méme, prouver I'existence
de ug,u_y4 € R3 tels que vect(us) = ker(f — 2Id) et Vect(u_4) = ker(f + 41d).

2. Démontrer que (u1,us,u_4) est une base de R3.

3. Conclure.



1. Soit u(z,y, z). Alors

u€ker(f —Id) < (f—Id)(u)=0

—zrz+2y—z = 0
— 3x — 3y 0
—2x4+2y = 0
T = x
— y =y
z = z

Si on pose u; = (1,1,1), alors on vient de prouver que ker(f — Id) = wu;. De méme, en
résolvant ’équation f(u) —2u = 0, puis ’équation f(u)+4u = 0, on trouve respectivement
vect(ug) = ker(f —21d) et Vect(u_y) = ker(f+4Id) avec ug = (4,3, —2) et u_g = (2, -3, 2).

2. Puisqu’il s’agit d’une famille de trois vecteurs de R3, il suffit de vérifier que c’est une famille
libre, ce qui est laissé au lecteur.

3. Notons B la matrice de f dans la base (u1,us,u—_4). Puisque f(u1) = u1, que ,f(uz) = 2us
et f(u_g) = —4u_y, on a B = D. Ainsi, M et D représentent la méme matrice dans des
bases différentes. Elles sont donc semblables.

Exercice 7.

1. Soit E un espace vectoriel et f € L(E). Montrer que f est une homothétie si et seulement
si, pour tout & € E, la famille (z, f(x)) est liée.

2. Soit M € M, (K) de trace nulle. Montrer que M est semblable & une matrice n’ayant que
des zéros sur la diagonale.

1. Si f est une homothétie, alors (x, f(x)) est bien toujours liée. Réciproquement, ’hypothése
nous dit, que pour tout x non-nul, il existe un scalaire A, tel que f(x) = A\zz. On doit
prouver qu’il existe un scalaire A tel que A\; = A pour tout = de F, ou encore que A, = Ay
quels que soient z et y non-nuls. Si la famille (z,y) est liée, c’est clair, car y = ux et
pAyx = Ayy = f(y) = pf(x) = pryx et on peut simplifier par pa # 0. Si la famille (z,y)
est libre, calculons f(z + y). D’une part,

d’autre part,
flz+y) = f(@)+ fy) = Aoz + Ayy.

Puisque la famille (z,y) est libre, toute décomposition d’un vecteur a I’aide de combinaison
linéaire de ces vecteurs est unique. On obtient donc A, = Ay = A1y, ce qui est le résultat
voulu.

2. On va raisonner par récurrence sur n, le résultat étant vrai si n = 1. Soit f I’application
linéaire associée a M dans la base canonique de K™. Si f est une homothétie, alors M est
diagonale et comme sa trace est nulle, c’est la matrice nulle. Sinon, soit x € K™ tel que
(z, f(z)) est libre. Alors on peut compléter cette famille en une base (z, f(z),es,...,e,).



Dans cette base, la matrice de f est

Autrement dit, M est semblable & N. Puisque N est de trace nulle, N’ est de trace nulle.
On peut lui appliquer I’hypothése de récurrence : il existe Q € GL,,_1(K) tel que Q' N'Q
soit une matrice n’ayant que des zéros sur la diagonale. Posons alors

Alors, P est inversible, et on vérifie aisément que P~ NP est une matrice n’ayant que des
zéros sur la diagonale. Ainsi, N, donc M, est semblable & une telle matrice.

4. Eléments propres et polynéme caractéristique

Exercice 8.

Soit E = C*>°(R) et D I'endomorphisme de F qui & f associe f’. Déterminer les valeurs propres
de D et les sous-espaces propres associés.

f est un vecteur propre de D associé & la valeur propre A € R si et et seulement si f/ = \f. f est
donc un multiple de la fonction z — exp(Az), et la réciproque est vraie. Autrement dit, tous les
réels sont des valeurs propres pour D, et exp(Az) est une base de 'espace propre associé a .

Exercice 9.

Soit E = CN l'espace des suites a coefficients complexes, et ¢ I’'endomorphisme de E qui & une
suite (u,) associe la suite (v,,) définie par vy = ug et pour tout n > 1,

Uy + Up—1

Up = 9

Déterminer les valeurs propres et les vecteurs propres de ¢.

Soit (uy) un vecteur propre associé a la valeur propre A. Alors on a ug = Aug et pour tout n > 1,



on a

% =M, <= (1—-2Nu, = —up_1.

On distingue alors trois cas :

— Si A =1, alors on a up = up (qui n’implique plus rien sur wg), puis pour tout n > 1, on
a u, = up_1. Réciproquement, toute suite constante est bien vecteur propre de ¢ pour la
valeur propre 1. On en déduit que 1 est une valeur propre de ¢ dont ’espace propre associé
est constitué par les suites constantes.

— Si A = 1/2, alors le systéme devient ug = 0 et pour tout n > 1, u,—1 = 0 ce qui implique
que (uy,) est la suite nulle et donc 1/2 n’est pas valeur propre de ¢.

— Dans tous les autres cas, le systéeme devient uy = 0 et pour tout n > 1,

1
T e

Up

Ainsi, la suite (u,) est la-encore la suite nulle, et A n’est pas valeur propre.

En conclusion, la seule valeur propre est 1, et les seuls vecteurs propres sont les suites constantes.

Exercice 10.

Déterminer les éléments propres des matrices suivantes :

0 2 -1 0 3 2 1 0 0
A= 3 —2 o |, B=| -2 5 2].c=([0 1 0
-2 2 1 2 -3 0 1 -1 2

Procédons d’abord avec A. Son polynéme caractéristique vaut
Xa(X) = (X -1)(X - 2)(X +4).

Il suffit de chercher pour chaque valeur propre un vecteur propre associé. D’abord pour 1, on
résoud AX=X, c’est-a-dire le systeéme :

—z4+2y—2z = 0
3r—3y = 0
—2zx+2y = 0
1
Ce systeme est équivalent a x = y = 2z et un vecteur propre est donc donnée par 1 |. On fait
1
2
de méme pour 2 et -4, et on trouve respectivement 3 et —3 |. La matrice A est donc
-2 2
semblable a diag(1,2, —4), la matrice de passage étant
1 4 2
P=11 3 -3
1 -2 2



Poursuivons avec B dont on calcule le polynéme caractéristique :
Pp(X) = X3 -5X%+8X — 4.
1 est racine évidente, on factorise par X — 1 et finalement on trouve
xp(X) = (X - 1)(X - 2).

On cherche le sous-espace propre associé a 1 en résolvant BX = X, c’est-a-dire le systeme :

—z+3y+2z = 0
—2z4+4y+2z = 0
20 —3y—2 = 0
Ce systeme est équivalent & x = y = —z. Ainsi, le sous-espace propre associé a 1 est de dimension
1
1, engendré par le vecteur propre 1 . ’étude du sous-espace propre associé a 2 conduit
-1
au systeme :
—2x+3y+2z = 0
—2z+3y+2z = 0
20 —3y—2z = 0

Ces trois équations se raménent & 2z — 3y — 2z = 0, qui est I’équation d’un plan de R3. Le
sous-espace propre associé a 2 est donc de dimension 2, et une base est donnée par les vecteurs
3 1
2 Jet| O |.B estdoncsemblable a la matrice diag(1,2,2), la matrice de passage P étant
0 1
donnée par
1 3 1
P = 1 2 0
-1 0 1
Le polyndme caractéristique de C est x(X) = —(1—X)?(2—X). On procéde exactement comme
précédemment, et on trouve que (u1,us) forme une base de I’espace propre associé a la valeur
propre 1, avec u; = (1,1,0) et ug = (0,1, 1) et que (u3) forme une base de ’espace propre associé
a la valeur propre 2, avec uz = (0,0, 1). Ainsi, C s’écrit C = PDP~! avec D la matrice diagonale

1 0 0
D= 01 0
0 0 2
et
1 0 O
P = 1 1 0
0 1 1

Exercice 11.

Soit E = R,[X] et soit ¢ 'endomorphisme de E défini par ¢(P) = P — (X + 1)P’. Donner les
éléments propres de ¢.



On va écrire la matrice de ¢ dans la base canonique de E. Remarquons que pour tout £ =0, ..., n,

on a
H(XF) = (—k+1)X* — kxF L

Ainsi, la matrice de ¢ dans la base (1, X,..., X™) est triangulaire supérieure, et ses coefficients

diagonaux sont 1,0,...,—n + 1. Les valeurs propres d’une matrice triangulaire supérieure étant

exactement les valeurs situées sur la diagonale, on en déduit que ¢ est diagonalisable, ses valeurs
propres étant les (n + 1) = dim(F) réels distincts 1,0, —1,...,—n + 1.

Exercice 12.

Soit ¢ : M € M, (R) = M, (R), M s *M. Déterminer les valeurs propres de ¢.

Soit A € Ret M € M,(R), M # 0 tel que p(M) = AM. Les termes diagonaux donnent
m;; = Am,; ; pour 1 <7 < n, les termes non-diagonaux donnent m; ; = Am;;, pour 1 < j <7 < n.
On en déduit que m; ; = A*m; ; pour tous les couples (i,j). Ceci entraine que A = +1. On
distingue plusieurs cas.
— Si A = —1, tous les coeflicients sur la diagonale sont égaux a 0 et on a m; ; = —m;;. On en
déduit que —1 est une valeur propre de ¢, les vecteurs propres appartenant a vect(f; j; 1 <
j <i<n)avec f; ; = B, ; — E; ;. L’espace propre associé est donc de dimension n(n—1)/2.
— Si A =1, on n’a plus de contraintes sur les éléments diagonaux, et m; ; = m;; pour les
éléménts non-diagonaux. On en déduit que 1 est valeur propre, les vecteurs propres étant
éléments de vect(E;;,9:;; 1 < j <i<n), avec g; ; = E; ; + E; ;. L’espace propre associé
est donc de dimension n +n(n —1)/2 =n(n+1)/2.

Exercice 13.

Une matrice A € M,,(R) est dite stochastique si ses coefficients sont des réels positifs ou nuls
et si la somme des coefficients de chacune de ses lignes est égale a 1.

1. Démontrer que si A € C est une valeur propre de A, alors |A| < 1.

2. Démontrer que 1 est valeur propre et donner un vecteur propre associé.

1. Supposons que A € C soit une valeur propre de A et soit Z un vecteur propre non-nul
associé. Soit ¢ € {1,...,n} tel que |2;| = maxj=1 . |z;|. La i-éme coordonnée de AZ est
Z?zl a; jz; et ceci doit étre égal a Az;. Prenant les valeurs absolues et utilisant I'inégalité
triangulaire, on obtient

n n
Mlzil 7 ailz] <D aijlzl < il
=1 =1

ou on a utilisé aussi que a;; > 0 et que Z?Zl a;; = 1. On a donc obtenu |A||z;] < |z
Comme |z;| # 0 (sinon Z serait le vecteur nul), ceci entraine encore que |A| < 1.



2. 11 suffit de choisir Z = [ : | pour remarquer que AZ = Z. Ainsi, Z est un vecteur propre

1
pour la valeur propre 1.

Exercice 14.

1. Soient M, N € M, (C). Démontrer que M N est inversible si et seulement si M et N sont
inversibles.

2. Soient A, B € M,,(C). Démontrer que

Xa(B) € GL,(C) <= Sp(A)NSp(B) = 2.

1. On a
MN e GL,(C) <= det(MN)=#0
< det(M) x det(N) #0
<= det(M) #0et det(N) #0
< MeGL,(C)et NeGL,(C).
2. Soient Aq,..., A, les valeurs propres de A, répétées autant de fois que leur multiplicité, de

sorte que x 4(X) = [Ti=,(X — A;). On a donc

n

xa(B) = [[(B - \l):

i=1
D’aprés la premiére question (et une récurrence immédiate), x 4(B) est inversible si et
seulement, pour tout ¢ = 1,...,n, B — \;I,, est inversible, c’est-a-dire si et seulement si,
pour tout ¢ =1,...,n, A; ¢ Sp(B). Ceci revient & dire que Sp(A4) N Sp(B) = @.

Exercice 15.

Soit A € GL,(C). On note P le polyndme caractéristique de A et @ celui de A~!. Quelle relation
a-t-on pour tout A € C* entre Q(\) et P(A71)?

10



On écrit, pour A # 0,

Q(\) = det(\, — A1)
=det(A'(V\ —I,))
= det(A™) det(A\A — I,,)
= det(A™ ) det(—A(A"LI, — A))
=det(A71)(=N)"det(\"' 1, — A)
_ =V

Exercice 16.

Soient A, B € M,,(K). On souhaite prouver que X 5 = Xpa-
1. Démontrer le résultat si A ou B est inversible.

2. Dans le cas général, on considére les matrices de Ma, (K)

BA -B 0 -B L 0
M:( 0 0 )’N:<o AB)’P:(A 1n>'

Vérifier que PN = M P et conclure.

1. Si par exemple A est inversible, AB et BA sont semblables. En effet, on peut écrire
A Y(AB)A = BA.
2. Il est clair que

0 —-B
PNMP(O 0 >

De plus, P est une matrice triangulaire inférieure avec des 1 sur sa diagonale, donc P est
inversible. Il vient que M et IV sont semblables donc ont le méme polynéme caractéristique.
Mais le calcul de x,, fait intervenir le déterminant d’une matrice triangulaire supérieure
par blocs. On peut calculer ce déterminant par blocs et on trouve que

Xm(X) = XkXBA<X)'

De méme, on a aussi
xn(X) = XkXAB(X)'

Puisque x,; = xn, on en déduit que x 45 = Xp4-

11
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